metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­(4,5-di­aza­fluoren-9-one-κ2N,N′)nickel(II) dinitrate

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: guomeng7101@126.com

(Received 13 August 2009; accepted 9 October 2009; online 17 October 2009)

The title compound, [Ni(C11H6N2O)(H2O)4](NO3)2, was prepared by the reaction of Ni(NO3)2 and 4,5-diaza­fluoren-9-one (dafo). The crystal packing consists of a three-dimensional network via O—H⋯O hydrogen bonds between the coordin­ated water mol­ecules and the nitrate anions. The Ni atom lies on a special position (Wyckoff position 4e, site symmetry 2), as does the carbonyl O atom.

Related literature

For properties of 4,5-diaza­fluoren-9-one compounds, see: Prasad et al. (2001[Prasad, K., Subhash, P. & Ekkehard, S. (2001). Inorg. Chim. Acta, 321, 193-199.], 2002[Prasad, K., Subhash, P., Ekkehard, S., Christopher, E. A. & Annie, K. P. (2002). Inorg. Chim. Acta, 332, 167-175.]). For coordination compounds with dafo, see: Prasad et al. (2001[Prasad, K., Subhash, P. & Ekkehard, S. (2001). Inorg. Chim. Acta, 321, 193-199.], 2002[Prasad, K., Subhash, P., Ekkehard, S., Christopher, E. A. & Annie, K. P. (2002). Inorg. Chim. Acta, 332, 167-175.]); Li et al. (2003[Li, B. L., Li, B. Z., Zhu, X. & Zhang, Y. (2003). Inorg. Chem. Commun. 6, 1304-1306.]); Wu et al. (2003[Wu, B.-L., Zhang, H.-Y., Wu, Q.-A., Hou, H.-W. & Zh, Y. (2003). J. Mol. Struct. 655, 467-472.]); Zhang et al. (2003[Zhang, R. L., Zhao, J. S., Shi, Q. Z. & Ng, S. W. (2003). Acta Cryst. E59, m476-m477.]). For Ni—N and Ni—O bond lengths in related structures, see: Swamy et al. (2001[Swamy, G. Y. S. K., Mohan, K. C. & Ravikumar, K. (2001). Cryst. Res. Technol. 36, 615-622.]); Kramer et al. (2002[Kramer, R., Kovbasyuk, L. & Pritzkow, H. (2002). New J. Chem. 26, 516-518.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C11H6N2O)(H2O)4](NO3)2

  • Mr = 436.97

  • Monoclinic, C 2/c

  • a = 12.904 (3) Å

  • b = 10.207 (2) Å

  • c = 13.084 (3) Å

  • β = 105.85 (3)°

  • V = 1657.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.24 mm−1

  • T = 293 K

  • 0.26 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.739, Tmax = 0.790

  • 4262 measured reflections

  • 1465 independent reflections

  • 1303 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.107

  • S = 1.14

  • 1465 reflections

  • 124 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W1⋯O2W 0.85 2.40 2.838 (3) 113
O1W—H1W1⋯O1i 0.85 2.61 3.070 (3) 115
O1W—H2W1⋯O1ii 0.85 2.11 2.901 (3) 156
O2W—H1W2⋯O3iii 0.85 2.08 2.848 (4) 150
O2W—H2W2⋯O4ii 0.85 2.16 2.986 (3) 163
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y-1, z; (iii) [x, -y+1, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

4,5-diazafluoren-9-one (dafo), as well as the modified 1,10-phenanthroline (phen) neutral ligand, have allured interest in electrochemical, DNA intercalation and biological properties (Prasad et al., 2002 & Prasad et al., 2001). Because of the larger bite distance (2.99 Å) between two coordination nitrogen atoms, dafo provides an uncommon coordination environment, yielding a number of coordination compounds, such as two-dimensional sheets of [(dafone)2Cu(NCS)]n (Prasad et al., 2002), the zigzag chain structure of [Cu(Hnta)(afo)] (nta=nitrilotriacetate) (Li et al., 2003), the helical chains of cations formed by π-π stacking interaction in [Cd(dafo)2(tphpo)(CH3COO)]ClO4 (tphpo=triphenylphosphine oxide) (Wu et al., 2003), [Cu(dafone)2Cl2(dafoneH+H2O)2(ClO4)2] (Prasad et al., 2001) and [Zn(C11H6N2O)2(H2O)2](NO3)2 (Zhang et al., 2003). Compared to phen and 2,2'-bipyridine, the number of characterised metal compounds with dafo ligand is still small. Here we report the synthesis and structure of the title compound, which formes a three-dimensional network by O–H···O bonding.

The title structure (Fig. 1) features one Ni atom on a special position (Wyckoff position 4e, site symmetry 2), one 4,5-diazafluoren-9-one (dafo) ligand, four coordination water molecules and two nitrate anion. Even the dafo ligand lies on a special position (Wyckoff position 4e, site symmetry 2 with the C=O bond containing the twofold axis). Ni is coordinated by the two N atoms from dafo ligand, and four water molecules, yielding an overall tetragonally distorted octahedral geometry. The nitrogen donor atoms and two coordinated water molecules are found in the equatorial plane while the remaining two water molecules occupy the axial positions. The mean Ni—N and Ni—O bond lengths are similar to the reported (Swamy et al., 2001, Kramer et al., 2002). The torsion angles of O1W—Ni1—N2—C1, O2W—Ni1—N2—C1 are -91.30 (2) and -3.40 (2)°, respectively.

Hydrogen bonds are formed between the water molecules and O atoms from nitrate anions and the carbonyl group of the dafo ligand. O2w···O4 hydrogen-bond interactions link neighboring cations and form the one-dimensional chains. The anion NO3- link these chains together by O1w···O and O2w···O hydrogen bonds, resulting in the three-dimensional network (Fig.2).

Related literature top

For properties of 4,5-diazafluoren-9-one compounds, see: Prasad et al. (2001, 2002). For coordination compounds with dafo, see: Prasad et al. (2001, 2002); Li et al. (2003); Wu et al. (2003); Zhang et al. (2003). For Ni—N and Ni—O bond lengths in related structures, see: Swamy et al. (2001); Kramer et al. (2002).

Experimental top

All commercially obtained reagent-grade chemicals were used without further purification. To a solution of dafo (0.452 g, 2.5 mmol) in methanol solution (30 ml) was added Ni(NO3)2 6(H2O) (0.581 g, 2.0 mmol) in water (20 ml). The solution was stirred for 1.5 h. The resultant dark green precipitate was filtered and dried thoroughly in air. The green crystals (yield 0.79 g) were grown by slow evaporation from the water and methanol (2:3 v/v) mixed solution.

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H and O—H distances of 0.93 and 0.85 Å, respectively, and with Uiso(H) = 1.2Ueq of the parent atoms.

Structure description top

4,5-diazafluoren-9-one (dafo), as well as the modified 1,10-phenanthroline (phen) neutral ligand, have allured interest in electrochemical, DNA intercalation and biological properties (Prasad et al., 2002 & Prasad et al., 2001). Because of the larger bite distance (2.99 Å) between two coordination nitrogen atoms, dafo provides an uncommon coordination environment, yielding a number of coordination compounds, such as two-dimensional sheets of [(dafone)2Cu(NCS)]n (Prasad et al., 2002), the zigzag chain structure of [Cu(Hnta)(afo)] (nta=nitrilotriacetate) (Li et al., 2003), the helical chains of cations formed by π-π stacking interaction in [Cd(dafo)2(tphpo)(CH3COO)]ClO4 (tphpo=triphenylphosphine oxide) (Wu et al., 2003), [Cu(dafone)2Cl2(dafoneH+H2O)2(ClO4)2] (Prasad et al., 2001) and [Zn(C11H6N2O)2(H2O)2](NO3)2 (Zhang et al., 2003). Compared to phen and 2,2'-bipyridine, the number of characterised metal compounds with dafo ligand is still small. Here we report the synthesis and structure of the title compound, which formes a three-dimensional network by O–H···O bonding.

The title structure (Fig. 1) features one Ni atom on a special position (Wyckoff position 4e, site symmetry 2), one 4,5-diazafluoren-9-one (dafo) ligand, four coordination water molecules and two nitrate anion. Even the dafo ligand lies on a special position (Wyckoff position 4e, site symmetry 2 with the C=O bond containing the twofold axis). Ni is coordinated by the two N atoms from dafo ligand, and four water molecules, yielding an overall tetragonally distorted octahedral geometry. The nitrogen donor atoms and two coordinated water molecules are found in the equatorial plane while the remaining two water molecules occupy the axial positions. The mean Ni—N and Ni—O bond lengths are similar to the reported (Swamy et al., 2001, Kramer et al., 2002). The torsion angles of O1W—Ni1—N2—C1, O2W—Ni1—N2—C1 are -91.30 (2) and -3.40 (2)°, respectively.

Hydrogen bonds are formed between the water molecules and O atoms from nitrate anions and the carbonyl group of the dafo ligand. O2w···O4 hydrogen-bond interactions link neighboring cations and form the one-dimensional chains. The anion NO3- link these chains together by O1w···O and O2w···O hydrogen bonds, resulting in the three-dimensional network (Fig.2).

For properties of 4,5-diazafluoren-9-one compounds, see: Prasad et al. (2001, 2002). For coordination compounds with dafo, see: Prasad et al. (2001, 2002); Li et al. (2003); Wu et al. (2003); Zhang et al. (2003). For Ni—N and Ni—O bond lengths in related structures, see: Swamy et al. (2001); Kramer et al. (2002).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The chains formed by direct O(water)–H···O(carbonyl). H bonds as dashed lines
[Figure 3] Fig. 3. The network formed by O–H···ONO2 hydrogen bonds. H bonds as dashed lines. Only the C=O groups from the dafo ligand in the upper right and lower left corner are shown.
Tetraaqua(4,5-diazafluoren-9-one-κ2N,N')nickel(II) dinitrate top
Crystal data top
[Ni(C11H6N2O)(H2O)4](NO3)2F(000) = 896
Mr = 436.97Dx = 1.751 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1023 reflections
a = 12.904 (3) Åθ = 2.6–25.0°
b = 10.207 (2) ŵ = 1.24 mm1
c = 13.084 (3) ÅT = 293 K
β = 105.85 (3)°Prism, green
V = 1657.8 (6) Å30.26 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1465 independent reflections
Radiation source: fine-focus sealed tube1303 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
φ and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1514
Tmin = 0.739, Tmax = 0.790k = 126
4262 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0607P)2 + 2.0108P]
where P = (Fo2 + 2Fc2)/3
1465 reflections(Δ/σ)max < 0.001
124 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Ni(C11H6N2O)(H2O)4](NO3)2V = 1657.8 (6) Å3
Mr = 436.97Z = 4
Monoclinic, C2/cMo Kα radiation
a = 12.904 (3) ŵ = 1.24 mm1
b = 10.207 (2) ÅT = 293 K
c = 13.084 (3) Å0.26 × 0.25 × 0.20 mm
β = 105.85 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1465 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1303 reflections with I > 2σ(I)
Tmin = 0.739, Tmax = 0.790Rint = 0.018
4262 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.14Δρmax = 0.46 e Å3
1465 reflectionsΔρmin = 0.60 e Å3
124 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.25222 (4)0.25000.0324 (2)
O40.00000.8551 (3)0.25000.0626 (9)
N20.06304 (18)0.4111 (2)0.35714 (17)0.0364 (5)
C10.1215 (2)0.4279 (3)0.4587 (2)0.0457 (7)
H1A0.14660.35440.50000.055*
C20.1455 (3)0.5512 (3)0.5037 (2)0.0532 (8)
H2A0.18560.55810.57420.064*
C30.1109 (2)0.6640 (3)0.4459 (2)0.0509 (7)
H3A0.12650.74670.47590.061*
C40.0525 (2)0.6478 (3)0.3418 (2)0.0398 (6)
C50.0318 (2)0.5207 (2)0.3050 (2)0.0338 (6)
C60.00000.7384 (4)0.25000.0452 (10)
O1W0.13445 (18)0.24757 (16)0.19659 (18)0.0457 (5)
H1W10.18480.27890.17350.055*
H2W10.15430.17230.22230.055*
O2W0.07053 (17)0.11039 (19)0.35806 (16)0.0494 (5)
H1W20.10310.09880.42330.059*
H2W20.03980.03870.33410.059*
N10.1702 (2)0.9279 (3)0.1387 (2)0.0557 (7)
O10.2159 (2)0.9812 (3)0.2222 (2)0.0748 (8)
O20.1842 (2)0.8094 (3)0.1304 (3)0.0966 (11)
O30.1130 (3)0.9928 (4)0.0676 (2)0.1121 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0441 (3)0.0220 (3)0.0305 (3)0.0000.0092 (2)0.000
O40.093 (2)0.0298 (16)0.073 (2)0.0000.0366 (19)0.000
N20.0461 (12)0.0296 (11)0.0330 (11)0.0009 (9)0.0098 (9)0.0010 (9)
C10.0495 (15)0.0509 (17)0.0345 (14)0.0049 (13)0.0078 (11)0.0055 (12)
C20.0532 (17)0.067 (2)0.0363 (15)0.0054 (15)0.0063 (13)0.0120 (15)
C30.0580 (17)0.0455 (17)0.0504 (17)0.0118 (14)0.0172 (14)0.0173 (14)
C40.0476 (14)0.0297 (13)0.0458 (15)0.0041 (11)0.0190 (12)0.0067 (11)
C50.0395 (13)0.0297 (13)0.0336 (13)0.0008 (10)0.0123 (11)0.0028 (10)
C60.055 (2)0.029 (2)0.060 (3)0.0000.030 (2)0.000
O1W0.0526 (12)0.0386 (12)0.0502 (13)0.0020 (8)0.0214 (10)0.0063 (8)
O2W0.0717 (14)0.0324 (10)0.0403 (11)0.0043 (9)0.0089 (9)0.0060 (9)
N10.0442 (13)0.0670 (18)0.0534 (16)0.0116 (13)0.0092 (12)0.0186 (14)
O10.0706 (15)0.0778 (18)0.0633 (15)0.0083 (13)0.0032 (12)0.0237 (13)
O20.090 (2)0.070 (2)0.134 (3)0.0015 (16)0.0374 (19)0.052 (2)
O30.103 (2)0.172 (3)0.0543 (16)0.077 (2)0.0078 (15)0.0039 (19)
Geometric parameters (Å, º) top
Ni1—O1Wi2.040 (2)C3—C41.374 (4)
Ni1—O1W2.040 (2)C3—H3A0.9300
Ni1—O2Wi2.054 (2)C4—C51.383 (3)
Ni1—O2W2.054 (2)C4—C61.521 (4)
Ni1—O2W2.054 (2)C5—C5i1.450 (5)
Ni1—N22.153 (2)C6—C4i1.521 (4)
Ni1—N2i2.153 (2)O1W—H1W10.8502
O4—C61.191 (4)O1W—H2W10.8501
N2—C51.315 (3)O2W—O2W0.000 (4)
N2—C11.347 (4)O2W—H1W20.8501
C1—C21.388 (4)O2W—H2W20.8500
C1—H1A0.9300N1—O31.214 (4)
C2—C31.382 (5)N1—O11.219 (4)
C2—H2A0.9300N1—O21.231 (4)
O1Wi—Ni1—O1W177.33 (10)C3—C2—C1121.5 (3)
O1Wi—Ni1—O2Wi87.77 (8)C3—C2—H2A119.3
O1W—Ni1—O2Wi90.35 (9)C1—C2—H2A119.3
O1Wi—Ni1—O2W90.35 (9)C4—C3—C2116.7 (3)
O1W—Ni1—O2W87.77 (8)C4—C3—H3A121.7
O2Wi—Ni1—O2W90.39 (12)C2—C3—H3A121.7
O1Wi—Ni1—O2W90.35 (9)C3—C4—C5117.3 (3)
O1W—Ni1—O2W87.77 (8)C3—C4—C6135.6 (3)
O2Wi—Ni1—O2W90.39 (12)C5—C4—C6107.1 (2)
O2W—Ni1—O2W0.00 (12)N2—C5—C4127.9 (2)
O1Wi—Ni1—N289.99 (8)N2—C5—C5i121.67 (14)
O1W—Ni1—N292.01 (8)C4—C5—C5i110.40 (16)
O2Wi—Ni1—N2175.31 (8)O4—C6—C4i127.46 (15)
O2W—Ni1—N293.74 (9)O4—C6—C4127.46 (15)
O2W—Ni1—N293.74 (9)C4i—C6—C4105.1 (3)
O1Wi—Ni1—N2i92.01 (8)Ni1—O1W—H1W1156.5
O1W—Ni1—N2i89.99 (8)Ni1—O1W—H2W194.5
O2Wi—Ni1—N2i93.74 (9)H1W1—O1W—H2W1107.7
O2W—Ni1—N2i175.31 (8)O2W—O2W—Ni10 (10)
O2W—Ni1—N2i175.31 (8)O2W—O2W—H1W20.0
N2—Ni1—N2i82.22 (12)Ni1—O2W—H1W2142.5
C5—N2—C1114.4 (2)O2W—O2W—H2W20.0
C5—N2—Ni1107.21 (16)Ni1—O2W—H2W2106.1
C1—N2—Ni1138.41 (19)H1W2—O2W—H2W2107.7
N2—C1—C2122.2 (3)O3—N1—O1119.1 (3)
N2—C1—H1A118.9O3—N1—O2122.8 (3)
C2—C1—H1A118.9O1—N1—O2118.1 (3)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W1···O2W0.852.402.838 (3)113
O1W—H1W1···O1ii0.852.613.070 (3)115
O1W—H2W1···O1iii0.852.112.901 (3)156
O2W—H1W2···O3iv0.852.082.848 (4)150
O2W—H2W2···O4iii0.852.162.986 (3)163
Symmetry codes: (ii) x+1/2, y1/2, z+1/2; (iii) x, y1, z; (iv) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C11H6N2O)(H2O)4](NO3)2
Mr436.97
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)12.904 (3), 10.207 (2), 13.084 (3)
β (°) 105.85 (3)
V3)1657.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.24
Crystal size (mm)0.26 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.739, 0.790
No. of measured, independent and
observed [I > 2σ(I)] reflections
4262, 1465, 1303
Rint0.018
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.107, 1.14
No. of reflections1465
No. of parameters124
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.60

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W1···O2W0.852.402.838 (3)113
O1W—H1W1···O1i0.852.613.070 (3)115
O1W—H2W1···O1ii0.852.112.901 (3)156
O2W—H1W2···O3iii0.852.082.848 (4)150
O2W—H2W2···O4ii0.852.162.986 (3)163
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y1, z; (iii) x, y+1, z+1/2.
 

References

First citationBruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKramer, R., Kovbasyuk, L. & Pritzkow, H. (2002). New J. Chem. 26, 516–518.  Web of Science CSD CrossRef Google Scholar
First citationLi, B. L., Li, B. Z., Zhu, X. & Zhang, Y. (2003). Inorg. Chem. Commun. 6, 1304–1306.  Web of Science CSD CrossRef CAS Google Scholar
First citationPrasad, K., Subhash, P. & Ekkehard, S. (2001). Inorg. Chim. Acta, 321, 193–199.  Google Scholar
First citationPrasad, K., Subhash, P., Ekkehard, S., Christopher, E. A. & Annie, K. P. (2002). Inorg. Chim. Acta, 332, 167–175.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwamy, G. Y. S. K., Mohan, K. C. & Ravikumar, K. (2001). Cryst. Res. Technol. 36, 615–622.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, B.-L., Zhang, H.-Y., Wu, Q.-A., Hou, H.-W. & Zh, Y. (2003). J. Mol. Struct. 655, 467–472.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, R. L., Zhao, J. S., Shi, Q. Z. & Ng, S. W. (2003). Acta Cryst. E59, m476–m477.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds