organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Chloro-2-methyl-4-phenyl-3-[1-phenyl-5-(2-thien­yl)-4,5-di­hydro-1H-pyrazol-3-yl]quinoline

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bOrganic Chemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, India
*Correspondence e-mail: hkfun@usm.my

(Received 29 September 2009; accepted 2 October 2009; online 10 October 2009)

In the title mol­ecule, C29H22ClN3S, the quinoline ring system, thio­phene ring and phenyl ring substituents are inclined at angles of 71.70 (7), 59.26 (9) and 81.61 (9)°, respectively, to the 4,5-dihydro­pyrazole ring. In the 4-phenyl­quinoline ring system, the phenyl ring makes a dihedral angle of 62.49 (7)° with mean plane of quinoline ring system. In the crystal structure, mol­ecules are linked via weak inter­molecular C—H⋯N hydrogen bonds, forming an extended one-dimensional chain along the b axis and are further consolidated by C—H⋯π and ππ stacking inter­actions [centroid–centroid distances = 3.7022 (10) Å].

Related literature

For general background to quinolines and their derivatives, see: Morimoto et al. (1991[Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202-203.]); Michael (1997[Michael, J. P. (1997). Nat. Prod. Rep. 14, 605-608.]); Markees et al. (1970[Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324-326.]); Campbell et al. (1988[Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031-1035.]). For applications of quinolines, see: Maguire et al. (1994[Maguire, M. P., Sheets, K. R., McVety, K., Spada, A. P. & Zilberstein, A. (1994). J. Med. Chem. 37, 2129-2137.]); Kalluraya & Sreenivasa (1998[Kalluraya, B. & Sreenivasa, S. (1998). Farmaco, 53, 399-404.]); Roma et al. (2000[Roma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem. 35, 1021-1026.]); Chen et al. (2001[Chen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem. 44, 2374-2377.]); Skraup (1880[Skraup, H. (1880). Ber. Dtsch Chem. Ges. 13, 2086-2088.]). For the synthesis of new quinoline derivatives, see: Katritzky & Arend (1998[Katritzky, A. R. & Arend, M. I. (1998). J. Org. Chem. 63, 9989-9991.]); Jiang & Si (2002[Jiang, B. & Si, Y.-G. (2002). J. Org. Chem. 67, 9449-9451.]). For related structures, see: Fun et al. (2009a[Fun, H.-K., Loh, W.-S., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2009b). Acta Cryst. E65, 2688-2689.],b[Fun, H.-K., Yeap, C. S., Sarveswari, S., Vijayakumar, V. & Prasath, R. (2009a). Acta Cryst. E65, o2665-o2666.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C29H22ClN3S

  • Mr = 480.01

  • Monoclinic, P 21 /c

  • a = 14.0395 (4) Å

  • b = 9.4199 (3) Å

  • c = 19.3020 (6) Å

  • β = 114.696 (2)°

  • V = 2319.22 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 100 K

  • 0.54 × 0.51 × 0.21 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.863, Tmax = 0.943

  • 32081 measured reflections

  • 6723 independent reflections

  • 5814 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.139

  • S = 1.07

  • 6723 reflections

  • 308 parameters

  • H-atom parameters constrained

  • Δρmax = 1.19 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯N1i 0.93 2.60 3.490 (2) 161
C3—H3ACg1ii 0.93 2.63 3.481 (2) 152
C12—H12ACg1iii 0.93 2.83 3.487 (2) 129
C17—H17BCg2 0.97 2.88 3.6916 (19) 142
C20—H20ACg3iii 0.93 2.89 3.7523 (18) 155
C21—H21ACg4iv 0.93 2.84 3.6084 (18) 141
C22—H22ACg3v 0.93 2.88 3.5750 (18) 132
C29—H29BCg5vi 0.96 2.89 3.694 (2) 142
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iv) [x, -y-{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) [-x, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (vi) [-x+1, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]. Cg1–Cg5 are centroids of the S1/C19–C22, C10–C15, C23–C28, N1/C1/C6–C9 and C1–C6 rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Quinolines and their derivatives are very important compounds because of their wide occurrence in natural products (Morimoto et al., 1991; Michael, 1997) and biologically active compounds (Markees et al., 1970; Campbell et al., 1988). A large variety of quinolines have interesting physiological activities and found attractive applications as pharmaceuticals, agrochemicals and as synthetic building blocks (Maguire et al., 1994; Kalluraya & Sreenivasa, 1998; Roma et al., 2000; Chen et al., 2001; Skraup, 1880). Many synthetic methods such as Skraup, Doebner-Von Miller, Friedländer and Combes reactions have been developed for the preparation of quinolines. Due to their great importance, the synthesis of new derivatives of quinoline remains an active research area (Katritzky & Arend, 1998; Jiang & Si, 2002).

The title molecule (Fig. 1) consists of a 4-phenylquinoline ring system (N1/C1–C15), a thiophene ring (S1/C19–C22) and a phenyl ring (C23–C28) attached to a 4,5-dihydropyrazole ring (N2/N3/C16–C18). The 4,5-dihydropyrazole ring is inclined at angles of 71.70 (7), 59.26 (9) and 81.61 (9)° with respect to the quinoline group, thiophene and phenyl rings substituted to 4,5-dihydropyrazole ring, respectively. In the 4-phenylquinoline ring system, the substituent phenyl ring (C10–C15) forms a dihedral angle of 62.49 (7)° with mean plane of quinoline ring system (N1/C1–C9). Bond lengths and angles are within normal ranges, and comparable to closely related structures (Fun et al., 2009a,b).

In the crystal structure (Fig. 2), the molecules are linked via weak intermolecular C—H···N hydrogen bonds to form an extended one-dimensional chain along the b-axis and are further consolidated by C–H···π (Table 1) and ππ stacking interactions between S1/C19–C22 (centroid Cg1) and N2/N3/C16–C18 (centroid Cg2) rings, with a Cg1···Cg2 distance of 3.7022 (10) Å.

Related literature top

For general background to quinolines and their derivatives, see: Morimoto et al. (1991); Michael (1997); Markees et al. (1970); Campbell et al. (1988). For applications of quinolines, see: Maguire et al. (1994); Kalluraya & Sreenivasa (1998); Roma et al. (2000); Chen et al. (2001); Skraup (1880). For the synthesis of new quinoline derivatives, see: Katritzky & Arend (1998); Jiang & Si (2002). For a related structure, see: Fun et al. (2009a,b). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 1-(6-chloro-2-methyl-4-phenylquinolin-3-yl)-3-(thiophen-2-yl) prop-2-en-1-one (0.4 g 0.001 M) and phenyl hydrazine (0.756 g 0.007 M) in distilled ethanol was refluxed for about 8 h. The resulting mixture was concentrated to remove the ethanol and then poured onto ice and neutralized with dilute HCl. The resultant solid was filtered, dried and purified by column chromatography using 1:1 mixture of chloroform and petroleum ether. M.p. 463-465K.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.98 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl group.

Structure description top

Quinolines and their derivatives are very important compounds because of their wide occurrence in natural products (Morimoto et al., 1991; Michael, 1997) and biologically active compounds (Markees et al., 1970; Campbell et al., 1988). A large variety of quinolines have interesting physiological activities and found attractive applications as pharmaceuticals, agrochemicals and as synthetic building blocks (Maguire et al., 1994; Kalluraya & Sreenivasa, 1998; Roma et al., 2000; Chen et al., 2001; Skraup, 1880). Many synthetic methods such as Skraup, Doebner-Von Miller, Friedländer and Combes reactions have been developed for the preparation of quinolines. Due to their great importance, the synthesis of new derivatives of quinoline remains an active research area (Katritzky & Arend, 1998; Jiang & Si, 2002).

The title molecule (Fig. 1) consists of a 4-phenylquinoline ring system (N1/C1–C15), a thiophene ring (S1/C19–C22) and a phenyl ring (C23–C28) attached to a 4,5-dihydropyrazole ring (N2/N3/C16–C18). The 4,5-dihydropyrazole ring is inclined at angles of 71.70 (7), 59.26 (9) and 81.61 (9)° with respect to the quinoline group, thiophene and phenyl rings substituted to 4,5-dihydropyrazole ring, respectively. In the 4-phenylquinoline ring system, the substituent phenyl ring (C10–C15) forms a dihedral angle of 62.49 (7)° with mean plane of quinoline ring system (N1/C1–C9). Bond lengths and angles are within normal ranges, and comparable to closely related structures (Fun et al., 2009a,b).

In the crystal structure (Fig. 2), the molecules are linked via weak intermolecular C—H···N hydrogen bonds to form an extended one-dimensional chain along the b-axis and are further consolidated by C–H···π (Table 1) and ππ stacking interactions between S1/C19–C22 (centroid Cg1) and N2/N3/C16–C18 (centroid Cg2) rings, with a Cg1···Cg2 distance of 3.7022 (10) Å.

For general background to quinolines and their derivatives, see: Morimoto et al. (1991); Michael (1997); Markees et al. (1970); Campbell et al. (1988). For applications of quinolines, see: Maguire et al. (1994); Kalluraya & Sreenivasa (1998); Roma et al. (2000); Chen et al. (2001); Skraup (1880). For the synthesis of new quinoline derivatives, see: Katritzky & Arend (1998); Jiang & Si (2002). For a related structure, see: Fun et al. (2009a,b). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of title compound, viewed along the c axis. Intermolecular hydrogen bonds are shown as dashed lines.
6-Chloro-2-methyl-4-phenyl-3-[1-phenyl-5-(2-thienyl)-4,5-dihydro-1H- pyrazol-3-yl]quinoline top
Crystal data top
C29H22ClN3SF(000) = 1000
Mr = 480.01Dx = 1.375 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9914 reflections
a = 14.0395 (4) Åθ = 2.7–35.6°
b = 9.4199 (3) ŵ = 0.28 mm1
c = 19.3020 (6) ÅT = 100 K
β = 114.696 (2)°Block, yellow
V = 2319.22 (12) Å30.54 × 0.51 × 0.21 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6723 independent reflections
Radiation source: fine-focus sealed tube5814 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
φ and ω scansθmax = 30.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1919
Tmin = 0.863, Tmax = 0.943k = 1313
32081 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0722P)2 + 1.7861P]
where P = (Fo2 + 2Fc2)/3
6723 reflections(Δ/σ)max = 0.001
308 parametersΔρmax = 1.19 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C29H22ClN3SV = 2319.22 (12) Å3
Mr = 480.01Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.0395 (4) ŵ = 0.28 mm1
b = 9.4199 (3) ÅT = 100 K
c = 19.3020 (6) Å0.54 × 0.51 × 0.21 mm
β = 114.696 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6723 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5814 reflections with I > 2σ(I)
Tmin = 0.863, Tmax = 0.943Rint = 0.051
32081 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.07Δρmax = 1.19 e Å3
6723 reflectionsΔρmin = 0.39 e Å3
308 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.52535 (3)0.15347 (5)0.55993 (3)0.02753 (12)
S10.13358 (3)0.98946 (4)0.82776 (2)0.01644 (10)
N10.46753 (10)0.73714 (15)0.64499 (8)0.0179 (3)
N20.16075 (10)0.79726 (15)0.65110 (8)0.0152 (3)
N30.09408 (10)0.81949 (15)0.68774 (7)0.0142 (3)
C10.47887 (12)0.59890 (18)0.62770 (9)0.0161 (3)
C20.56285 (12)0.5667 (2)0.60768 (10)0.0199 (3)
H2A0.60820.63850.60750.024*
C30.57797 (12)0.4312 (2)0.58854 (10)0.0211 (3)
H3A0.63380.41050.57620.025*
C40.50776 (12)0.32362 (19)0.58782 (10)0.0190 (3)
C50.42605 (12)0.34935 (18)0.60750 (9)0.0167 (3)
H5A0.38120.27620.60690.020*
C60.41072 (11)0.48866 (17)0.62882 (9)0.0143 (3)
C70.32784 (11)0.52504 (17)0.65019 (8)0.0131 (3)
C80.31640 (11)0.66558 (17)0.66620 (9)0.0142 (3)
C90.38941 (12)0.76979 (17)0.66316 (9)0.0163 (3)
C100.25384 (11)0.41394 (16)0.65240 (9)0.0130 (3)
C110.14714 (12)0.42336 (17)0.60459 (9)0.0155 (3)
H11A0.12230.49860.57050.019*
C120.07765 (12)0.32076 (18)0.60763 (10)0.0189 (3)
H12A0.00670.32760.57550.023*
C130.11390 (13)0.20823 (18)0.65841 (10)0.0200 (3)
H13A0.06740.13960.66030.024*
C140.22015 (13)0.19852 (18)0.70645 (10)0.0198 (3)
H14A0.24460.12340.74070.024*
C150.28996 (12)0.30060 (18)0.70350 (9)0.0175 (3)
H15A0.36090.29340.73570.021*
C160.23190 (12)0.70685 (17)0.68943 (9)0.0148 (3)
C170.22254 (14)0.65035 (19)0.75936 (10)0.0215 (3)
H17A0.28330.67530.80550.026*
H17B0.21390.54800.75690.026*
C180.12318 (12)0.72575 (17)0.75567 (9)0.0146 (3)
H18A0.06760.65580.74670.018*
C190.14343 (11)0.80776 (16)0.82741 (9)0.0131 (3)
C200.17644 (12)0.75300 (18)0.89937 (9)0.0165 (3)
H20A0.18620.65660.91050.020*
C210.19417 (13)0.86128 (18)0.95550 (9)0.0176 (3)
H21A0.21740.84291.00730.021*
C220.17337 (13)0.99422 (18)0.92477 (9)0.0172 (3)
H22A0.17991.07680.95280.021*
C230.01218 (11)0.84260 (16)0.63906 (9)0.0136 (3)
C240.08776 (12)0.83902 (17)0.66885 (9)0.0156 (3)
H24A0.06760.82220.72050.019*
C250.19302 (12)0.86073 (17)0.62083 (10)0.0186 (3)
H25A0.24290.85630.64070.022*
C260.22460 (12)0.88873 (19)0.54400 (10)0.0203 (3)
H26A0.29500.90320.51240.024*
C270.14923 (13)0.89488 (19)0.51478 (10)0.0205 (3)
H27A0.16970.91440.46330.025*
C280.04358 (12)0.87221 (18)0.56158 (9)0.0174 (3)
H28A0.00600.87680.54140.021*
C290.38103 (13)0.92253 (18)0.68234 (11)0.0221 (3)
H29A0.44140.97370.68470.033*
H29B0.37740.92800.73080.033*
H29C0.31890.96350.64380.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01621 (19)0.0284 (2)0.0367 (3)0.00178 (15)0.00981 (17)0.01431 (19)
S10.02017 (19)0.01186 (18)0.01700 (19)0.00090 (13)0.00746 (15)0.00049 (14)
N10.0130 (6)0.0176 (7)0.0196 (7)0.0012 (5)0.0033 (5)0.0006 (5)
N20.0131 (6)0.0157 (6)0.0170 (6)0.0001 (5)0.0065 (5)0.0000 (5)
N30.0127 (6)0.0169 (6)0.0120 (6)0.0025 (5)0.0042 (5)0.0021 (5)
C10.0114 (6)0.0185 (7)0.0154 (7)0.0003 (5)0.0026 (5)0.0007 (6)
C20.0119 (6)0.0259 (8)0.0208 (8)0.0020 (6)0.0058 (6)0.0007 (7)
C30.0112 (6)0.0297 (9)0.0219 (8)0.0007 (6)0.0066 (6)0.0023 (7)
C40.0125 (7)0.0225 (8)0.0202 (8)0.0029 (6)0.0049 (6)0.0045 (6)
C50.0122 (6)0.0178 (7)0.0190 (7)0.0003 (5)0.0054 (6)0.0032 (6)
C60.0101 (6)0.0163 (7)0.0150 (7)0.0003 (5)0.0035 (5)0.0002 (5)
C70.0099 (6)0.0149 (7)0.0121 (6)0.0004 (5)0.0022 (5)0.0002 (5)
C80.0117 (6)0.0149 (7)0.0131 (7)0.0019 (5)0.0023 (5)0.0003 (5)
C90.0143 (6)0.0153 (7)0.0150 (7)0.0001 (5)0.0018 (5)0.0003 (6)
C100.0121 (6)0.0133 (7)0.0143 (6)0.0005 (5)0.0062 (5)0.0013 (5)
C110.0126 (6)0.0168 (7)0.0169 (7)0.0012 (5)0.0061 (5)0.0016 (6)
C120.0137 (7)0.0212 (8)0.0222 (8)0.0030 (6)0.0079 (6)0.0025 (6)
C130.0216 (7)0.0173 (8)0.0261 (8)0.0039 (6)0.0147 (7)0.0030 (7)
C140.0238 (8)0.0153 (7)0.0240 (8)0.0038 (6)0.0136 (7)0.0046 (6)
C150.0153 (7)0.0169 (7)0.0202 (8)0.0044 (5)0.0074 (6)0.0027 (6)
C160.0148 (6)0.0132 (7)0.0140 (7)0.0007 (5)0.0036 (5)0.0018 (5)
C170.0269 (8)0.0224 (8)0.0159 (7)0.0127 (7)0.0097 (6)0.0028 (6)
C180.0165 (7)0.0123 (7)0.0143 (7)0.0011 (5)0.0057 (5)0.0006 (5)
C190.0119 (6)0.0123 (6)0.0149 (7)0.0008 (5)0.0052 (5)0.0010 (5)
C200.0168 (7)0.0151 (7)0.0185 (7)0.0014 (5)0.0083 (6)0.0016 (6)
C210.0176 (7)0.0216 (8)0.0133 (7)0.0016 (6)0.0061 (6)0.0000 (6)
C220.0186 (7)0.0171 (7)0.0161 (7)0.0010 (6)0.0075 (6)0.0038 (6)
C230.0123 (6)0.0113 (6)0.0157 (7)0.0001 (5)0.0043 (5)0.0018 (5)
C240.0159 (7)0.0138 (7)0.0174 (7)0.0010 (5)0.0072 (6)0.0013 (6)
C250.0153 (7)0.0144 (7)0.0275 (8)0.0020 (5)0.0102 (6)0.0054 (6)
C260.0131 (7)0.0176 (8)0.0247 (8)0.0008 (5)0.0026 (6)0.0057 (6)
C270.0179 (7)0.0218 (8)0.0166 (7)0.0044 (6)0.0022 (6)0.0007 (6)
C280.0151 (7)0.0203 (8)0.0155 (7)0.0027 (6)0.0051 (6)0.0004 (6)
C290.0189 (7)0.0149 (7)0.0289 (9)0.0015 (6)0.0065 (6)0.0021 (7)
Geometric parameters (Å, º) top
Cl1—C41.7410 (18)C13—H13A0.9300
S1—C221.7163 (17)C14—C151.391 (2)
S1—C191.7175 (16)C14—H14A0.9300
N1—C91.320 (2)C15—H15A0.9300
N1—C11.370 (2)C16—C171.507 (2)
N2—C161.286 (2)C17—C181.540 (2)
N2—N31.4048 (18)C17—H17A0.9700
N3—C231.4087 (19)C17—H17B0.9700
N3—C181.489 (2)C18—C191.505 (2)
C1—C61.418 (2)C18—H18A0.9800
C1—C21.418 (2)C19—C201.368 (2)
C2—C31.370 (3)C20—C211.432 (2)
C2—H2A0.9300C20—H20A0.9300
C3—C41.410 (2)C21—C221.364 (2)
C3—H3A0.9300C21—H21A0.9300
C4—C51.372 (2)C22—H22A0.9300
C5—C61.418 (2)C23—C281.399 (2)
C5—H5A0.9300C23—C241.403 (2)
C6—C71.429 (2)C24—C251.393 (2)
C7—C81.384 (2)C24—H24A0.9300
C7—C101.488 (2)C25—C261.384 (3)
C8—C91.438 (2)C25—H25A0.9300
C8—C161.485 (2)C26—C271.393 (2)
C9—C291.502 (2)C26—H26A0.9300
C10—C111.396 (2)C27—C281.394 (2)
C10—C151.397 (2)C27—H27A0.9300
C11—C121.392 (2)C28—H28A0.9300
C11—H11A0.9300C29—H29A0.9600
C12—C131.388 (2)C29—H29B0.9600
C12—H12A0.9300C29—H29C0.9600
C13—C141.392 (2)
C22—S1—C1992.31 (8)N2—C16—C8121.76 (14)
C9—N1—C1118.71 (14)N2—C16—C17114.33 (14)
C16—N2—N3109.26 (13)C8—C16—C17123.90 (13)
N2—N3—C23115.46 (12)C16—C17—C18102.24 (13)
N2—N3—C18111.06 (12)C16—C17—H17A111.3
C23—N3—C18120.22 (12)C18—C17—H17A111.3
N1—C1—C6122.98 (14)C16—C17—H17B111.3
N1—C1—C2117.65 (15)C18—C17—H17B111.3
C6—C1—C2119.37 (15)H17A—C17—H17B109.2
C3—C2—C1120.84 (16)N3—C18—C19112.48 (13)
C3—C2—H2A119.6N3—C18—C17102.95 (12)
C1—C2—H2A119.6C19—C18—C17112.01 (13)
C2—C3—C4119.08 (15)N3—C18—H18A109.7
C2—C3—H3A120.5C19—C18—H18A109.7
C4—C3—H3A120.5C17—C18—H18A109.7
C5—C4—C3122.16 (16)C20—C19—C18126.44 (14)
C5—C4—Cl1119.42 (13)C20—C19—S1111.43 (12)
C3—C4—Cl1118.41 (12)C18—C19—S1122.04 (11)
C4—C5—C6119.31 (15)C19—C20—C21112.18 (15)
C4—C5—H5A120.3C19—C20—H20A123.9
C6—C5—H5A120.3C21—C20—H20A123.9
C1—C6—C5119.20 (14)C22—C21—C20112.77 (14)
C1—C6—C7117.69 (14)C22—C21—H21A123.6
C5—C6—C7123.10 (14)C20—C21—H21A123.6
C8—C7—C6118.57 (14)C21—C22—S1111.31 (12)
C8—C7—C10121.26 (13)C21—C22—H22A124.3
C6—C7—C10120.14 (14)S1—C22—H22A124.3
C7—C8—C9119.51 (14)C28—C23—C24119.24 (14)
C7—C8—C16119.99 (14)C28—C23—N3121.11 (13)
C9—C8—C16120.44 (14)C24—C23—N3119.64 (14)
N1—C9—C8122.51 (15)C25—C24—C23119.85 (15)
N1—C9—C29116.62 (15)C25—C24—H24A120.1
C8—C9—C29120.87 (14)C23—C24—H24A120.1
C11—C10—C15119.21 (14)C26—C25—C24121.11 (15)
C11—C10—C7120.38 (14)C26—C25—H25A119.4
C15—C10—C7120.40 (13)C24—C25—H25A119.4
C12—C11—C10120.37 (15)C25—C26—C27118.97 (15)
C12—C11—H11A119.8C25—C26—H26A120.5
C10—C11—H11A119.8C27—C26—H26A120.5
C13—C12—C11120.23 (15)C26—C27—C28120.94 (16)
C13—C12—H12A119.9C26—C27—H27A119.5
C11—C12—H12A119.9C28—C27—H27A119.5
C12—C13—C14119.69 (15)C27—C28—C23119.87 (15)
C12—C13—H13A120.2C27—C28—H28A120.1
C14—C13—H13A120.2C23—C28—H28A120.1
C15—C14—C13120.31 (15)C9—C29—H29A109.5
C15—C14—H14A119.8C9—C29—H29B109.5
C13—C14—H14A119.8H29A—C29—H29B109.5
C14—C15—C10120.20 (15)C9—C29—H29C109.5
C14—C15—H15A119.9H29A—C29—H29C109.5
C10—C15—H15A119.9H29B—C29—H29C109.5
C16—N2—N3—C23144.75 (14)C13—C14—C15—C100.2 (2)
C16—N2—N3—C183.41 (17)C11—C10—C15—C140.1 (2)
C9—N1—C1—C60.4 (2)C7—C10—C15—C14178.69 (15)
C9—N1—C1—C2179.44 (14)N3—N2—C16—C8177.80 (13)
N1—C1—C2—C3178.97 (15)N3—N2—C16—C171.13 (19)
C6—C1—C2—C30.9 (2)C7—C8—C16—N2120.77 (17)
C1—C2—C3—C40.9 (3)C9—C8—C16—N261.8 (2)
C2—C3—C4—C51.6 (3)C7—C8—C16—C1760.4 (2)
C2—C3—C4—Cl1177.65 (13)C9—C8—C16—C17117.06 (18)
C3—C4—C5—C60.4 (3)N2—C16—C17—C181.44 (19)
Cl1—C4—C5—C6178.82 (12)C8—C16—C17—C18179.66 (14)
N1—C1—C6—C5177.80 (15)N2—N3—C18—C19124.85 (13)
C2—C1—C6—C52.0 (2)C23—N3—C18—C1995.91 (16)
N1—C1—C6—C71.0 (2)N2—N3—C18—C174.09 (16)
C2—C1—C6—C7179.24 (14)C23—N3—C18—C17143.34 (14)
C4—C5—C6—C11.4 (2)C16—C17—C18—N33.15 (16)
C4—C5—C6—C7179.95 (15)C16—C17—C18—C19124.23 (14)
C1—C6—C7—C82.0 (2)N3—C18—C19—C20176.58 (14)
C5—C6—C7—C8176.68 (15)C17—C18—C19—C2061.2 (2)
C1—C6—C7—C10179.99 (14)N3—C18—C19—S10.30 (18)
C5—C6—C7—C101.3 (2)C17—C18—C19—S1115.10 (14)
C6—C7—C8—C91.8 (2)C22—S1—C19—C200.18 (12)
C10—C7—C8—C9179.77 (14)C22—S1—C19—C18176.97 (13)
C6—C7—C8—C16179.31 (14)C18—C19—C20—C21176.45 (14)
C10—C7—C8—C162.7 (2)S1—C19—C20—C210.17 (17)
C1—N1—C9—C80.6 (2)C19—C20—C21—C220.6 (2)
C1—N1—C9—C29179.45 (14)C20—C21—C22—S10.68 (18)
C7—C8—C9—N10.5 (2)C19—S1—C22—C210.50 (13)
C16—C8—C9—N1177.97 (14)N2—N3—C23—C2813.4 (2)
C7—C8—C9—C29178.28 (15)C18—N3—C23—C28151.01 (15)
C16—C8—C9—C290.8 (2)N2—N3—C23—C24167.96 (14)
C8—C7—C10—C1160.0 (2)C18—N3—C23—C2430.4 (2)
C6—C7—C10—C11117.87 (16)C28—C23—C24—C251.9 (2)
C8—C7—C10—C15118.56 (17)N3—C23—C24—C25179.51 (14)
C6—C7—C10—C1563.5 (2)C23—C24—C25—C261.3 (2)
C15—C10—C11—C120.2 (2)C24—C25—C26—C270.1 (3)
C7—C10—C11—C12178.85 (14)C25—C26—C27—C280.5 (3)
C10—C11—C12—C130.1 (2)C26—C27—C28—C230.1 (3)
C11—C12—C13—C140.1 (3)C24—C23—C28—C271.3 (2)
C12—C13—C14—C150.3 (3)N3—C23—C28—C27179.88 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···N1i0.932.603.490 (2)161
C3—H3A···Cg1ii0.932.633.481 (2)152
C12—H12A···Cg1iii0.932.833.487 (2)129
C17—H17B···Cg20.972.883.6916 (19)142
C20—H20A···Cg3iii0.932.893.7523 (18)155
C21—H21A···Cg4iv0.932.843.6084 (18)141
C22—H22A···Cg3v0.932.883.5750 (18)132
C29—H29B···Cg5vi0.962.893.694 (2)142
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y1/2, z1/2; (iii) x, y1/2, z1/2; (iv) x, y3/2, z1/2; (v) x, y+1/2, z1/2; (vi) x+1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC29H22ClN3S
Mr480.01
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.0395 (4), 9.4199 (3), 19.3020 (6)
β (°) 114.696 (2)
V3)2319.22 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.54 × 0.51 × 0.21
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.863, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
32081, 6723, 5814
Rint0.051
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.139, 1.07
No. of reflections6723
No. of parameters308
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.19, 0.39

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···N1i0.93002.60003.490 (2)161.00
C3—H3A···Cg1ii0.93002.633.481 (2)152
C12—H12A···Cg1iii0.93002.833.487 (2)129
C17—H17B···Cg20.97002.883.6916 (19)142
C20—H20A···Cg3iii0.93002.893.7523 (18)155
C21—H21A···Cg4iv0.93002.843.6084 (18)141
C22—H22A···Cg3v0.93002.883.5750 (18)132
C29—H29B···Cg5vi0.96002.893.694 (2)142
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y1/2, z1/2; (iii) x, y1/2, z1/2; (iv) x, y3/2, z1/2; (v) x, y+1/2, z1/2; (vi) x+1, y+1/2, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

HKF thanks Universiti Sains Malaysia (USM) for the Research University Golden Goose grant No. 1001/PFIZIK/811012. CKQ thanks USM for a Research Fellowship. VV is grateful to DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031–1035.  CrossRef CAS PubMed Web of Science Google Scholar
First citationChen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem. 44, 2374–2377.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Loh, W.-S., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2009b). Acta Cryst. E65, 2688–2689.  CrossRef Google Scholar
First citationFun, H.-K., Yeap, C. S., Sarveswari, S., Vijayakumar, V. & Prasath, R. (2009a). Acta Cryst. E65, o2665–o2666.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJiang, B. & Si, Y.-G. (2002). J. Org. Chem. 67, 9449–9451.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKalluraya, B. & Sreenivasa, S. (1998). Farmaco, 53, 399–404.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKatritzky, A. R. & Arend, M. I. (1998). J. Org. Chem. 63, 9989–9991.  Web of Science CrossRef CAS Google Scholar
First citationMaguire, M. P., Sheets, K. R., McVety, K., Spada, A. P. & Zilberstein, A. (1994). J. Med. Chem. 37, 2129–2137.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMarkees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324–326.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMichael, J. P. (1997). Nat. Prod. Rep. 14, 605–608.  CrossRef CAS Web of Science Google Scholar
First citationMorimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202–203.  CrossRef Google Scholar
First citationRoma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem. 35, 1021–1026.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkraup, H. (1880). Ber. Dtsch Chem. Ges. 13, 2086–2088.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds