metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[bis­­(μ2-4,4′-bi­pyridine)bis­­(3-nitro­benzoato)cobalt(II)]

aDepartment of Chemistry, Chung-Yuan Christian University, Chung-Li 320, Taiwan
*Correspondence e-mail: chiaher@cycu.edu.tw

(Received 26 September 2009; accepted 30 September 2009; online 3 October 2009)

The hydro­thermal reaction of cobalt nitrate with 4,4′-bipyridine and 3-nitro­benzoic acid lead to the formation of the title complex, [Co(C7H4NO4)2(C10H8N2)2]n. In the crystal structure, the CoII atoms are coordinated by two terminal carboxyl­ate anions and four 4,4′-bipyridine ligands within slightly distorted octa­hedra. The CoII atom and one of the two independent 4,4′-bipyridine ligands are located on a twofold rotation axis, while the second independent 4,4′-bipyridine mol­ecule is located on a centre of inversion. One of the two rings of one 4,4′-bipyridine ligand is disordered over two orientations and was refined using a split model [occupancy ratio 0.68 (2):0.32 (2)]. The CoII atoms are connected by the 4,4′-bipyridine ligands into layers, which are located parallel to the ab plane.

Related literature

For background information on the solvothermal synthesis of coordination polymers with organic ligands, see: Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]). For related structures, see: Biradha et al. (1999[Biradha, K., Seward, C. & Zaworotko, M. J. (1999). Angew. Chem. Int. Ed. 38, 492-495.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C7H4NO4)2(C10H8N2)2]

  • Mr = 703.52

  • Monoclinic, C 2/c

  • a = 18.2074 (15) Å

  • b = 11.4717 (8) Å

  • c = 15.0543 (12) Å

  • β = 94.661 (2)°

  • V = 3134.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.61 mm−1

  • T = 295 K

  • 0.40 × 0.25 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.792, Tmax = 0.914

  • 13056 measured reflections

  • 3861 independent reflections

  • 3389 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.085

  • S = 1.03

  • 3861 reflections

  • 243 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The synthesis of coordination polymers has been a subject of intense research owing to their interesting structural chemistry and potential applications. A large number of these compounds have been synthesized by the reactions of metal salts and organic dicarboxyl acids or bipyridines (Kitagawa et al. 2004). As a further study in this field, the structure of the title compound is reported.

The asymmetric unit of the title compound consists of one CoII atom, one 3-nitrobenzoate anion and two half 4,4'-bipyridine ligands (Figure 1). The octahedral metal ions are coordinated by four nitrogen atoms of two pairs of crystallographically independent 4,4'-bipyridine ligands and two oxygen atoms of two symmetry related 3-nitro benzoate anions. The Co—O bond length is 2.0557 (13) Å and the average Co—N distance amount to 2.1836 (19) Å. The metal centers are linked via the 4,4'-bipyridine ligands into layers and the anions are only terminal bonded to the CoII atoms (Figure 2). Thus, this structure is different from the analogous nickel compound with the same ligands (Biradha et al. 1999).

Related literature top

For background information on the solvothermal synthesis of coordination polymers with organic ligands, see: Kitagawa et al. (2004). For related structures, see: Biradha et al. (1999).

Experimental top

The title compound was prepared by the reaction of 4,4'-bipyridine (0.0781 g, 0.5 mmol), 3-nitrobenzoic acid (0.0836 g, 0.5 mmol), Co(NO3)2.6H2O (0.1454 g, 0.5 mmol), H2O (12.0 ml) and NH4OH (0.1 ml) at a pH value of 9.28. The mixture was heated to 423 K for 2 days in a Teflon-lined autoclave with an internal volume of 23 ml followed by slow cooling at 6 K/h to room temperature. The title compound was obtained as orange crystals with a yield of 0.0284 g (7.7%, based on cobalt). Anal. found/calcd.: C, 58.11/58.06; N, 12.14/11.95; H, 3.46/3.44%.

Refinement top

The hydrogen atoms of benzene rings are placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C). The C12 and C13 atoms are disordered and were refined using a split model with occupancies of 0.68 (2) and 0.32 (2).

Structure description top

The synthesis of coordination polymers has been a subject of intense research owing to their interesting structural chemistry and potential applications. A large number of these compounds have been synthesized by the reactions of metal salts and organic dicarboxyl acids or bipyridines (Kitagawa et al. 2004). As a further study in this field, the structure of the title compound is reported.

The asymmetric unit of the title compound consists of one CoII atom, one 3-nitrobenzoate anion and two half 4,4'-bipyridine ligands (Figure 1). The octahedral metal ions are coordinated by four nitrogen atoms of two pairs of crystallographically independent 4,4'-bipyridine ligands and two oxygen atoms of two symmetry related 3-nitro benzoate anions. The Co—O bond length is 2.0557 (13) Å and the average Co—N distance amount to 2.1836 (19) Å. The metal centers are linked via the 4,4'-bipyridine ligands into layers and the anions are only terminal bonded to the CoII atoms (Figure 2). Thus, this structure is different from the analogous nickel compound with the same ligands (Biradha et al. 1999).

For background information on the solvothermal synthesis of coordination polymers with organic ligands, see: Kitagawa et al. (2004). For related structures, see: Biradha et al. (1999).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level. [symmetry codes: (i) -x + 1,y,-z + 5/2; (ii) x,y - 1,z; (iii) -x + 1,y + 1,-z + 5/2; (iv) -x + 1/2,-y + 5/2,-z + 2.]. The H atoms are omitted for clarity.
[Figure 2] Fig. 2. Crystal structure of the title compound in c-direction showing the layers. The H atoms and the disordered C atoms are not shown for clarity.
Poly[bis(µ2-4,4'-bipyridine)bis(3-nitrobenzoato)cobalt(II)] top
Crystal data top
[Co(C7H4NO4)2(C10H8N2)2]F(000) = 1444
Mr = 703.52Dx = 1.491 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6091 reflections
a = 18.2074 (15) Åθ = 2.3–28.1°
b = 11.4717 (8) ŵ = 0.61 mm1
c = 15.0543 (12) ÅT = 295 K
β = 94.661 (2)°Columnar, pink
V = 3134.0 (4) Å30.40 × 0.25 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3861 independent reflections
Radiation source: fine-focus sealed tube3389 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.3333 pixels mm-1θmax = 28.3°, θmin = 2.1°
φ and ω scansh = 2423
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 815
Tmin = 0.792, Tmax = 0.914l = 1920
13056 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0451P)2 + 1.8393P]
where P = (Fo2 + 2Fc2)/3
3861 reflections(Δ/σ)max = 0.002
243 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Co(C7H4NO4)2(C10H8N2)2]V = 3134.0 (4) Å3
Mr = 703.52Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.2074 (15) ŵ = 0.61 mm1
b = 11.4717 (8) ÅT = 295 K
c = 15.0543 (12) Å0.40 × 0.25 × 0.15 mm
β = 94.661 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3861 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3389 reflections with I > 2σ(I)
Tmin = 0.792, Tmax = 0.914Rint = 0.023
13056 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.03Δρmax = 0.29 e Å3
3861 reflectionsΔρmin = 0.25 e Å3
243 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.50001.191582 (19)1.25000.02382 (8)
O10.57262 (6)1.18588 (9)1.15246 (7)0.0354 (2)
O20.55038 (8)1.25715 (13)1.01478 (8)0.0558 (3)
O30.81068 (14)1.0206 (2)0.83179 (16)0.1227 (9)
O40.70904 (15)1.1028 (2)0.79153 (13)0.1102 (8)
N10.50001.38167 (14)1.25000.0311 (3)
N20.50000.99916 (13)1.25000.0300 (3)
N30.40427 (7)1.19830 (9)1.15518 (8)0.0298 (2)
N40.75458 (14)1.06877 (18)0.84869 (16)0.0765 (6)
C10.58770 (8)1.20319 (12)1.07270 (10)0.0330 (3)
C20.66071 (9)1.15062 (13)1.05012 (10)0.0347 (3)
C30.67493 (10)1.13700 (14)0.96153 (11)0.0427 (4)
H3A0.64061.16010.91580.051*
C40.74128 (12)1.08841 (15)0.94287 (13)0.0517 (5)
C50.79520 (11)1.05707 (17)1.00796 (16)0.0590 (5)
H5A0.83991.02670.99300.071*
C60.78115 (11)1.07189 (17)1.09553 (15)0.0548 (5)
H6A0.81691.05221.14070.066*
C70.71369 (9)1.11618 (14)1.11679 (12)0.0435 (4)
H7A0.70391.12291.17620.052*
C80.49826 (9)1.44210 (12)1.17370 (10)0.0359 (3)
H8A0.49751.40111.12030.043*
C90.49748 (9)1.56253 (12)1.17056 (10)0.0370 (3)
H9A0.49531.60121.11610.044*
C100.50001.62512 (16)1.25000.0317 (4)
C110.50001.75431 (16)1.25000.0314 (4)
C120.5282 (4)0.9374 (4)1.1858 (3)0.0383 (11)0.68 (2)
H120.54900.97791.14060.046*0.68 (2)
C130.5285 (4)0.8176 (4)1.1825 (3)0.0402 (11)0.68 (2)
H130.54770.77931.13510.048*0.68 (2)
C12'0.5517 (9)0.9382 (10)1.2151 (18)0.060 (4)0.32 (2)
H12'0.58900.97841.18960.071*0.32 (2)
C13'0.5538 (10)0.8169 (9)1.2143 (19)0.068 (5)0.32 (2)
H13'0.59200.77851.18920.082*0.32 (2)
C140.40078 (8)1.15400 (14)1.07344 (10)0.0362 (3)
H14A0.43991.10871.05740.043*
C150.34177 (8)1.17185 (14)1.01086 (10)0.0369 (3)
H15A0.34221.13950.95430.044*
C160.28195 (7)1.23815 (12)1.03276 (9)0.0281 (3)
C170.28502 (9)1.28120 (15)1.11918 (10)0.0386 (3)
H17A0.24581.32391.13810.046*
C180.34630 (9)1.26053 (15)1.17697 (10)0.0381 (3)
H18A0.34741.29151.23410.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02889 (14)0.01737 (12)0.02410 (13)0.0000.00451 (9)0.000
O10.0408 (6)0.0355 (5)0.0300 (5)0.0014 (4)0.0041 (4)0.0005 (4)
O20.0581 (8)0.0690 (9)0.0398 (7)0.0156 (7)0.0004 (6)0.0141 (6)
O30.1288 (19)0.144 (2)0.1065 (16)0.0236 (16)0.0775 (15)0.0159 (14)
O40.137 (2)0.150 (2)0.0493 (10)0.0023 (16)0.0364 (12)0.0075 (12)
N10.0420 (9)0.0187 (7)0.0316 (8)0.0000.0024 (7)0.000
N20.0347 (8)0.0192 (7)0.0354 (9)0.0000.0011 (7)0.000
N30.0314 (6)0.0275 (6)0.0293 (6)0.0021 (4)0.0044 (5)0.0009 (4)
N40.0978 (16)0.0672 (12)0.0717 (13)0.0167 (11)0.0522 (13)0.0103 (10)
C10.0392 (7)0.0287 (7)0.0307 (7)0.0045 (6)0.0006 (6)0.0000 (5)
C20.0435 (8)0.0259 (6)0.0352 (7)0.0049 (6)0.0064 (6)0.0022 (6)
C30.0555 (10)0.0350 (8)0.0389 (8)0.0080 (7)0.0121 (7)0.0018 (6)
C40.0668 (12)0.0365 (8)0.0559 (11)0.0120 (8)0.0305 (9)0.0021 (7)
C50.0527 (11)0.0418 (9)0.0863 (15)0.0012 (8)0.0290 (11)0.0038 (10)
C60.0469 (10)0.0475 (10)0.0699 (13)0.0050 (8)0.0040 (9)0.0080 (9)
C70.0486 (9)0.0386 (8)0.0434 (9)0.0020 (7)0.0042 (7)0.0044 (7)
C80.0541 (9)0.0223 (6)0.0304 (7)0.0012 (6)0.0016 (6)0.0023 (5)
C90.0573 (9)0.0219 (6)0.0315 (7)0.0014 (6)0.0009 (6)0.0038 (5)
C100.0404 (10)0.0184 (8)0.0361 (10)0.0000.0026 (8)0.000
C110.0418 (10)0.0178 (8)0.0342 (10)0.0000.0010 (8)0.000
C120.058 (3)0.0214 (12)0.0374 (18)0.0007 (16)0.0131 (15)0.0017 (11)
C130.063 (3)0.0222 (13)0.0373 (18)0.0007 (16)0.0180 (15)0.0022 (11)
C12'0.052 (6)0.024 (3)0.107 (12)0.001 (4)0.035 (7)0.009 (6)
C13'0.062 (7)0.024 (3)0.126 (14)0.012 (4)0.050 (8)0.008 (6)
C140.0291 (7)0.0399 (8)0.0382 (8)0.0062 (6)0.0050 (6)0.0108 (6)
C150.0316 (7)0.0464 (8)0.0315 (7)0.0052 (6)0.0048 (6)0.0132 (6)
C160.0278 (6)0.0288 (6)0.0270 (6)0.0008 (5)0.0028 (5)0.0014 (5)
C170.0379 (8)0.0490 (9)0.0281 (7)0.0165 (7)0.0030 (6)0.0023 (6)
C180.0414 (8)0.0461 (8)0.0254 (7)0.0123 (7)0.0055 (6)0.0040 (6)
Geometric parameters (Å, º) top
Co1—O12.0553 (11)C7—H7A0.9300
Co1—O1i2.0553 (11)C8—C91.3824 (19)
Co1—N32.1627 (12)C8—H8A0.9300
Co1—N3i2.1627 (12)C9—C101.3925 (17)
Co1—N12.1807 (16)C9—H9A0.9300
Co1—N22.2074 (16)C10—C9i1.3925 (17)
O1—C11.2689 (18)C10—C111.482 (3)
O2—C11.2283 (19)C11—C13'ii1.359 (12)
O3—N41.206 (3)C11—C13'iii1.359 (11)
O4—N41.210 (3)C11—C13iii1.384 (5)
N1—C81.3398 (16)C11—C13ii1.384 (5)
N1—C8i1.3398 (16)C12—C131.375 (7)
N2—C12'1.315 (12)C12—H120.9300
N2—C12'i1.315 (12)C13—C11iv1.384 (5)
N2—C12i1.334 (5)C13—H130.9300
N2—C121.334 (5)C12'—C13'1.392 (16)
N3—C141.3280 (18)C12'—H12'0.9300
N3—C181.3370 (19)C13'—C11iv1.359 (11)
N4—C41.475 (3)C13'—H13'0.9300
C1—C21.523 (2)C14—C151.385 (2)
C2—C31.388 (2)C14—H14A0.9300
C2—C71.392 (2)C15—C161.390 (2)
C3—C41.380 (3)C15—H15A0.9300
C3—H3A0.9300C16—C171.388 (2)
C4—C51.377 (3)C16—C16v1.488 (2)
C5—C61.374 (3)C17—C181.379 (2)
C5—H5A0.9300C17—H17A0.9300
C6—C71.390 (2)C18—H18A0.9300
C6—H6A0.9300
O1—Co1—O1i176.35 (6)C5—C6—H6A119.9
O1—Co1—N393.46 (5)C7—C6—H6A119.9
O1i—Co1—N386.68 (5)C2—C7—C6120.74 (17)
O1—Co1—N3i86.67 (5)C2—C7—H7A119.6
O1i—Co1—N3i93.46 (5)C6—C7—H7A119.6
N3—Co1—N3i175.92 (6)N1—C8—C9123.08 (14)
O1—Co1—N191.82 (3)N1—C8—H8A118.5
O1i—Co1—N191.82 (3)C9—C8—H8A118.5
N3—Co1—N187.96 (3)C8—C9—C10119.11 (14)
N3i—Co1—N187.96 (3)C8—C9—H9A120.4
O1—Co1—N288.18 (3)C10—C9—H9A120.4
O1i—Co1—N288.18 (3)C9—C10—C9i117.92 (17)
N3—Co1—N292.04 (3)C9—C10—C11121.04 (9)
N3i—Co1—N292.04 (3)C9i—C10—C11121.04 (9)
N1—Co1—N2180.000 (1)C13'ii—C11—C13'iii116.3 (9)
C1—O1—Co1150.73 (10)C13'ii—C11—C13iii109.8 (6)
C8—N1—C8i117.69 (17)C13'iii—C11—C13ii109.8 (6)
C8—N1—Co1121.16 (8)C13iii—C11—C13ii116.7 (4)
C8i—N1—Co1121.16 (8)C13'ii—C11—C10121.9 (4)
C12'—N2—C12'i115.7 (10)C13'iii—C11—C10121.9 (5)
C12'—N2—C12i109.7 (5)C13iii—C11—C10121.7 (2)
C12'i—N2—C12109.7 (5)C13ii—C11—C10121.7 (2)
C12i—N2—C12115.9 (4)N2—C12—C13124.0 (4)
C12'—N2—Co1122.1 (5)N2—C12—H12118.0
C12'i—N2—Co1122.1 (5)C13—C12—H12118.0
C12i—N2—Co1122.1 (2)C12—C13—C11iv119.7 (4)
C12—N2—Co1122.1 (2)C12—C13—H13120.2
C14—N3—C18116.89 (12)C11iv—C13—H13120.2
C14—N3—Co1124.98 (10)N2—C12'—C13'123.8 (10)
C18—N3—Co1117.84 (9)N2—C12'—H12'118.1
O3—N4—O4122.7 (2)C13'—C12'—H12'118.1
O3—N4—C4118.7 (3)C11iv—C13'—C12'120.2 (9)
O4—N4—C4118.5 (2)C11iv—C13'—H13'119.9
O2—C1—O1126.93 (15)C12'—C13'—H13'119.9
O2—C1—C2118.91 (14)N3—C14—C15123.34 (13)
O1—C1—C2114.15 (13)N3—C14—H14A118.3
C3—C2—C7119.26 (15)C15—C14—H14A118.3
C3—C2—C1119.56 (14)C14—C15—C16119.93 (13)
C7—C2—C1121.18 (14)C14—C15—H15A120.0
C4—C3—C2118.41 (17)C16—C15—H15A120.0
C4—C3—H3A120.8C17—C16—C15116.37 (12)
C2—C3—H3A120.8C17—C16—C16v121.74 (15)
C3—C4—C5123.09 (18)C15—C16—C16v121.89 (16)
C3—C4—N4118.2 (2)C18—C17—C16119.94 (13)
C5—C4—N4118.7 (2)C18—C17—H17A120.0
C6—C5—C4118.21 (18)C16—C17—H17A120.0
C6—C5—H5A120.9N3—C18—C17123.48 (14)
C4—C5—H5A120.9N3—C18—H18A118.3
C5—C6—C7120.21 (19)C17—C18—H18A118.3
Symmetry codes: (i) x+1, y, z+5/2; (ii) x, y+1, z; (iii) x+1, y+1, z+5/2; (iv) x, y1, z; (v) x+1/2, y+5/2, z+2.

Experimental details

Crystal data
Chemical formula[Co(C7H4NO4)2(C10H8N2)2]
Mr703.52
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)18.2074 (15), 11.4717 (8), 15.0543 (12)
β (°) 94.661 (2)
V3)3134.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.40 × 0.25 × 0.15
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.792, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
13056, 3861, 3389
Rint0.023
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.085, 1.03
No. of reflections3861
No. of parameters243
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.25

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2009).

 

Acknowledgements

This research project was supported by the National Science Council of Taiwan (NSC97–2113-M-033–003-MY2) and by the project of the specific research fields of Chung Yuan Christian University, Taiwan, under grant CYCU-98-CR—CH.

References

First citationBiradha, K., Seward, C. & Zaworotko, M. J. (1999). Angew. Chem. Int. Ed. 38, 492–495.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds