organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 4-(4-hy­droxy­phen­yl)-6-methyl-2-oxo-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate monohydrate

aSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India, bSchool of Chemistry, University of KwaZulu-Natal, Durban 4000, South Africa, cDepartment of Chemistry, Indian Institute of Science Education and Research, Bhopal 462 023, India, and dSchool of Pharmacy and Pharmacology, University of Kwazulu-Natal, Durban 4000, South Africa
*Correspondence e-mail: dchopra@iiserbhopal.ac.in

(Received 15 September 2009; accepted 16 September 2009; online 19 September 2009)

In the title compound, C14H16N2O4·H2O, the dihedral angles between the planes of the 4-hydroxy­phenyl and ester groups with the plane of the six-membered tetra­hydro­pyrimidine ring are 87.3 (1) and 75.9 (1)°, respectively. The crystal structure is stabilized by O—H⋯O and N—H⋯O hydrogen bonding between the water mol­ecule and the organic functionalities.

Related literature

Bignelli compounds are poly-functionalized dihydro­pyrimidines exhibiting a broad range of therapeutic and pharmacological properties, see: Atwal et al. (1991[Atwal, K. S., Swanson, B. N., Unger, S. E., Floyd, D. M., Moreland, S., Hedberg, A. & O Reilly, B. C. (1991). J. Med. Chem. 34, 806-811.]); Jauk et al. (2000[Jauk, B., Pernat, T. & Kappe, C. O. (2000). Molecules, 5, 227-239.]); Kappe (2000[Kappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043-1052.]); Kato (1984[Kato, T. (1984). Chem. Abstr. 102, 132067.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16N2O4·H2O

  • Mr = 294.30

  • Triclinic, [P \overline 1]

  • a = 5.6859 (2) Å

  • b = 10.7190 (5) Å

  • c = 12.1980 (5) Å

  • α = 85.267 (3)°

  • β = 83.990 (3)°

  • γ = 74.936 (4)°

  • V = 712.76 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 292 K

  • 0.38 × 0.24 × 0.15 mm

Data collection
  • Goniometer Xcalibur with Eos (Nova) detector diffractometer

  • Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlisPro RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.951, Tmax = 0.984

  • 18207 measured reflections

  • 2792 independent reflections

  • 2109 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.102

  • S = 1.09

  • 2792 reflections

  • 201 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.09 2.9411 (17) 171
N2—H2⋯O4ii 0.86 2.14 2.978 (2) 165
O4—H4⋯O5Wiv 0.82 1.86 2.674 (2) 176
O5W—H1W⋯O2 0.83 (3) 2.06 (3) 2.881 (2) 172 (3)
O5W—H2W⋯O1iii 0.93 (3) 1.88 (3) 2.799 (2) 167 (2)
Symmetry codes: (i) -x+2, -y, -z+2; (ii) -x+1, -y, -z+1; (iii) x-1, y+1, z; (iv) -x+1, -y+1, -z+1.

Data collection: CrysAlis Pro (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlisPro RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1993[Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Bignelli compounds are poly-functionalized dihydropyrimidine (DHPM) exhibiting a broad range of therapeutic and pharmacological properties (Kappe, 2000), namely, anticarcinogenic (Kato, 1984), antihypertensive (Atwal et al., 1991) and calcium channel modulators (Jauk et al., 2000, and references therein). It is observed that the six-membered tetrahydropyrimidine ring exists in a nearly planar conformation (Figure 1). The ester moiety is in an s-trans conformation with respect to the endocyclic double bond. The water molecule is held by O—H···O hydrogen bond, involving H1W with the oxygen of the ester carbonyl moiety. The other hydrogen atom H2W forms intermolecular O—H···O hydrogen bond with the carbonyl group of the tetrahydropyrimidine ring, thereby acting as a bridge between two molecules. Furthermore, the amino hydrogen H1 forms centrosymmetric N—H···O dimers. The other acidic hydrogen H2 forms N—H···O hydrogen bond with the phenolic oxygen atom. The phenolic hydrogen in turn forms O—H···O intermolecular hydrogen bond with the oxygen of the water molecule (Figure 2).

Related literature top

Bignelli compounds are poly-functionalized dihydropyrimidines exhibiting a broad range of therapeutic and pharmacological properties, see: Atwal et al. (1991); Jauk et al. (2000); Kappe (2000); Kato (1984).

Experimental top

A mixture of ethylacetoacetate (0.1 mol), para hydroxy substituted benzaldehyde (0.1 mol) and urea was refluxed in 50.0 mL of ethanol for 2.0 hrs in presence of concentrated hydrochloric acid as catalyst. The reaction completion was monitored through thin layer chromatography and the reaction mixture was quenched in ice cold water. The precipitate obtained was filtered, dried and crystallized from methanol to obtain the title compound.

Refinement top

The hydrogen atoms of the water molecule were located from a difference Fourier map and refined isotropically. The O—H bond lengths are in the range of 0.83 (3)—0.93 (3) Å. The remaining H atoms were positioned geometrically, with C—H = 0.93 Å, 0.96 Å, 0.97 Å, 0.98Å for aromatic, methyl, methylene and methine H atoms respectively and N—H = 0.86Å for amino H atoms and all refined using a riding model with Uiso(H)= 1.2 Ueq(C, N) for aromatic and amine hydrogen and 1.5 Ueq(C) for methyl, methylene and methine H atoms respectively.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. : Molecular structure shows the atom labelling scheme with displacement ellipsoids for non-H atoms at 50% probability level. The dotted line shows the O—H···O intramolecular interaction.
[Figure 2] Fig. 2. : The molecular packing depicting intermolecular N—H···O and O—H···O hydrogen bonds.
Ethyl 4-(4-hydroxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate monohydrate top
Crystal data top
C14H16N2O4·H2OZ = 2
Mr = 294.30F(000) = 312
Triclinic, P1Dx = 1.371 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.7107 Å
a = 5.6859 (2) ÅCell parameters from 400 reflections
b = 10.7190 (5) Åθ = 1.0–28.0°
c = 12.1980 (5) ŵ = 0.11 mm1
α = 85.267 (3)°T = 292 K
β = 83.990 (3)°Plate, colorless
γ = 74.936 (4)°0.38 × 0.24 × 0.15 mm
V = 712.76 (6) Å3
Data collection top
Goniometer Xcalibur with Eos (Nova) detector
diffractometer
2792 independent reflections
Radiation source: Enhance (Mo) X-ray Source2109 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 16.0839 pixels mm-1θmax = 26.0°, θmin = 3.4°
ω scansh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1313
Tmin = 0.951, Tmax = 0.984l = 1515
18207 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.046P)2 + 0.1184P]
where P = (Fo2 + 2Fc2)/3
2792 reflections(Δ/σ)max < 0.000
201 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C14H16N2O4·H2Oγ = 74.936 (4)°
Mr = 294.30V = 712.76 (6) Å3
Triclinic, P1Z = 2
a = 5.6859 (2) ÅMo Kα radiation
b = 10.7190 (5) ŵ = 0.11 mm1
c = 12.1980 (5) ÅT = 292 K
α = 85.267 (3)°0.38 × 0.24 × 0.15 mm
β = 83.990 (3)°
Data collection top
Goniometer Xcalibur with Eos (Nova) detector
diffractometer
2792 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2109 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.984Rint = 0.034
18207 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.19 e Å3
2792 reflectionsΔρmin = 0.14 e Å3
201 parameters
Special details top

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.34d Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H1W0.159 (5)0.640 (3)0.786 (2)0.096 (9)*
H2W0.059 (4)0.773 (3)0.799 (2)0.096 (8)*
O10.9249 (2)0.09595 (10)0.89786 (9)0.0468 (3)
O40.4417 (2)0.21103 (11)0.32278 (8)0.0479 (3)
H40.56340.23710.30220.072*
O30.0136 (2)0.32510 (10)0.79355 (9)0.0446 (3)
C90.3842 (3)0.14292 (13)0.66438 (12)0.0322 (3)
C40.3717 (3)0.11045 (13)0.78842 (12)0.0346 (3)
H4A0.22250.08170.81010.041*
N20.5830 (2)0.00283 (11)0.81312 (10)0.0400 (3)
H20.60380.06500.77660.048*
C50.1804 (3)0.34545 (15)0.83520 (12)0.0391 (4)
C10.7456 (3)0.00217 (14)0.88495 (12)0.0352 (3)
N10.7088 (2)0.10279 (12)0.94695 (10)0.0416 (3)
H10.80400.09870.99820.050*
C30.3665 (3)0.22455 (14)0.85610 (12)0.0348 (3)
C120.4247 (3)0.19198 (14)0.43558 (12)0.0366 (4)
C130.5795 (3)0.22773 (15)0.50023 (12)0.0396 (4)
H130.69710.26860.46770.047*
C140.5585 (3)0.20247 (14)0.61345 (12)0.0378 (4)
H140.66420.22610.65630.045*
C110.2467 (3)0.13405 (15)0.48509 (13)0.0407 (4)
H110.13950.11170.44230.049*
C20.5263 (3)0.21559 (14)0.93180 (12)0.0368 (4)
C100.2282 (3)0.10937 (14)0.59840 (13)0.0379 (4)
H100.10900.06960.63090.046*
C60.1877 (3)0.43911 (17)0.74982 (15)0.0515 (4)
H6A0.19870.51210.79380.062*
H6B0.34840.42270.75370.062*
O20.1978 (2)0.45309 (11)0.85073 (11)0.0594 (4)
C80.5280 (4)0.31579 (16)1.01034 (14)0.0541 (5)
H8A0.38360.38561.00530.081*
H8B0.67010.34840.99170.081*
H8C0.53160.27761.08430.081*
C70.1064 (4)0.47022 (19)0.63274 (16)0.0673 (6)
H7A0.07060.39360.59200.101*
H7B0.03770.50150.63040.101*
H7C0.23410.53550.60050.101*
O5W0.1583 (3)0.71105 (16)0.75335 (11)0.0583 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0563 (7)0.0347 (6)0.0454 (6)0.0015 (5)0.0149 (5)0.0075 (5)
O40.0647 (8)0.0479 (7)0.0323 (6)0.0128 (6)0.0113 (5)0.0060 (5)
O30.0406 (6)0.0380 (6)0.0526 (7)0.0044 (5)0.0058 (5)0.0040 (5)
C90.0347 (8)0.0270 (7)0.0340 (8)0.0034 (6)0.0057 (6)0.0065 (6)
C40.0376 (8)0.0309 (8)0.0355 (8)0.0085 (6)0.0030 (6)0.0040 (6)
N20.0543 (8)0.0273 (7)0.0376 (7)0.0035 (6)0.0129 (6)0.0076 (5)
C50.0446 (9)0.0366 (9)0.0337 (8)0.0068 (7)0.0009 (7)0.0055 (6)
C10.0470 (9)0.0292 (8)0.0282 (7)0.0077 (7)0.0026 (7)0.0009 (6)
N10.0540 (9)0.0349 (7)0.0351 (7)0.0043 (6)0.0139 (6)0.0075 (5)
C30.0422 (9)0.0321 (8)0.0291 (7)0.0082 (7)0.0005 (6)0.0046 (6)
C120.0457 (9)0.0292 (8)0.0323 (8)0.0008 (7)0.0097 (7)0.0071 (6)
C130.0460 (9)0.0399 (9)0.0357 (8)0.0154 (7)0.0034 (7)0.0053 (6)
C140.0416 (9)0.0406 (9)0.0352 (8)0.0131 (7)0.0096 (7)0.0081 (6)
C110.0390 (9)0.0409 (9)0.0440 (9)0.0057 (7)0.0170 (7)0.0106 (7)
C20.0491 (9)0.0305 (8)0.0291 (7)0.0073 (7)0.0014 (7)0.0039 (6)
C100.0342 (8)0.0362 (8)0.0442 (9)0.0080 (7)0.0066 (7)0.0057 (7)
C60.0433 (10)0.0427 (10)0.0637 (11)0.0012 (8)0.0094 (8)0.0089 (8)
O20.0660 (8)0.0335 (7)0.0786 (9)0.0046 (6)0.0223 (7)0.0095 (6)
C80.0767 (13)0.0410 (10)0.0427 (9)0.0033 (9)0.0164 (9)0.0146 (7)
C70.0882 (16)0.0475 (11)0.0607 (12)0.0030 (10)0.0195 (11)0.0001 (9)
O5W0.0737 (10)0.0535 (9)0.0480 (8)0.0163 (7)0.0009 (7)0.0085 (7)
Geometric parameters (Å, º) top
O1—C11.2450 (18)C12—C131.383 (2)
O4—C121.3712 (18)C13—C141.384 (2)
O4—H40.8200C13—H130.9300
O3—C51.3354 (19)C14—H140.9300
O3—C61.4601 (19)C11—C101.384 (2)
C9—C141.382 (2)C11—H110.9300
C9—C101.388 (2)C2—C81.500 (2)
C9—C41.523 (2)C10—H100.9300
C4—N21.4710 (18)C6—C71.493 (3)
C4—C31.523 (2)C6—H6A0.9700
C4—H4A0.9800C6—H6B0.9700
N2—C11.3268 (19)C8—H8A0.9600
N2—H20.8600C8—H8B0.9600
C5—O21.2150 (19)C8—H8C0.9600
C5—C31.467 (2)C7—H7A0.9600
C1—N11.3662 (19)C7—H7B0.9600
N1—C21.3872 (19)C7—H7C0.9600
N1—H10.8600O5W—H1W0.83 (3)
C3—C21.343 (2)O5W—H2W0.93 (3)
C12—C111.382 (2)
C12—O4—H4109.5C9—C14—C13121.54 (14)
C5—O3—C6116.65 (13)C9—C14—H14119.2
C14—C9—C10117.91 (13)C13—C14—H14119.2
C14—C9—C4120.72 (13)C12—C11—C10119.95 (14)
C10—C9—C4121.32 (13)C12—C11—H11120.0
N2—C4—C9108.75 (11)C10—C11—H11120.0
N2—C4—C3109.61 (12)C3—C2—N1120.40 (13)
C9—C4—C3113.46 (12)C3—C2—C8126.94 (14)
N2—C4—H4A108.3N1—C2—C8112.60 (13)
C9—C4—H4A108.3C11—C10—C9121.23 (14)
C3—C4—H4A108.3C11—C10—H10119.4
C1—N2—C4127.84 (12)C9—C10—H10119.4
C1—N2—H2116.1O3—C6—C7109.76 (14)
C4—N2—H2116.1O3—C6—H6A109.7
O2—C5—O3122.53 (15)C7—C6—H6A109.7
O2—C5—C3125.31 (15)O3—C6—H6B109.7
O3—C5—C3112.14 (13)C7—C6—H6B109.7
O1—C1—N2123.60 (13)H6A—C6—H6B108.2
O1—C1—N1119.71 (14)C2—C8—H8A109.5
N2—C1—N1116.69 (13)C2—C8—H8B109.5
C1—N1—C2123.59 (13)H8A—C8—H8B109.5
C1—N1—H1118.2C2—C8—H8C109.5
C2—N1—H1118.2H8A—C8—H8C109.5
C2—C3—C5120.99 (13)H8B—C8—H8C109.5
C2—C3—C4121.53 (13)C6—C7—H7A109.5
C5—C3—C4117.47 (13)C6—C7—H7B109.5
O4—C12—C11118.08 (13)H7A—C7—H7B109.5
O4—C12—C13122.33 (15)C6—C7—H7C109.5
C11—C12—C13119.58 (14)H7A—C7—H7C109.5
C12—C13—C14119.76 (15)H7B—C7—H7C109.5
C12—C13—H13120.1H1W—O5W—H2W105 (2)
C14—C13—H13120.1
C14—C9—C4—N271.27 (17)C9—C4—C3—C552.91 (18)
C10—C9—C4—N2106.19 (15)O4—C12—C13—C14178.02 (14)
C14—C9—C4—C350.98 (18)C11—C12—C13—C141.5 (2)
C10—C9—C4—C3131.56 (14)C10—C9—C14—C130.3 (2)
C9—C4—N2—C1126.81 (16)C4—C9—C14—C13177.20 (13)
C3—C4—N2—C12.3 (2)C12—C13—C14—C90.6 (2)
C6—O3—C5—O210.0 (2)O4—C12—C11—C10177.99 (13)
C6—O3—C5—C3168.50 (13)C13—C12—C11—C101.6 (2)
C4—N2—C1—O1177.32 (14)C5—C3—C2—N1176.83 (13)
C4—N2—C1—N12.8 (2)C4—C3—C2—N12.9 (2)
O1—C1—N1—C2174.44 (14)C5—C3—C2—C85.9 (2)
N2—C1—N1—C25.6 (2)C4—C3—C2—C8174.35 (15)
O2—C5—C3—C226.2 (2)C1—N1—C2—C32.9 (2)
O3—C5—C3—C2155.34 (14)C1—N1—C2—C8179.51 (15)
O2—C5—C3—C4153.49 (16)C12—C11—C10—C90.7 (2)
O3—C5—C3—C424.92 (18)C14—C9—C10—C110.3 (2)
N2—C4—C3—C25.05 (19)C4—C9—C10—C11177.23 (13)
C9—C4—C3—C2126.82 (15)C5—O3—C6—C785.59 (18)
N2—C4—C3—C5174.68 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.092.9411 (17)171
O5W—H1W···O20.83 (3)2.06 (3)2.881 (2)172 (3)
N2—H2···O4ii0.862.142.978 (2)165
O5W—H2W···O1iii0.93 (3)1.88 (3)2.799 (2)167 (2)
O4—H4···O5Wiv0.821.862.674 (2)176
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y, z+1; (iii) x1, y+1, z; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H16N2O4·H2O
Mr294.30
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)5.6859 (2), 10.7190 (5), 12.1980 (5)
α, β, γ (°)85.267 (3), 83.990 (3), 74.936 (4)
V3)712.76 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.38 × 0.24 × 0.15
Data collection
DiffractometerGoniometer Xcalibur with Eos (Nova) detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.951, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
18207, 2792, 2109
Rint0.034
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.102, 1.09
No. of reflections2792
No. of parameters201
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.14

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.86002.092.9411 (17)171.00
O5W—H1W···O20.83 (3)2.06 (3)2.881 (2)172 (3)
N2—H2···O4ii0.86002.142.978 (2)165.00
O5W—H2W···O1iii0.93 (3)1.88 (3)2.799 (2)167 (2)
O4—H4···O5Wiv0.82001.862.674 (2)176.00
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y, z+1; (iii) x1, y+1, z; (iv) x+1, y+1, z+1.
 

Acknowledgements

We are grateful for funding under DST–FIST (Level II) for the Oxford Diffraction facility at SSCU. SKN thanks the CSIR (SRF), India, for financial support.

References

First citationAtwal, K. S., Swanson, B. N., Unger, S. E., Floyd, D. M., Moreland, S., Hedberg, A. & O Reilly, B. C. (1991). J. Med. Chem. 34, 806–811.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJauk, B., Pernat, T. & Kappe, C. O. (2000). Molecules, 5, 227–239.  Web of Science CrossRef CAS Google Scholar
First citationKappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043–1052.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKato, T. (1984). Chem. Abstr. 102, 132067.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlisPro RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds