metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[μ2-aqua-aqua-μ4-pyridine-2,4-di­carboxyl­ato-strontium]

aDepartment of Chemistry, Faculty of Science, Ilam University, Ilam, Iran, bFaculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, and cDepartment of Chemistry, Faculty of Science, Islamic Azad University, Khorramabad Branch, Khorramabad, Iran
*Correspondence e-mail: janet_soleimannejad@yahoo.com

(Received 8 June 2009; accepted 8 July 2009; online 15 July 2009)

In the title polymeric complex, [Sr(C7H3NO4)(H2O)2]n, the SrII atom is eight-coordinated by four O atoms and one N atom of four pyridine-2,4-dicarboxyl­ate (py-2,4-dc) ligands and three O atoms of three coordinated water mol­ecules in a dodeca­hedral geometry. These units are connected via the carboxyl­ate O atoms and water mol­ecules, building polymeric layers parallel to (100). In the crystal structure, non-covalent inter­actions consisting of O—H⋯O hydrogen bonds and ππ stacking inter­actions [centroid–centroid distances = 3.862 (17) and 3.749 (17) Å] connect the various components, forming a three-dimensional structure.

Related literature

For related structures, see: Aghabozorg, Manteghi & Sheshmani (2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.]); Aghabozorg, Nemati et al. (2008[Aghabozorg, H., Nemati, A., Derikvand, Z., Ghadermazi, M. & Daneshvar, S. (2008). Acta Cryst. E64, m376.]); Liang (2008[Liang, P. (2008). Acta Cryst. E64, o43.]); Soleimannejad et al. (2007[Soleimannejad, J., Aghabozorg, H., Hooshmand, S. & Adams, H. (2007). Acta Cryst. E63, m3089-m3090.]).

[Scheme 1]

Experimental

Crystal data
  • [Sr(C7H3NO4)(H2O)2]

  • Mr = 288.76

  • Monoclinic, P 21 /c

  • a = 6.8860 (5) Å

  • b = 19.7801 (13) Å

  • c = 6.5642 (4) Å

  • β = 91.892 (5)°

  • V = 893.59 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.04 mm−1

  • T = 296 K

  • 0.08 × 0.05 × 0.05 mm

Data collection
  • Bruker SMART 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.560, Tmax = 0.752

  • 6370 measured reflections

  • 2321 independent reflections

  • 1795 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.070

  • S = 1.03

  • 2321 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5B⋯O4i 0.85 1.95 2.759 (3) 158
O5—H5A⋯O4ii 0.85 1.92 2.730 (3) 160
O5—H5A⋯O3ii 0.85 2.37 3.051 (3) 137
O6—H6B⋯O3iii 0.85 2.12 2.958 (3) 169
O6—H6A⋯O4iv 0.85 2.10 2.833 (3) 144
Symmetry codes: (i) -x+3, -y+1, -z-1; (ii) [-x+3, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iii) -x+2, -y+1, -z; (iv) [-x+2, y+{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We have previously reported two complexes of SrII with pyridine-3,5-dicarpoxylic and pyridine-2,6-dicarboxylic acid [Sr(C7H3NO4)(H2O)4]n (Aghabozorg et al., 2008; Aghabozorg, Manteghi et al., 2008) and (C10H10N2)[Sr(C7H3NO4)2(H2O)3].3H2O (Soleimannejad et al, 2007). The co-crystal of this acid has been published C7H5NO4.C3H7NO3 (Liang, 2008).

Here we repot on the crystal structure of the title polymeric complex which is a two-dimensional polymer (Fig. 1). The Sr–O distances are in the range of 2.511 (2)–2.688 (2) Å, and the bond angles and bond distances around SrII atom show that the coordination environment of SrII atom is distored dodecahedron.

The carboxylate groups from py-2,4-dc (where py = pyridine and dc = dicarboxylate) link four SrII centers by four O atoms (O1i, O1ii, O2 and O3), [symmetry cods: (i) x, y, 1 + z, (ii), x,1.5 - y, 1/2 + z.] and one N1 atom result in the formation of two-dimensional polymeric chain in the crystal structure. There are a number of O–H···O hydrogen bonds with distances ranging 2.759 (3) Å to 3.052 (3) Å (Table 1). In the crystal structure there are many pores that can be used for storage of gas and elimination of guest molecules. Noncovalent interactions consist of hydrogen bonding and ππ stacking interactions with centroied-centroied distances [3.862 (17) Å and 3.749 (17) Å] connect the various components to form a supramolecular structure (Fig. 2).

Related literature top

For related structures, see: Aghabozorg, Manteghi & Sheshmani (2008); Aghabozorg, Nemati et al. (2008); Liang (2008); Soleimannejad et al. (2007).

Experimental top

An aqueous solution of 4,4'-bipyridine (100 mg, 2 mmol) and pyridine-2,4-dicarboxylic acid (53 mg, 1 mmol) was refluxed for an hour. A solution of Sr(NO3)2 (134 mg, 0.5 mmol) in water (3 ml) was added to the solution and refluxed for an hour. Colorless crystals were obtained after one week by the slow evaporation of the solvent at room temperature.

Refinement top

The H atoms of the water molecule these were located from low theta Fourier maps and all H-atoms were included in calculated positions and refined by a constrained rigid type geometry in a riding mode with O—H = 0.85 Å and C—H = 0.93 Å and Uiso(H) = 1.2Ueq(parent O or C-atom).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of polymeric complex, [Sr(C7H3NO4)(H2O)2]n. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (A) x, y, z - 1; (B) x, -y + 3/2, z - 1/2; (C) x, -y + 3/2, z + 1/2; (D) -x + 3, -y + 1, -z.
[Figure 2] Fig. 2. Crystal packing of the title complex, dashed lines indicate hydrogen bonds.
Poly[µ2-aqua-aqua-µ4-pyridine-2,4-dicarboxylato-strontium] top
Crystal data top
[Sr(C7H3NO4)(H2O)2]F(000) = 568
Mr = 288.76Dx = 2.146 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1756 reflections
a = 6.8860 (5) Åθ = 4.4–28.4°
b = 19.7801 (13) ŵ = 6.04 mm1
c = 6.5642 (4) ÅT = 296 K
β = 91.892 (5)°Plate, colourless
V = 893.59 (10) Å30.08 × 0.05 × 0.05 mm
Z = 4
Data collection top
Bruker SMART 1000
diffractometer
2321 independent reflections
Radiation source: fine-focus sealed tube1795 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 100 pixels mm-1θmax = 28.9°, θmin = 4.1°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2226
Tmin = 0.560, Tmax = 0.752l = 88
6370 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0326P)2 + 0.0723P]
where P = (Fo2 + 2Fc2)/3
2321 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Sr(C7H3NO4)(H2O)2]V = 893.59 (10) Å3
Mr = 288.76Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.8860 (5) ŵ = 6.04 mm1
b = 19.7801 (13) ÅT = 296 K
c = 6.5642 (4) Å0.08 × 0.05 × 0.05 mm
β = 91.892 (5)°
Data collection top
Bruker SMART 1000
diffractometer
2321 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1795 reflections with I > 2σ(I)
Tmin = 0.560, Tmax = 0.752Rint = 0.042
6370 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.03Δρmax = 0.76 e Å3
2321 reflectionsΔρmin = 0.59 e Å3
136 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr11.41849 (4)0.689568 (14)0.36705 (4)0.00741 (8)
N11.2631 (4)0.57709 (13)0.2058 (4)0.0096 (5)
O11.3664 (3)0.68543 (10)0.0213 (3)0.0094 (4)
O21.3348 (3)0.62646 (11)0.3099 (3)0.0127 (5)
O31.2609 (3)0.37523 (11)0.2554 (3)0.0112 (5)
O41.1524 (3)0.33289 (11)0.0422 (3)0.0103 (4)
O51.6546 (3)0.72846 (10)0.6459 (3)0.0103 (4)
H5B1.71390.70070.72060.012*
H5A1.71560.76480.61720.012*
O61.0607 (3)0.71224 (12)0.3855 (4)0.0172 (5)
H6B0.97890.68260.35050.021*
H6A1.01670.75070.35250.021*
C11.3325 (4)0.63210 (15)0.1201 (5)0.0088 (6)
C21.2865 (4)0.56895 (15)0.0027 (4)0.0085 (6)
C31.2705 (4)0.50621 (15)0.0904 (5)0.0085 (6)
H31.29100.50200.23060.010*
C41.2238 (4)0.45000 (15)0.0267 (5)0.0084 (6)
C51.2108 (4)0.38080 (15)0.0705 (5)0.0092 (6)
C61.1917 (5)0.45863 (15)0.2358 (5)0.0106 (6)
H61.15530.42240.31870.013*
C71.2152 (5)0.52224 (16)0.3165 (5)0.0124 (6)
H71.19680.52750.45660.015*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.01054 (14)0.00559 (13)0.00613 (13)0.00023 (12)0.00104 (9)0.00023 (12)
N10.0119 (13)0.0086 (13)0.0083 (12)0.0014 (10)0.0002 (10)0.0000 (10)
O10.0152 (11)0.0050 (10)0.0082 (10)0.0018 (9)0.0013 (8)0.0012 (9)
O20.0198 (12)0.0098 (11)0.0086 (11)0.0035 (9)0.0029 (9)0.0005 (9)
O30.0152 (12)0.0079 (11)0.0107 (11)0.0003 (9)0.0013 (9)0.0028 (9)
O40.0132 (11)0.0072 (10)0.0107 (11)0.0008 (8)0.0013 (9)0.0009 (8)
O50.0139 (11)0.0066 (10)0.0104 (11)0.0004 (9)0.0015 (9)0.0028 (8)
O60.0136 (12)0.0105 (11)0.0277 (14)0.0013 (9)0.0050 (10)0.0045 (10)
C10.0102 (15)0.0073 (14)0.0089 (14)0.0007 (12)0.0013 (11)0.0030 (12)
C20.0086 (14)0.0099 (14)0.0071 (14)0.0008 (12)0.0025 (11)0.0002 (12)
C30.0107 (15)0.0082 (14)0.0065 (14)0.0010 (12)0.0010 (11)0.0018 (11)
C40.0083 (14)0.0044 (13)0.0128 (15)0.0004 (11)0.0025 (11)0.0008 (11)
C50.0071 (14)0.0078 (14)0.0131 (15)0.0026 (11)0.0065 (11)0.0029 (12)
C60.0136 (15)0.0076 (15)0.0108 (15)0.0006 (12)0.0015 (12)0.0025 (12)
C70.0201 (17)0.0097 (15)0.0073 (15)0.0001 (13)0.0001 (12)0.0003 (12)
Geometric parameters (Å, º) top
Sr1—O62.503 (2)O4—C51.260 (4)
Sr1—O2i2.511 (2)O5—Sr1ii2.688 (2)
Sr1—O12.588 (2)O5—H5B0.8500
Sr1—O1ii2.600 (2)O5—H5A0.8501
Sr1—O52.604 (2)O6—H6B0.8500
Sr1—O3iii2.636 (2)O6—H6A0.8500
Sr1—O5iv2.688 (2)C1—C21.514 (4)
Sr1—N12.700 (3)C2—C31.389 (4)
N1—C71.341 (4)C3—C41.384 (4)
N1—C21.347 (4)C3—H30.9300
O1—C11.264 (3)C4—C61.394 (4)
O1—Sr1iv2.600 (2)C4—C51.514 (4)
O2—C11.250 (4)C6—C71.377 (4)
O2—Sr1v2.511 (2)C6—H60.9300
O3—C51.256 (4)C7—H70.9300
O3—Sr1iii2.636 (2)
O6—Sr1—O2i81.38 (8)O5iv—Sr1—Sr1ii93.74 (4)
O6—Sr1—O183.40 (7)N1—Sr1—Sr1ii144.35 (5)
O2i—Sr1—O1141.34 (7)Sr1iv—Sr1—Sr1ii107.860 (13)
O6—Sr1—O1ii71.92 (7)C7—N1—C2117.3 (3)
O2i—Sr1—O1ii102.07 (7)C7—N1—Sr1123.20 (19)
O1—Sr1—O1ii106.58 (6)C2—N1—Sr1116.78 (19)
O6—Sr1—O5123.32 (7)C1—O1—Sr1124.46 (18)
O2i—Sr1—O571.61 (7)C1—O1—Sr1iv132.46 (18)
O1—Sr1—O5144.29 (7)Sr1—O1—Sr1iv103.01 (7)
O1ii—Sr1—O566.71 (7)C1—O2—Sr1v142.38 (19)
O6—Sr1—O3iii156.15 (7)C5—O3—Sr1iii120.82 (19)
O2i—Sr1—O3iii99.20 (7)Sr1—O5—Sr1ii100.21 (7)
O1—Sr1—O3iii81.53 (7)Sr1—O5—H5B122.5
O1ii—Sr1—O3iii130.33 (7)Sr1ii—O5—H5B111.9
O5—Sr1—O3iii78.61 (7)Sr1—O5—H5A114.2
O6—Sr1—O5iv119.66 (7)Sr1ii—O5—H5A84.0
O2i—Sr1—O5iv150.91 (7)H5B—O5—H5A115.5
O1—Sr1—O5iv65.67 (6)Sr1—O6—H6B121.5
O1ii—Sr1—O5iv69.75 (6)Sr1—O6—H6A120.4
O5—Sr1—O5iv79.68 (5)H6B—O6—H6A107.7
O3iii—Sr1—O5iv69.94 (7)O2—C1—O1126.1 (3)
O6—Sr1—N176.37 (8)O2—C1—C2116.9 (3)
O2i—Sr1—N180.71 (7)O1—C1—C2117.0 (2)
O1—Sr1—N161.18 (7)N1—C2—C3122.2 (3)
O1ii—Sr1—N1147.27 (7)N1—C2—C1116.4 (3)
O5—Sr1—N1141.60 (7)C3—C2—C1121.4 (3)
O3iii—Sr1—N180.18 (7)C4—C3—C2119.6 (3)
O5iv—Sr1—N1121.72 (7)C4—C3—H3120.2
O6—Sr1—Sr1iv84.69 (6)C2—C3—H3120.2
O2i—Sr1—Sr1iv165.72 (5)C3—C4—C6118.4 (3)
O1—Sr1—Sr1iv38.61 (4)C3—C4—C5120.5 (3)
O1ii—Sr1—Sr1iv70.38 (5)C6—C4—C5121.1 (3)
O5—Sr1—Sr1iv114.26 (5)O3—C5—O4125.0 (3)
O3iii—Sr1—Sr1iv94.81 (5)O3—C5—C4117.9 (3)
O5iv—Sr1—Sr1iv39.14 (5)O4—C5—C4117.0 (3)
N1—Sr1—Sr1iv99.07 (5)C7—C6—C4118.3 (3)
O6—Sr1—Sr1ii83.20 (5)C7—C6—H6120.9
O2i—Sr1—Sr1ii67.43 (5)C4—C6—H6120.9
O1—Sr1—Sr1ii144.96 (5)N1—C7—C6124.1 (3)
O1ii—Sr1—Sr1ii38.38 (5)N1—C7—H7117.9
O5—Sr1—Sr1ii40.65 (5)C6—C7—H7117.9
O3iii—Sr1—Sr1ii119.25 (5)
O6—Sr1—N1—C791.7 (2)O2i—Sr1—O5—Sr1ii76.49 (7)
O2i—Sr1—N1—C78.4 (2)O1—Sr1—O5—Sr1ii122.21 (10)
O1—Sr1—N1—C7178.4 (3)O1ii—Sr1—O5—Sr1ii36.03 (6)
O1ii—Sr1—N1—C7106.3 (2)O3iii—Sr1—O5—Sr1ii179.69 (8)
O5—Sr1—N1—C735.5 (3)O5iv—Sr1—O5—Sr1ii108.29 (10)
O3iii—Sr1—N1—C792.7 (2)N1—Sr1—O5—Sr1ii122.61 (10)
O5iv—Sr1—N1—C7151.7 (2)Sr1iv—Sr1—O5—Sr1ii89.51 (6)
Sr1iv—Sr1—N1—C7173.9 (2)Sr1v—O2—C1—O17.3 (6)
Sr1ii—Sr1—N1—C734.8 (3)Sr1v—O2—C1—C2172.1 (2)
O6—Sr1—N1—C2107.5 (2)Sr1—O1—C1—O2168.8 (2)
O2i—Sr1—N1—C2169.2 (2)Sr1iv—O1—C1—O27.8 (5)
O1—Sr1—N1—C217.58 (19)Sr1—O1—C1—C210.6 (4)
O1ii—Sr1—N1—C292.9 (2)Sr1iv—O1—C1—C2172.84 (18)
O5—Sr1—N1—C2125.3 (2)C7—N1—C2—C32.7 (4)
O3iii—Sr1—N1—C268.1 (2)Sr1—N1—C2—C3159.3 (2)
O5iv—Sr1—N1—C29.2 (2)C7—N1—C2—C1177.6 (3)
Sr1iv—Sr1—N1—C225.3 (2)Sr1—N1—C2—C120.4 (3)
Sr1ii—Sr1—N1—C2164.33 (16)O2—C1—C2—N1172.9 (3)
O6—Sr1—O1—C192.9 (2)O1—C1—C2—N17.7 (4)
O2i—Sr1—O1—C125.6 (3)O2—C1—C2—C37.4 (4)
O1ii—Sr1—O1—C1161.74 (19)O1—C1—C2—C3172.1 (3)
O5—Sr1—O1—C1125.3 (2)N1—C2—C3—C41.8 (4)
O3iii—Sr1—O1—C168.6 (2)C1—C2—C3—C4178.5 (3)
O5iv—Sr1—O1—C1140.3 (2)C2—C3—C4—C60.8 (4)
N1—Sr1—O1—C114.8 (2)C2—C3—C4—C5178.4 (3)
Sr1iv—Sr1—O1—C1177.4 (3)Sr1iii—O3—C5—O469.3 (4)
Sr1ii—Sr1—O1—C1161.01 (19)Sr1iii—O3—C5—C4109.7 (2)
O6—Sr1—O1—Sr1iv89.74 (8)C3—C4—C5—O36.4 (4)
O2i—Sr1—O1—Sr1iv157.03 (9)C6—C4—C5—O3172.7 (3)
O1ii—Sr1—O1—Sr1iv20.87 (12)C3—C4—C5—O4174.4 (3)
O5—Sr1—O1—Sr1iv52.12 (14)C6—C4—C5—O46.4 (4)
O3iii—Sr1—O1—Sr1iv108.81 (8)C3—C4—C6—C72.4 (4)
O5iv—Sr1—O1—Sr1iv37.06 (7)C5—C4—C6—C7176.8 (3)
N1—Sr1—O1—Sr1iv167.79 (10)C2—N1—C7—C61.0 (5)
Sr1ii—Sr1—O1—Sr1iv21.60 (12)Sr1—N1—C7—C6159.8 (2)
O6—Sr1—O5—Sr1ii10.55 (10)C4—C6—C7—N11.6 (5)
Symmetry codes: (i) x, y, z1; (ii) x, y+3/2, z1/2; (iii) x+3, y+1, z; (iv) x, y+3/2, z+1/2; (v) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O4vi0.851.952.759 (3)158
O5—H5A···O4vii0.851.922.730 (3)160
O5—H5A···O3vii0.852.373.051 (3)137
O6—H6B···O3viii0.852.122.958 (3)169
O6—H6A···O4ix0.852.102.833 (3)144
Symmetry codes: (vi) x+3, y+1, z1; (vii) x+3, y+1/2, z1/2; (viii) x+2, y+1, z; (ix) x+2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Sr(C7H3NO4)(H2O)2]
Mr288.76
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)6.8860 (5), 19.7801 (13), 6.5642 (4)
β (°) 91.892 (5)
V3)893.59 (10)
Z4
Radiation typeMo Kα
µ (mm1)6.04
Crystal size (mm)0.08 × 0.05 × 0.05
Data collection
DiffractometerBruker SMART 1000
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.560, 0.752
No. of measured, independent and
observed [I > 2σ(I)] reflections
6370, 2321, 1795
Rint0.042
(sin θ/λ)max1)0.679
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.070, 1.03
No. of reflections2321
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 0.59

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O4i0.851.952.759 (3)158.2
O5—H5A···O4ii0.851.922.730 (3)159.6
O5—H5A···O3ii0.852.373.051 (3)137.1
O6—H6B···O3iii0.852.122.958 (3)168.9
O6—H6A···O4iv0.852.102.833 (3)143.7
Symmetry codes: (i) x+3, y+1, z1; (ii) x+3, y+1/2, z1/2; (iii) x+2, y+1, z; (iv) x+2, y+1/2, z1/2.
 

References

First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationAghabozorg, H., Nemati, A., Derikvand, Z., Ghadermazi, M. & Daneshvar, S. (2008). Acta Cryst. E64, m376.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1998). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiang, P. (2008). Acta Cryst. E64, o43.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoleimannejad, J., Aghabozorg, H., Hooshmand, S. & Adams, H. (2007). Acta Cryst. E63, m3089–m3090.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds