organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Benzyl-1,3-di­phenyl-2,3-di­hydro-1H-naphtho[1,2-e][1,3]oxazine

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: liyh@seu.edu.cn

(Received 27 June 2009; accepted 3 July 2009; online 8 July 2009)

In the title compound, C31H25NO, the oxazine ring adopts a half-chair conformation. The dihedral angles between the phenyl rings and the naphthyl ring system are 70.89 (8), 37.34 (10) and 9.42 (10)°. The crystal structure is stabilized by an aromatic ππ stacking inter­action, with a centroid–centroid distance of 3.879 (3) Å.

Related literature

For the synthesis and crystal structures of oxazines, see: Alfonsov et al. (2007[Alfonsov, V. A., Metlushka, K. E., McKenna, C. E., Kashemirov, B. A., Kataeva, O. N., Zheltukhin, V. F., Sadkova, D. N. & Dobrynin, A. B. (2007). Synlett, 3, 488-490.]); Li et al. (2008[Li, Y. H., Zhao, M. M. & Zhang, Y. (2008). Acta Cryst. E64, o1972.]). For pharmaceutical applications of oxazines, see: Peglion et al. (1997[Peglion, J. L., Vian, J., Gourment, B., Despaux, N., Audinot, V. & Millan, M. (1997). Bioorg. Med. Chem. Lett. 7, 881-886.]); Xu et al. (2004[Xu, X. N., Lu, J., Dong, Y. M., Li, R., Ge, Z. M. & Hu, Y. F. (2004). Tetrahedron Asymmetry, A15, 475-479.]).

[Scheme 1]

Experimental

Crystal data
  • C31H25NO

  • Mr = 427.52

  • Monoclinic, P 21 /n

  • a = 9.0605 (18) Å

  • b = 23.475 (5) Å

  • c = 10.634 (2) Å

  • β = 97.53 (3)°

  • V = 2242.2 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.984, Tmax = 0.985

  • 18548 measured reflections

  • 4392 independent reflections

  • 2913 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.118

  • S = 1.00

  • 4392 reflections

  • 299 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

Continuing efforts have been made to synthesize oxazine compounds (Alfonsov et al., 2007) because they are widely used as antipsychotic agents, antimalarial agents, and serotomin and dopamine receptors agonists (Peglion et al., 1997; Xu et al. 2004). We have prepared a novel compound, 2-benzyl-1,3-diphenyl-2,3-dihydro-1H-naphtho[1,2-e][1,3]oxazine, by the reaction of 2-naphthol, benzaldehyde and phenylmethanamine, and we report in this paper its synthesis and crystal structure. The structures of some closely related compounds have been reported (Alfonsov et al., 2007; Li et al., 2008).

The molecule of the title compound has normal geometric parameters. The oxazine ring adopts a half chair conformation. The dihedral angles formed by the naphthyl ring system with the C12–C17, C19–C24 and C26–C31 phenyl rings are 70.89 (8), 37.34 (10) and 9.42 (10)°, respectively. The crystal structure is stabilized by an aromatic ππ stacking interaction involving the C26—C31 phenyl ring at (x, y, z) and the C5—C10 ring of the naphhtyl ring system at (1+x, y, z), with a centroid to centroid distance of 3.879 (3) Å.

Related literature top

For the synthesis and crystal structures of oxazines, see: Alfonsov et al. (2007); Li et al. (2008). For the pharmaceutical applications of oxazines, see: Peglion et al. (1997); Xu et al. (2004).

Experimental top

The title compound was one of the products of the reaction between 2-naphthol, phenylmethanamine and an excess amount of benzaldehyde. Benzaldehyde (3.18 g, 0.03 mol) and phenylmethanamine (1.605 g, 0.015 mol) were added to 2-naphthol (2.16 g, 0.015 mol) without solvent under nitrogen atmosphere. The temperature was gradually raised to 120°C in one hour and the mixture was stirred at this temperature for 10 h. The mixture was then treated with ethanol (95%, 20 ml) and cooled to room temperature. The precipitate was filtered and washed with a small amount of ethanol. The title compound was isolated using column chromatography (petroleum ether / ethyl acetate, 2:1 v/v). Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of an ethyl acetate solution.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are omitted for clarity.
2-Benzyl-1,3-diphenyl-2,3-dihydro-1H-naphtho[1,2-e][1,3]oxazine top
Crystal data top
C31H25NOF(000) = 904
Mr = 427.52Dx = 1.266 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4392 reflections
a = 9.0605 (18) Åθ = 2.0–26.0°
b = 23.475 (5) ŵ = 0.08 mm1
c = 10.634 (2) ÅT = 293 K
β = 97.53 (3)°Block, colourless
V = 2242.2 (8) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
4392 independent reflections
Radiation source: fine-focus sealed tube2913 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
CCD_Profile_fitting scansθmax = 26.0°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.984, Tmax = 0.985k = 2828
18548 measured reflectionsl = 1312
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0185P)2 + 1.004P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4392 reflectionsΔρmax = 0.16 e Å3
299 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0082 (6)
Crystal data top
C31H25NOV = 2242.2 (8) Å3
Mr = 427.52Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.0605 (18) ŵ = 0.08 mm1
b = 23.475 (5) ÅT = 293 K
c = 10.634 (2) Å0.20 × 0.20 × 0.20 mm
β = 97.53 (3)°
Data collection top
Rigaku SCXmini
diffractometer
4392 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2913 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.985Rint = 0.078
18548 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.00Δρmax = 0.16 e Å3
4392 reflectionsΔρmin = 0.20 e Å3
299 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.56752 (15)0.05364 (6)0.18725 (13)0.0433 (4)
C250.6744 (2)0.09254 (9)0.25499 (19)0.0357 (5)
H25A0.69400.12270.19570.043*
C260.8189 (2)0.06072 (9)0.29206 (19)0.0368 (5)
N10.61811 (18)0.11912 (7)0.36044 (15)0.0339 (4)
C10.3834 (2)0.12590 (8)0.21580 (19)0.0355 (5)
C90.2345 (2)0.14567 (9)0.18089 (19)0.0381 (5)
C110.4930 (2)0.15723 (8)0.31138 (19)0.0354 (5)
H11A0.44050.16720.38320.043*
C20.4255 (2)0.07585 (9)0.16309 (19)0.0381 (5)
C30.3247 (2)0.04280 (10)0.0810 (2)0.0446 (6)
H3A0.35530.00860.04890.054*
C120.5533 (2)0.21233 (8)0.2623 (2)0.0365 (5)
C80.1826 (2)0.19750 (9)0.2272 (2)0.0479 (6)
H8A0.24590.21900.28460.058*
C100.1337 (2)0.11330 (10)0.0960 (2)0.0415 (5)
C200.7137 (2)0.13377 (9)0.6347 (2)0.0444 (6)
H20A0.78140.14530.58110.053*
C190.5928 (2)0.10047 (8)0.58716 (18)0.0342 (5)
C50.0124 (2)0.13407 (11)0.0593 (2)0.0521 (6)
H5A0.07900.11290.00390.062*
C310.8413 (2)0.00538 (9)0.2547 (2)0.0453 (6)
H31A0.76360.01470.20890.054*
C40.1826 (2)0.06123 (10)0.0491 (2)0.0463 (6)
H4A0.11630.03920.00460.056*
C281.0728 (3)0.06368 (11)0.3912 (2)0.0540 (6)
H28A1.15060.08340.43780.065*
C270.9361 (2)0.08953 (10)0.3615 (2)0.0444 (6)
H27A0.92230.12660.38830.053*
C180.5762 (2)0.07786 (8)0.45383 (19)0.0383 (5)
H18A0.63750.04410.45180.046*
H18B0.47340.06660.42940.046*
C220.6355 (3)0.13384 (11)0.8404 (2)0.0562 (7)
H22A0.64950.14520.92490.067*
C170.5268 (2)0.22873 (10)0.1367 (2)0.0468 (6)
H17A0.46950.20550.07850.056*
C70.0414 (3)0.21641 (10)0.1892 (2)0.0556 (7)
H7A0.00990.25080.22020.067*
C291.0949 (3)0.00892 (11)0.3522 (2)0.0567 (7)
H29A1.18760.00830.37120.068*
C240.4939 (2)0.08446 (9)0.6690 (2)0.0451 (6)
H24A0.41150.06240.63900.054*
C230.5154 (3)0.10079 (11)0.7951 (2)0.0559 (7)
H23A0.44830.08930.84930.067*
C300.9789 (3)0.02034 (11)0.2850 (2)0.0554 (6)
H30A0.99300.05770.25980.067*
C60.0562 (3)0.18458 (11)0.1040 (2)0.0579 (7)
H6A0.15170.19810.07780.069*
C130.6384 (3)0.24804 (10)0.3467 (2)0.0526 (6)
H13A0.65720.23790.43190.063*
C210.7349 (3)0.15011 (10)0.7604 (2)0.0516 (6)
H21A0.81690.17220.79100.062*
C160.5843 (3)0.27926 (11)0.0957 (3)0.0605 (7)
H16A0.56580.28970.01080.073*
C140.6956 (3)0.29827 (11)0.3065 (3)0.0687 (8)
H14A0.75260.32170.36440.082*
C150.6686 (3)0.31363 (11)0.1813 (3)0.0690 (8)
H15A0.70750.34750.15420.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0346 (8)0.0491 (9)0.0444 (9)0.0029 (7)0.0015 (7)0.0122 (7)
C250.0343 (12)0.0402 (12)0.0318 (12)0.0006 (9)0.0013 (10)0.0008 (9)
C260.0339 (12)0.0455 (13)0.0312 (12)0.0038 (9)0.0049 (9)0.0031 (10)
N10.0352 (10)0.0362 (10)0.0301 (10)0.0026 (7)0.0036 (8)0.0017 (7)
C10.0319 (12)0.0409 (12)0.0338 (12)0.0016 (9)0.0043 (9)0.0002 (9)
C90.0306 (12)0.0461 (13)0.0376 (12)0.0002 (9)0.0049 (10)0.0052 (10)
C110.0329 (12)0.0384 (12)0.0349 (12)0.0037 (9)0.0042 (10)0.0016 (9)
C20.0316 (12)0.0482 (13)0.0336 (12)0.0016 (10)0.0010 (10)0.0002 (10)
C30.0443 (14)0.0490 (14)0.0397 (13)0.0019 (10)0.0024 (11)0.0081 (10)
C120.0321 (12)0.0360 (11)0.0416 (13)0.0047 (9)0.0055 (10)0.0007 (10)
C80.0348 (13)0.0492 (14)0.0592 (16)0.0011 (10)0.0040 (11)0.0008 (12)
C100.0321 (12)0.0559 (14)0.0362 (13)0.0023 (10)0.0033 (10)0.0064 (10)
C200.0430 (14)0.0494 (14)0.0402 (13)0.0030 (10)0.0026 (11)0.0015 (11)
C190.0358 (12)0.0346 (11)0.0318 (12)0.0047 (9)0.0028 (10)0.0020 (9)
C50.0346 (13)0.0691 (17)0.0504 (15)0.0039 (12)0.0023 (11)0.0095 (13)
C310.0417 (13)0.0490 (14)0.0453 (14)0.0050 (10)0.0063 (11)0.0025 (11)
C40.0402 (14)0.0597 (15)0.0374 (13)0.0096 (11)0.0015 (11)0.0062 (11)
C280.0372 (14)0.0750 (18)0.0477 (15)0.0006 (12)0.0022 (11)0.0039 (13)
C270.0371 (13)0.0496 (14)0.0456 (14)0.0006 (10)0.0016 (11)0.0013 (11)
C180.0405 (12)0.0369 (12)0.0365 (12)0.0019 (9)0.0015 (10)0.0018 (9)
C220.0662 (18)0.0647 (17)0.0356 (14)0.0103 (13)0.0016 (13)0.0081 (12)
C170.0411 (14)0.0502 (14)0.0482 (15)0.0033 (11)0.0026 (11)0.0053 (11)
C70.0411 (14)0.0532 (15)0.0726 (18)0.0067 (11)0.0084 (13)0.0016 (13)
C290.0434 (15)0.0744 (18)0.0518 (16)0.0189 (13)0.0039 (13)0.0139 (14)
C240.0407 (13)0.0502 (14)0.0449 (14)0.0008 (10)0.0073 (11)0.0007 (11)
C230.0603 (17)0.0700 (17)0.0393 (15)0.0053 (13)0.0133 (13)0.0032 (12)
C300.0577 (16)0.0529 (15)0.0556 (16)0.0176 (12)0.0071 (13)0.0022 (12)
C60.0342 (13)0.0682 (17)0.0700 (18)0.0065 (12)0.0023 (13)0.0140 (14)
C130.0593 (16)0.0478 (14)0.0493 (15)0.0060 (12)0.0017 (12)0.0028 (11)
C210.0534 (15)0.0517 (15)0.0460 (15)0.0009 (11)0.0074 (12)0.0062 (12)
C160.0573 (17)0.0621 (17)0.0625 (18)0.0062 (13)0.0096 (14)0.0234 (14)
C140.074 (2)0.0496 (16)0.081 (2)0.0176 (14)0.0049 (16)0.0066 (15)
C150.0667 (19)0.0464 (16)0.095 (2)0.0081 (13)0.0134 (17)0.0165 (15)
Geometric parameters (Å, º) top
O1—C21.381 (2)C31—C301.385 (3)
O1—C251.452 (2)C31—H31A0.9300
C25—N11.434 (2)C4—H4A0.9300
C25—C261.514 (3)C28—C291.373 (3)
C25—H25A0.9800C28—C271.379 (3)
C26—C311.381 (3)C28—H28A0.9300
C26—C271.387 (3)C27—H27A0.9300
N1—C181.472 (2)C18—H18A0.9700
N1—C111.484 (2)C18—H18B0.9700
C1—C21.377 (3)C22—C231.371 (3)
C1—C91.429 (3)C22—C211.372 (3)
C1—C111.515 (3)C22—H22A0.9300
C9—C81.416 (3)C17—C161.388 (3)
C9—C101.418 (3)C17—H17A0.9300
C11—C121.523 (3)C7—C61.396 (3)
C11—H11A0.9800C7—H7A0.9300
C2—C31.411 (3)C29—C301.375 (3)
C3—C41.358 (3)C29—H29A0.9300
C3—H3A0.9300C24—C231.383 (3)
C12—C171.381 (3)C24—H24A0.9300
C12—C131.386 (3)C23—H23A0.9300
C8—C71.364 (3)C30—H30A0.9300
C8—H8A0.9300C6—H6A0.9300
C10—C41.413 (3)C13—C141.378 (3)
C10—C51.417 (3)C13—H13A0.9300
C20—C211.379 (3)C21—H21A0.9300
C20—C191.386 (3)C16—C151.371 (4)
C20—H20A0.9300C16—H16A0.9300
C19—C241.381 (3)C14—C151.370 (4)
C19—C181.503 (3)C14—H14A0.9300
C5—C61.356 (3)C15—H15A0.9300
C5—H5A0.9300
C2—O1—C25113.55 (15)C3—C4—H4A119.4
N1—C25—O1112.28 (16)C10—C4—H4A119.4
N1—C25—C26113.27 (16)C29—C28—C27120.3 (2)
O1—C25—C26108.46 (16)C29—C28—H28A119.8
N1—C25—H25A107.5C27—C28—H28A119.8
O1—C25—H25A107.5C28—C27—C26120.6 (2)
C26—C25—H25A107.5C28—C27—H27A119.7
C31—C26—C27118.7 (2)C26—C27—H27A119.7
C31—C26—C25122.93 (19)N1—C18—C19113.65 (16)
C27—C26—C25118.26 (19)N1—C18—H18A108.8
C25—N1—C18113.00 (16)C19—C18—H18A108.8
C25—N1—C11108.72 (15)N1—C18—H18B108.8
C18—N1—C11112.38 (15)C19—C18—H18B108.8
C2—C1—C9118.28 (19)H18A—C18—H18B107.7
C2—C1—C11119.68 (18)C23—C22—C21119.7 (2)
C9—C1—C11122.01 (18)C23—C22—H22A120.2
C8—C9—C10117.80 (19)C21—C22—H22A120.2
C8—C9—C1122.3 (2)C12—C17—C16121.1 (2)
C10—C9—C1119.92 (19)C12—C17—H17A119.5
N1—C11—C1110.28 (16)C16—C17—H17A119.5
N1—C11—C12109.90 (16)C8—C7—C6120.5 (2)
C1—C11—C12114.56 (17)C8—C7—H7A119.7
N1—C11—H11A107.3C6—C7—H7A119.7
C1—C11—H11A107.3C28—C29—C30119.5 (2)
C12—C11—H11A107.3C28—C29—H29A120.2
O1—C2—C1123.19 (18)C30—C29—H29A120.2
O1—C2—C3114.81 (18)C19—C24—C23121.0 (2)
C1—C2—C3122.00 (19)C19—C24—H24A119.5
C4—C3—C2119.7 (2)C23—C24—H24A119.5
C4—C3—H3A120.2C22—C23—C24120.1 (2)
C2—C3—H3A120.2C22—C23—H23A120.0
C17—C12—C13118.0 (2)C24—C23—H23A120.0
C17—C12—C11122.93 (19)C29—C30—C31120.4 (2)
C13—C12—C11119.07 (19)C29—C30—H30A119.8
C7—C8—C9121.2 (2)C31—C30—H30A119.8
C7—C8—H8A119.4C5—C6—C7120.4 (2)
C9—C8—H8A119.4C5—C6—H6A119.8
C4—C10—C5121.7 (2)C7—C6—H6A119.8
C4—C10—C9118.9 (2)C14—C13—C12121.1 (2)
C5—C10—C9119.4 (2)C14—C13—H13A119.5
C21—C20—C19120.9 (2)C12—C13—H13A119.5
C21—C20—H20A119.6C22—C21—C20120.3 (2)
C19—C20—H20A119.6C22—C21—H21A119.9
C24—C19—C20118.1 (2)C20—C21—H21A119.9
C24—C19—C18120.37 (19)C15—C16—C17119.6 (2)
C20—C19—C18121.34 (19)C15—C16—H16A120.2
C6—C5—C10120.7 (2)C17—C16—H16A120.2
C6—C5—H5A119.7C15—C14—C13120.0 (3)
C10—C5—H5A119.7C15—C14—H14A120.0
C26—C31—C30120.3 (2)C13—C14—H14A120.0
C26—C31—H31A119.8C14—C15—C16120.2 (2)
C30—C31—H31A119.8C14—C15—H15A119.9
C3—C4—C10121.2 (2)C16—C15—H15A119.9

Experimental details

Crystal data
Chemical formulaC31H25NO
Mr427.52
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.0605 (18), 23.475 (5), 10.634 (2)
β (°) 97.53 (3)
V3)2242.2 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.984, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
18548, 4392, 2913
Rint0.078
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.118, 1.00
No. of reflections4392
No. of parameters299
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.20

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

 

Acknowledgements

This work was supported by a start-up grant (4007041028) and a Science and Technology grant (KJ2009375) from Southeast University to Professor Yong-Hua Li.

References

First citationAlfonsov, V. A., Metlushka, K. E., McKenna, C. E., Kashemirov, B. A., Kataeva, O. N., Zheltukhin, V. F., Sadkova, D. N. & Dobrynin, A. B. (2007). Synlett, 3, 488–490.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, Y. H., Zhao, M. M. & Zhang, Y. (2008). Acta Cryst. E64, o1972.  Web of Science CrossRef IUCr Journals Google Scholar
First citationPeglion, J. L., Vian, J., Gourment, B., Despaux, N., Audinot, V. & Millan, M. (1997). Bioorg. Med. Chem. Lett. 7, 881–886.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, X. N., Lu, J., Dong, Y. M., Li, R., Ge, Z. M. & Hu, Y. F. (2004). Tetrahedron Asymmetry, A15, 475–479.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds