organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Iso­propyl­­idene­amino-1H-tetra­zol-5-amine

aState Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China
*Correspondence e-mail: duzhiming430@sohu.com

(Received 25 June 2009; accepted 29 June 2009; online 4 July 2009)

The mol­ecule of the title compound, C4H8N6, assumes an approximately planar structure, the methyl C atoms and the C atom to which they are bonded being out of the mean tetrazole ring plane by 0.108 and 0.139, and 0.144 Å, respectively. ππ stacking between parallel tetra­zole rings [centroid–centroid distance = 3.4663 (11) Å] is observed in the crystal structure. Inter­molecular N—H⋯N hydrogen bonding further helps to stabilize the crystal structure.

Related literature

For the preparation of the title compound, see: Gaponnik & Karavai (1984[Gaponnik, P. N. & Karavai, V. P. (1984). Khim. Geterotsikl. Soedin. 12, 1683-1686.]). For general background, see: Galvez-Ruiz et al. (2005[Galvez-Ruiz, J. C., Holl, G., Karaghiosoff, K., Klapotke, T. M., Lohnwitz, K., Mayer, P., Noth, H., Polborn, K., Rohbogner, C. J., Suter, M. & Weigand, J. J. (2005). Inorg. Chem. 44, 4237-4253.]); Joo et al. (2008[Joo, Y.-H., Twamley, B., Garg, S. & Shreeve, J. M. (2008). Angew. Chem. Int. Ed. 47, 6236-6239.]). For a related structures, see: Lyakhov et al. (2005[Lyakhov, A. S., Voitekhovich, S. V., Ivashkevich, L. S. & Gaponik, P. N. (2005). Acta Cryst. E61, o3645-o3647.]).

[Scheme 1]

Experimental

Crystal data
  • C4H8N6

  • Mr = 140.16

  • Monoclinic, P 21 /c

  • a = 7.488 (2) Å

  • b = 7.4238 (19) Å

  • c = 11.997 (3) Å

  • β = 97.145 (3)°

  • V = 661.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 93 K

  • 0.43 × 0.43 × 0.33 mm

Data collection
  • Rigaku Saturn724+ diffractometer

  • Absorption correction: none

  • 5172 measured reflections

  • 1520 independent reflections

  • 1334 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.088

  • S = 1.00

  • 1520 reflections

  • 101 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6A⋯N2i 0.890 (16) 2.200 (17) 3.0600 (16) 162.6 (13)
N6—H6B⋯N1ii 0.876 (15) 2.118 (15) 2.9770 (16) 166.4 (14)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+2, -y, -z+1.

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

1,5-diaminotetrazole and its derivatives have received an increasing interest as a class of nitrogen-rich energetic materials during the last years.These compounds exhibit prospective application in generation of gases, propellants and other combustible and thermally decomposing systems (Galvez-Ruiz et al., 2005; Joo, et al. 2008). The title compound had been prepared by Gaponnik & Karavai, but its crystal structure hadn't been reported, therefore, the structure of the title compound has been determined in our present work.

The crystal structure of the title compound is presented in Fig. 1, The bond distances and bond angles in the title compound are similar to the corresponding distances and angles reported by Lyakhov et al. (2005). The molecule is almost planar with only C2, C3 and C4 being out of the mean plane of the tetrazole ring by 0.108, 0.144 and 0.139 Å, respectively.

In the crystal structure the molecules are linked to each other via N—H···N hydrogen bonding (Table 1), forming a three dimensional network structure). The offset face-to-face π-π contact between the tetrazole rings, related by an inversion center, further helps to stabilize the crystal structure; centroid-centroid distance being 3.4663 (11) Å.

Related literature top

For the preparation, see: Gaponnik & Karavai (1984). For general background, see: Galvez-Ruiz et al. (2005); Joo et al. (2008). For a related structures, see: Lyakhov et al. (2005).

Experimental top

The title compound was prepared according to the literature method (Gaponnik & Karavai, 1984). The purity of the compound was checked by determining its melting point, m.p. 445–446 K. Crystals suitable for X-ray structure determination were obtained by slow evaporation of an acetone solution at room temperature.

Refinement top

Amino H atoms were located in a difference Fourier maps and were refined isotropically. Other H-atoms were placed in calculated positions with C—H = 0.98 Å, and refined in riding mode with Uiso = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
1-Isopropylideneamino-1H<ι>-tetrazol-5-amine top
Crystal data top
C4H8N6F(000) = 296
Mr = 140.16Dx = 1.407 Mg m3
Monoclinic, P21/cMelting point: 445 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.488 (2) ÅCell parameters from 2076 reflections
b = 7.4238 (19) Åθ = 3.1–27.5°
c = 11.997 (3) ŵ = 0.10 mm1
β = 97.145 (3)°T = 93 K
V = 661.7 (3) Å3Block, colourless
Z = 40.43 × 0.43 × 0.33 mm
Data collection top
Rigaku Saturn724+
diffractometer
1334 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.024
Graphite monochromatorθmax = 27.5°, θmin = 3.2°
Detector resolution: 28.5714 pixels mm-1h = 99
multi–scank = 89
5172 measured reflectionsl = 1515
1520 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.045P)2 + 0.16P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.088(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.28 e Å3
1520 reflectionsΔρmin = 0.17 e Å3
101 parameters
Crystal data top
C4H8N6V = 661.7 (3) Å3
Mr = 140.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.488 (2) ŵ = 0.10 mm1
b = 7.4238 (19) ÅT = 93 K
c = 11.997 (3) Å0.43 × 0.43 × 0.33 mm
β = 97.145 (3)°
Data collection top
Rigaku Saturn724+
diffractometer
1334 reflections with I > 2σ(I)
5172 measured reflectionsRint = 0.024
1520 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.28 e Å3
1520 reflectionsΔρmin = 0.17 e Å3
101 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.90734 (13)0.19832 (13)0.44509 (8)0.0177 (2)
N20.84796 (13)0.34792 (13)0.38501 (8)0.0182 (2)
N30.78344 (13)0.46815 (13)0.44617 (8)0.0181 (2)
N40.79984 (12)0.39605 (12)0.55284 (7)0.0144 (2)
N50.74880 (12)0.46344 (12)0.65193 (7)0.0165 (2)
N60.91309 (15)0.12338 (14)0.63884 (8)0.0223 (2)
C10.87689 (14)0.23122 (15)0.55029 (9)0.0153 (2)
C20.66745 (14)0.61599 (15)0.65364 (9)0.0169 (2)
C30.61800 (16)0.74455 (16)0.55860 (10)0.0215 (3)
H3A0.72750.79920.53660.026*
H3B0.53970.83910.58250.026*
H3C0.55450.67950.49450.026*
C40.62021 (16)0.66948 (17)0.76627 (10)0.0232 (3)
H4A0.66080.57600.82130.028*
H4B0.48950.68380.76240.028*
H4C0.67940.78370.78910.028*
H6A0.887 (2)0.156 (2)0.7063 (14)0.033 (4)*
H6B0.972 (2)0.025 (2)0.6261 (13)0.037 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0210 (5)0.0176 (5)0.0146 (5)0.0012 (4)0.0026 (4)0.0006 (4)
N20.0214 (5)0.0174 (5)0.0161 (5)0.0008 (4)0.0036 (4)0.0003 (4)
N30.0230 (5)0.0186 (5)0.0133 (4)0.0000 (4)0.0045 (4)0.0006 (4)
N40.0175 (5)0.0144 (5)0.0117 (4)0.0008 (3)0.0030 (3)0.0010 (3)
N50.0192 (5)0.0183 (5)0.0127 (4)0.0001 (4)0.0042 (4)0.0031 (4)
N60.0337 (6)0.0202 (5)0.0137 (5)0.0093 (4)0.0062 (4)0.0008 (4)
C10.0152 (5)0.0167 (5)0.0141 (5)0.0007 (4)0.0026 (4)0.0019 (4)
C20.0151 (5)0.0167 (5)0.0190 (6)0.0019 (4)0.0025 (4)0.0029 (4)
C30.0243 (6)0.0185 (6)0.0220 (6)0.0043 (4)0.0045 (5)0.0002 (5)
C40.0261 (6)0.0244 (6)0.0196 (6)0.0046 (5)0.0043 (5)0.0055 (5)
Geometric parameters (Å, º) top
N1—C11.3326 (14)N6—H6B0.878 (17)
N1—N21.3678 (13)C2—C41.4924 (16)
N2—N31.2870 (13)C2—C31.4977 (16)
N3—N41.3784 (13)C3—H3A0.9800
N4—C11.3549 (14)C3—H3B0.9800
N4—N51.3866 (12)C3—H3C0.9800
N5—C21.2873 (15)C4—H4A0.9800
N6—C11.3309 (14)C4—H4B0.9800
N6—H6A0.891 (17)C4—H4C0.9800
C1—N1—N2105.52 (9)N5—C2—C3128.40 (10)
N3—N2—N1112.53 (9)C4—C2—C3117.11 (10)
N2—N3—N4105.28 (9)C2—C3—H3A109.5
C1—N4—N3108.59 (9)C2—C3—H3B109.5
C1—N4—N5120.58 (9)H3A—C3—H3B109.5
N3—N4—N5130.82 (9)C2—C3—H3C109.5
C2—N5—N4120.83 (9)H3A—C3—H3C109.5
C1—N6—H6A121.1 (10)H3B—C3—H3C109.5
C1—N6—H6B114.8 (10)C2—C4—H4A109.5
H6A—N6—H6B123.9 (14)C2—C4—H4B109.5
N6—C1—N1127.15 (11)H4A—C4—H4B109.5
N6—C1—N4124.77 (10)C2—C4—H4C109.5
N1—C1—N4108.08 (9)H4A—C4—H4C109.5
N5—C2—C4114.48 (10)H4B—C4—H4C109.5
C1—N1—N2—N30.23 (12)N2—N1—C1—N40.45 (11)
N1—N2—N3—N40.08 (12)N3—N4—C1—N6179.91 (10)
N2—N3—N4—C10.37 (11)N5—N4—C1—N61.31 (16)
N2—N3—N4—N5178.25 (10)N3—N4—C1—N10.52 (12)
C1—N4—N5—C2176.51 (10)N5—N4—C1—N1178.26 (9)
N3—N4—N5—C21.97 (17)N4—N5—C2—C4179.59 (9)
N2—N1—C1—N6179.99 (11)N4—N5—C2—C31.35 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···N2i0.890 (16)2.200 (17)3.0600 (16)162.6 (13)
N6—H6B···N1ii0.876 (15)2.118 (15)2.9770 (16)166.4 (14)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC4H8N6
Mr140.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)93
a, b, c (Å)7.488 (2), 7.4238 (19), 11.997 (3)
β (°) 97.145 (3)
V3)661.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.43 × 0.43 × 0.33
Data collection
DiffractometerRigaku Saturn724+
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5172, 1520, 1334
Rint0.024
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.088, 1.00
No. of reflections1520
No. of parameters101
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.17

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···N2i0.890 (16)2.200 (17)3.0600 (16)162.6 (13)
N6—H6B···N1ii0.876 (15)2.118 (15)2.9770 (16)166.4 (14)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+2, y, z+1.
 

Acknowledgements

This work was supported financially by the State Key Laboratory of Explosion Science and Technology in Beijing Institute of Technology, China (No. ZDKT08–01).

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGalvez-Ruiz, J. C., Holl, G., Karaghiosoff, K., Klapotke, T. M., Lohnwitz, K., Mayer, P., Noth, H., Polborn, K., Rohbogner, C. J., Suter, M. & Weigand, J. J. (2005). Inorg. Chem. 44, 4237–4253.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGaponnik, P. N. & Karavai, V. P. (1984). Khim. Geterotsikl. Soedin. 12, 1683–1686.  Google Scholar
First citationJoo, Y.-H., Twamley, B., Garg, S. & Shreeve, J. M. (2008). Angew. Chem. Int. Ed. 47, 6236–6239.  Web of Science CSD CrossRef CAS Google Scholar
First citationLyakhov, A. S., Voitekhovich, S. V., Ivashkevich, L. S. & Gaponik, P. N. (2005). Acta Cryst. E61, o3645–o3647.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds