metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages m735-m736

Di­aqua­bis­(1,3-propane­di­amine)nickel(II) squarate tetrahydrate

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, TR-55139, Samsun, Turkey, and bDepartment of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, TR-26480, Eskişehir, Turkey
*Correspondence e-mail: orhanb@omu.edu.tr

(Received 28 May 2009; accepted 2 June 2009; online 6 June 2009)

The asymmetric unit of the title compound, [Ni(C3H10N2)2(H2O)2](C4O4)·4H2O, contains one-half of the diaqua­bis(1,3-propane­diamine)nickel(II) cation, one-half of the centrosymmetric squarate anion and two uncoordinated water mol­ecules. In the cation, the NiII atom is located on a crystallographic inversion centre and has a slightly distorted octa­hedral coordination geometry. The six-membered chelate ring adopts a chair conformation. O—H⋯O hydrogen bonds link the cation and anion through the water mol­ecule, while N—H⋯O hydrogen bonds link the cation and anion and cation and water mol­ecules. In the crystal structure, inter­molecular O—H⋯O and N—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network structure.

Related literature

For general background, see: Bertolasi et al. (2001[Bertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (2001). Acta Cryst. B57, 591-598.]); Gollogly & Hawkins (1972[Gollogly, J. R. & Hawkins, C. J. (1972). Inorg. Chem. 11, 156-161.]); Lam & Mak (2000[Lam, C. K. & Mak, T. C. W. (2000). Tetrahedron, 56, 6657-6665.]); Liebeskind et al. (1993[Liebeskind, L. S., Yu, M. S., Yu, R. H., Wang, J. & Hagen, K. S. (1993). J. Am. Chem. Soc. 115, 9048-9050.]); Mathew et al. (2002[Mathew, S., Paul, G., Shivasankar, K., Choudhury, A. & Rao, C. N. R. (2002). J. Mol. Struct. 641, 263-279.]); Reetz et al. (1994[Reetz, M. T., Hoger, S. & Harms, K. (1994). Angew. Chem. Int. Ed. Engl. 33, 181-183.]); Seitz & Imming (1992[Seitz, G. & Imming, P. (1992). Chem. Rev. 92, 1227-1260.]); Zaman et al. (2001[Zaman, M. B., Tomura, M. & Yamashita, Y. (2001). Acta Cryst. C57, 621-624.]). For related structures, see: Ghosh et al. (1997[Ghosh, S., Mukherjee, M., Mukherjee, A. K. & Ray Chaudhuri, N. (1997). Acta Cryst. C53, 1561-1564.]); Mukherjee et al. (1990[Mukherjee, A. K., Mukherjee, M., Ray, S., Ghosh, A. & Chaudhuri, N. R. (1990). J. Chem. Soc. Dalton Trans. pp. 2347-2350.]); Pariya et al. (1995[Pariya, C., Ghosh, S., Ghosh, A., Mukherjee, M., Mukherjee, A. K. & Chaudhuri, N. R. (1995). J. Chem. Soc. Dalton Trans. pp. 337-342.]). For ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C3H10N2)2(H2O)2](C4O4)·4H2O

  • Mr = 427.09

  • Monoclinic, P 21 /c

  • a = 8.0429 (4) Å

  • b = 9.1752 (5) Å

  • c = 14.6510 (8) Å

  • β = 117.570 (4)°

  • V = 958.40 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.06 mm−1

  • T = 296 K

  • 0.75 × 0.45 × 0.05 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.638, Tmax = 0.949

  • 7288 measured reflections

  • 2204 independent reflections

  • 2003 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.054

  • S = 1.06

  • 2204 reflections

  • 139 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Selected geometric parameters (Å, °)

O1—Ni1 2.1429 (9)
N1—Ni1 2.1090 (10)
N2—Ni1 2.0997 (10)
N1—Ni1—O1 88.86 (4)
N2—Ni1—O1 91.46 (4)
N2—Ni1—N1 91.94 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O5i 0.90 2.35 3.1715 (16) 152
N2—H2A⋯O2ii 0.90 2.33 3.2174 (14) 170
O1—H1F⋯O2iii 0.77 (2) 2.08 (2) 2.8345 (15) 165 (2)
O4—H4A⋯O2iii 0.80 (2) 2.10 (2) 2.8765 (16) 165 (2)
O4—H4B⋯O2iv 0.82 (3) 2.07 (3) 2.8965 (16) 178 (2)
O5—H5B⋯O4v 0.77 (2) 2.10 (3) 2.8730 (19) 177 (2)
N1—H1A⋯O4 0.90 2.38 3.2442 (17) 160
N2—H2B⋯O3 0.90 2.04 2.9333 (14) 174
O1—H1E⋯O5 0.80 (2) 1.93 (2) 2.7311 (16) 175.8 (19)
O5—H5A⋯O3 0.80 (2) 1.94 (2) 2.7296 (16) 166 (2)
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+2, -z+1; (iii) x, y-1, z; (iv) -x+1, -y+1, -z+1; (v) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The conformation of six-membered rings arranged by the bidentate coordination of pen (1,3-propanediamine) to transition metals has long been of theoretical interest (Gollogly & Hawkins, 1972). Despite this interest, only a limited number of such complexes have been structurally described. Because of their ability to undergo solid-state phase transitions, some nickel(II) complexes of bis(N-substituted-pen) have been studied in recent times (Mukherjee et al., 1990; Pariya et al., 1995; Ghosh et al., 1997).

Squaric acid (H2C4O4) has been of much interest because of its cyclic structure and possible aromaticity. Recently, considerable progress has been made in the crystal engineering of multidimensional arrays and networks containing metal ions as nodes. Squaric acid is a useful tool for constructing crystalline architectures, due to its rigid, planar four membered ring skeleton, and its proton donating and accepting capabilities for hydrogen bonding (Bertolasi et al., 2001; Reetz et al., 1994; Lam & Mak, 2000; Zaman et al., 2001; Mathew et al., 2002). In addition, squaric acid has been studied for potetial application in xerographic photoreceptors, organic solar cells and optical recording (Liebeskind et al., 1993; Seitz & Imming, 1992).

The asymmetric unit of the title compound contains one centrosymmetric cation, where NiII is located on a crystallographic inversion centre, one centrosymmetric anion and two uncoordinated water molecules (Fig.1 ), in which the bond lengths (Allen et al., 1987) and angles are within normal ranges. In cation, the NiII is hexacoordinated by two O atoms of two water molecules in a trans order and by four N atoms of two pen ligands at the equatorial positions (Table 1). It is suggested that the trans geometry is preferred, when the amine ligand is more bulky. Thus, the coordination environment of NiII is a slightly distorted octahedral. Intramolecular O-H···O hydrogen bonds (Table 2) link the cation and anion through the water molecule, while intramolecular N-H···O hydrogen bonds (Table 2) link the cation and anion and cation and water molecule. The six-membered chelate ring (Ni1/N1/N2/C1-C3) is not planar, having total puckering amplitude, QT, of 0.765 (3) Å and chair conformation [ϕ = 166.25 (3) and θ = 40.42 (3) °] (Cremer & Pople, 1975).

In the crystal structure, intermolecular O-H···O and N-H···O hydrogen bonds (Table 2) link the molecules into chains (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For general background, see: Bertolasi et al. (2001); Gollogly & Hawkins (1972); Lam & Mak (2000); Liebeskind et al. (1993); Mathew et al. (2002); Reetz et al. (1994); Seitz & Imming (1992); Zaman et al. (2001). For related structures, see: Ghosh et al. (1997); Mukherjee et al. (1990); Pariya et al. (1995). For ring-puckering parameters, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, a solution of squaric acid (0.57 g, 5 mmol) in water (25 ml) was neutralized with sodium hydroxide (0.40 g, 10 mmol) and added dropwise with stirring to a solution of Ni(CH3COO)2.4(H2O) (1.24 g, 5 mmol) in water (25 ml) at 323 K. The solution immediately became suspension and was stirred for 2 h. Then, 1,3-propandiamine (0.74 g, 10 mmol) in methanol (10 ml) was added dropwise to the obtained suspension. The clear solution was stirred for 2 h, and then cooled to room temperature. The crystals formed were filtered and washed with water (10 ml) and methanol (1:1), then dried in air. Anal. Calcd. : C 28.12, H 7.55, N 13.12%; Found C 28.06, H 7.61, N 13.18%.

Refinement top

Atoms H1E, H1F, H4A, H4B, H5A and H5B (for H2O) were located in difference syntheses and refined isotropically. The remaining H atoms were positioned geometrically with N-H = 0.90 Å (for NH2) and C-H = 0.97 Å (for CH2) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability [symmetry code: (i) 1 - x, 1 - y, 1 - z.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity [symmetry code: (i) 1 - x, 1 - y, 1 - z].
Diaquabis(1,3-propanediamine)nickel(II) squarate tetrahydrate top
Crystal data top
[Ni(C3H10N2)2(H2O)2](C4O4)·4H2OF(000) = 456.0
Mr = 427.09Dx = 1.480 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2204 reflections
a = 8.0429 (4) Åθ = 2.2–28.0°
b = 9.1752 (5) ŵ = 1.06 mm1
c = 14.6510 (8) ÅT = 296 K
β = 117.570 (4)°Plate, violet
V = 958.40 (9) Å30.75 × 0.45 × 0.05 mm
Z = 2
Data collection top
Stoe IPDS II
diffractometer
2204 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2003 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.020
Detector resolution: 6.67 pixels mm-1θmax = 27.5°, θmin = 2.7°
w–scan rotation methodh = 1010
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1111
Tmin = 0.638, Tmax = 0.949l = 1917
7288 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0282P)2 + 0.2118P]
where P = (Fo2 + 2Fc2)/3
2204 reflections(Δ/σ)max < 0.001
139 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
[Ni(C3H10N2)2(H2O)2](C4O4)·4H2OV = 958.40 (9) Å3
Mr = 427.09Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.0429 (4) ŵ = 1.06 mm1
b = 9.1752 (5) ÅT = 296 K
c = 14.6510 (8) Å0.75 × 0.45 × 0.05 mm
β = 117.570 (4)°
Data collection top
Stoe IPDS II
diffractometer
2204 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2003 reflections with I > 2σ(I)
Tmin = 0.638, Tmax = 0.949Rint = 0.020
7288 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.054H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.29 e Å3
2204 reflectionsΔρmin = 0.17 e Å3
139 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.50000.50000.02232 (7)
O10.64732 (15)0.39000 (12)0.43015 (8)0.0383 (2)
H1E0.713 (3)0.432 (2)0.4113 (14)0.051 (5)*
H1F0.692 (3)0.315 (3)0.4515 (15)0.063 (6)*
O20.73874 (13)1.09844 (11)0.49933 (8)0.0414 (2)
O30.86500 (14)0.77497 (10)0.46843 (9)0.0434 (2)
O40.34274 (18)0.07964 (14)0.36302 (9)0.0489 (3)
H4A0.455 (3)0.082 (2)0.3910 (16)0.067 (6)*
H4B0.317 (3)0.029 (3)0.401 (2)0.075 (7)*
O50.85562 (18)0.53525 (13)0.35580 (11)0.0462 (3)
H5A0.871 (3)0.611 (3)0.3859 (17)0.066 (6)*
H5B0.803 (3)0.550 (3)0.2975 (19)0.072 (8)*
N10.24635 (14)0.41813 (12)0.38210 (8)0.0317 (2)
H1A0.25480.32030.38450.038*
H1B0.15470.44210.39830.038*
N20.47942 (14)0.69084 (11)0.41632 (8)0.0294 (2)
H2A0.42360.75880.43720.035*
H2B0.59700.72210.43550.035*
C10.1833 (2)0.46195 (17)0.27461 (10)0.0423 (3)
H1C0.05680.42630.23260.051*
H1D0.26400.41730.24970.051*
C20.1860 (2)0.62587 (16)0.26262 (11)0.0438 (3)
H2C0.11440.65020.19020.053*
H2D0.12420.67100.29870.053*
C30.3806 (2)0.68931 (16)0.30294 (10)0.0406 (3)
H3A0.45200.63200.27760.049*
H3B0.37180.78800.27740.049*
C40.88219 (16)1.04411 (13)0.49952 (9)0.0269 (2)
C50.93844 (16)0.89777 (13)0.48539 (9)0.0271 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02176 (11)0.02133 (11)0.02386 (11)0.00055 (7)0.01055 (8)0.00121 (7)
O10.0460 (6)0.0308 (5)0.0522 (6)0.0070 (4)0.0346 (5)0.0041 (4)
O20.0319 (5)0.0362 (5)0.0643 (7)0.0049 (4)0.0291 (5)0.0006 (5)
O30.0453 (5)0.0286 (5)0.0636 (7)0.0116 (4)0.0314 (5)0.0089 (4)
O40.0416 (6)0.0539 (7)0.0491 (6)0.0045 (5)0.0191 (5)0.0039 (5)
O50.0530 (7)0.0407 (6)0.0538 (7)0.0009 (5)0.0321 (6)0.0024 (5)
N10.0279 (5)0.0315 (5)0.0311 (5)0.0026 (4)0.0097 (4)0.0008 (4)
N20.0309 (5)0.0258 (5)0.0317 (5)0.0005 (4)0.0147 (4)0.0031 (4)
C10.0455 (8)0.0434 (7)0.0282 (6)0.0033 (6)0.0089 (6)0.0053 (5)
C20.0453 (8)0.0452 (8)0.0278 (6)0.0055 (6)0.0058 (6)0.0062 (6)
C30.0517 (8)0.0407 (7)0.0322 (6)0.0026 (6)0.0219 (6)0.0086 (5)
C40.0251 (5)0.0269 (5)0.0296 (6)0.0008 (4)0.0134 (4)0.0015 (4)
C50.0269 (5)0.0263 (5)0.0290 (6)0.0021 (4)0.0138 (4)0.0006 (4)
Geometric parameters (Å, º) top
Ni1—O1i2.1429 (9)C1—N11.4695 (17)
Ni1—N1i2.1090 (10)C1—C21.516 (2)
Ni1—N2i2.0997 (10)C1—H1C0.9700
O1—Ni12.1429 (9)C1—H1D0.9700
O1—H1E0.80 (2)C2—C31.511 (2)
O1—H1F0.77 (2)C2—H2C0.9700
O4—H4A0.80 (2)C2—H2D0.9700
O4—H4B0.82 (3)C3—N21.4728 (16)
O5—H5A0.80 (2)C3—H3A0.9700
O5—H5B0.77 (2)C3—H3B0.9700
N1—Ni12.1090 (10)C4—O21.2557 (15)
N1—H1A0.9000C4—C5ii1.4557 (16)
N1—H1B0.9000C4—C51.4619 (17)
N2—Ni12.0997 (10)C5—O31.2427 (15)
N2—H2A0.9000C5—C4ii1.4557 (16)
N2—H2B0.9000
O1—Ni1—O1i180.00 (5)C3—N2—Ni1120.41 (8)
N1i—Ni1—N1180.0C3—N2—H2A107.2
N1i—Ni1—O191.14 (4)C3—N2—H2B107.2
N1—Ni1—O188.86 (4)H2A—N2—H2B106.9
N1i—Ni1—O1i88.86 (4)N1—C1—C2112.30 (11)
N1—Ni1—O1i91.14 (4)N1—C1—H1C109.1
N2i—Ni1—O188.54 (4)C2—C1—H1C109.1
N2—Ni1—O191.46 (4)N1—C1—H1D109.1
N2i—Ni1—O1i91.46 (4)C2—C1—H1D109.1
N2—Ni1—O1i88.54 (4)H1C—C1—H1D107.9
N2i—Ni1—N2180.0C3—C2—C1113.88 (12)
N2i—Ni1—N1i91.94 (4)C3—C2—H2C108.8
N2—Ni1—N1i88.06 (4)C1—C2—H2C108.8
N2i—Ni1—N188.06 (4)C3—C2—H2D108.8
N2—Ni1—N191.94 (4)C1—C2—H2D108.8
Ni1—O1—H1E122.4 (14)H2C—C2—H2D107.7
Ni1—O1—H1F118.8 (15)N2—C3—C2111.42 (11)
H1E—O1—H1F108.4 (19)N2—C3—H3A109.3
H4A—O4—H4B104 (2)C2—C3—H3A109.3
H5A—O5—H5B109 (2)N2—C3—H3B109.3
Ni1—N1—H1A107.3C2—C3—H3B109.3
Ni1—N1—H1B107.3H3A—C3—H3B108.0
C1—N1—Ni1120.23 (9)O2—C4—C5ii134.42 (12)
C1—N1—H1A107.3O2—C4—C5135.11 (12)
C1—N1—H1B107.3C5ii—C4—C590.46 (9)
H1A—N1—H1B106.9O3—C5—C4ii135.11 (12)
Ni1—N2—H2A107.2O3—C5—C4135.35 (12)
Ni1—N2—H2B107.2C4ii—C5—C489.54 (9)
C1—N1—Ni1—O163.90 (10)N1—C1—C2—C372.93 (17)
C1—N1—Ni1—O1i116.10 (10)C1—C2—C3—N273.63 (16)
C1—N1—Ni1—N2i152.47 (10)C2—C3—N2—Ni152.35 (14)
C1—N1—Ni1—N227.53 (10)O2—C4—C5—O30.2 (3)
C3—N2—Ni1—O160.31 (10)C5ii—C4—C5—O3179.50 (19)
C3—N2—Ni1—O1i119.69 (10)O2—C4—C5—C4ii179.72 (18)
C2—C1—N1—Ni150.38 (16)C5ii—C4—C5—C4ii0.0
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O5iii0.902.353.1715 (16)152
N2—H2A···O2iv0.902.333.2174 (14)170
O1—H1F···O2v0.77 (2)2.08 (2)2.8345 (15)165 (2)
O4—H4A···O2v0.80 (2)2.10 (2)2.8765 (16)165 (2)
O4—H4B···O2i0.82 (3)2.07 (3)2.8965 (16)178 (2)
O5—H5B···O4vi0.77 (2)2.10 (3)2.8730 (19)177 (2)
N1—H1A···O40.902.383.2442 (17)160
N2—H2B···O30.902.042.9333 (14)174
O1—H1E···O50.80 (2)1.93 (2)2.7311 (16)175.8 (19)
O5—H5A···O30.80 (2)1.94 (2)2.7296 (16)166 (2)
Symmetry codes: (i) x+1, y+1, z+1; (iii) x1, y, z; (iv) x+1, y+2, z+1; (v) x, y1, z; (vi) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C3H10N2)2(H2O)2](C4O4)·4H2O
Mr427.09
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.0429 (4), 9.1752 (5), 14.6510 (8)
β (°) 117.570 (4)
V3)958.40 (9)
Z2
Radiation typeMo Kα
µ (mm1)1.06
Crystal size (mm)0.75 × 0.45 × 0.05
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.638, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
7288, 2204, 2003
Rint0.020
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.054, 1.06
No. of reflections2204
No. of parameters139
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.17

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
O1—Ni12.1429 (9)N2—Ni12.0997 (10)
N1—Ni12.1090 (10)
N1—Ni1—O188.86 (4)N2—Ni1—N191.94 (4)
N2—Ni1—O191.46 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O5i0.902.353.1715 (16)151.9
N2—H2A···O2ii0.902.333.2174 (14)170.4
O1—H1F···O2iii0.77 (2)2.08 (2)2.8345 (15)165 (2)
O4—H4A···O2iii0.80 (2)2.10 (2)2.8765 (16)165 (2)
O4—H4B···O2iv0.82 (3)2.07 (3)2.8965 (16)178 (2)
O5—H5B···O4v0.77 (2)2.10 (3)2.8730 (19)177 (2)
N1—H1A···O40.902.383.2442 (17)160.2
N2—H2B···O30.902.042.9333 (14)173.5
O1—H1E···O50.80 (2)1.93 (2)2.7311 (16)175.8 (19)
O5—H5A···O30.80 (2)1.94 (2)2.7296 (16)166 (2)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+2, z+1; (iii) x, y1, z; (iv) x+1, y+1, z+1; (v) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences of Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant No. F279 of the University Research Grant of Ondokuz Mayıs University).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (2001). Acta Cryst. B57, 591–598.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGhosh, S., Mukherjee, M., Mukherjee, A. K. & Ray Chaudhuri, N. (1997). Acta Cryst. C53, 1561–1564.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGollogly, J. R. & Hawkins, C. J. (1972). Inorg. Chem. 11, 156–161.  CrossRef CAS Web of Science Google Scholar
First citationLam, C. K. & Mak, T. C. W. (2000). Tetrahedron, 56, 6657–6665.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiebeskind, L. S., Yu, M. S., Yu, R. H., Wang, J. & Hagen, K. S. (1993). J. Am. Chem. Soc. 115, 9048–9050.  CSD CrossRef CAS Web of Science Google Scholar
First citationMathew, S., Paul, G., Shivasankar, K., Choudhury, A. & Rao, C. N. R. (2002). J. Mol. Struct. 641, 263–279.  Web of Science CSD CrossRef CAS Google Scholar
First citationMukherjee, A. K., Mukherjee, M., Ray, S., Ghosh, A. & Chaudhuri, N. R. (1990). J. Chem. Soc. Dalton Trans. pp. 2347–2350.  CSD CrossRef Web of Science Google Scholar
First citationPariya, C., Ghosh, S., Ghosh, A., Mukherjee, M., Mukherjee, A. K. & Chaudhuri, N. R. (1995). J. Chem. Soc. Dalton Trans. pp. 337–342.  CSD CrossRef Web of Science Google Scholar
First citationReetz, M. T., Hoger, S. & Harms, K. (1994). Angew. Chem. Int. Ed. Engl. 33, 181–183.  CSD CrossRef Web of Science Google Scholar
First citationSeitz, G. & Imming, P. (1992). Chem. Rev. 92, 1227–1260.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationZaman, M. B., Tomura, M. & Yamashita, Y. (2001). Acta Cryst. C57, 621–624.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages m735-m736
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds