organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages o1364-o1365

{2-Hydr­­oxy-3-[4-(2-meth­oxy­ethyl)­phen­­oxy]prop­yl}iso­propyl­ammonium hemisuccinate

aDipartimento di Scienze Farmaceutiche, Universitá di Firenze, Via U. Schiff 6, I-50019 Sesto Fiorentino, Firenze, Italy, and bDipartimento di Chimica, Universitá di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Firenze, Italy
*Correspondence e-mail: massimo.divaira@unifi.it

(Received 11 May 2009; accepted 16 May 2009; online 23 May 2009)

Metoprolol, a widely used adrenoreceptor blocking drug, is commonly administered as the succinate or tartrate salt. The structure of metoprolol succinate, C15H26NO3+·0.5C4H4O42−, is characterized by the presence of ribbons in which cations, generated by N-protonation of the metoprolol mol­ecules, are hydrogen bonded to succinate anions. The dicarboxylic acid transfers its H atoms to two metoprolol mol­ecules; the asymmetric unit contains one cation and half an anion, the latter possessing twofold rotational symmetry. There are localized nets of O—H⋯O and N—H⋯O hydrogen bonds along a ribbon, within centrosymmetric arrangements formed by pairs of metoprolol cations and pairs of anions, each of the latter contributing with one of its carboxyl groups to the localized net. This arrangement is repeated along the ribbon by the operation of the twofold axis bis­ecting the anion, as well as by the lattice translation.

Related literature

For general information on the medical applications of metoprolol, see: Benfield et al. (1986[Benfield, P., Clissold, S. P. & Brogden, R. N. (1986). Drugs, 31, 376-429.]); Moses & Borer (1981[Moses, J. W. & Borer, J. S. (1981). Dis. Mon. 27, 1-61.]); Brogden et al. (1977[Brogden, R. N., Heel, R. C., Speight, T. M. & Avery, G. S. (1977). Drugs, 14, 321-348.]); Hainer & Sugg (2007[Hainer, J. W. & Sugg, J. (2007). Vasc. Heal. Risk Manag. 3, 279-288.]); Ragnarsson et al. (1987[Ragnarsson, G., Sandberg, A., Jonsson, U. E. & Sjoegren, J. (1987). Drug Dev. Ind. Pharm. 13 1495-1509.]); Sandberg et al. (1988[Sandberg, A., Blomqvist, I., Jonsson, U. E. & Lundborg, P. (1988). Eur. J. Clin. Pharmacol. 33, S9-14.]).

[Scheme 1]

Experimental

Crystal data
  • C15H26NO3+·0.5C4H4O42−

  • Mr = 326.40

  • Monoclinic, C 2/c

  • a = 26.2630 (4) Å

  • b = 7.9396 (2) Å

  • c = 17.4629 (4) Å

  • β = 107.348 (2)°

  • V = 3475.68 (13) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.75 mm−1

  • T = 200 K

  • 0.60 × 0.20 × 0.06 mm

Data collection
  • Oxford Diffraction Xcalibur PX Ultra CCD diffractometer

  • Absorption correction: multi-scan (ABSPACK in CrysAlisPro RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlisPro CCD and CrysAlisPro RED (including ABSPACK). Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.732, Tmax = 0.956

  • 22961 measured reflections

  • 3408 independent reflections

  • 3108 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.124

  • S = 1.06

  • 3408 reflections

  • 226 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O4i 0.84 1.88 2.7231 (15) 179
N—H2N⋯O4ii 0.92 1.89 2.7961 (16) 170
N—H1N⋯O5i 0.92 1.85 2.7448 (15) 162
Symmetry codes: (i) [x, -y, z-{\script{1\over 2}}]; (ii) [-x+1, y, -z+{\script{3\over 2}}].

Data collection: CrysAlisPro CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlisPro CCD and CrysAlisPro RED (including ABSPACK). Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlisPro CCD; data reduction: CrysAlisPro RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlisPro CCD and CrysAlisPro RED (including ABSPACK). Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97, WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Metoprolol, (±)-1-isopropylamino-3-[4-(2-methoxy-ethyl)-phenoxy]- propan-2-ol, is a β1-selective adrenoreceptor blocking drug, widely used in the treatments of hypertension, angina pectoris and heart failure (Benfield et al., 1986; Moses & Borer, 1981; Brogden et al., 1977). The active substance is provided as metoprolol succinate or tartrate for oral administration, available as extended–release tablets (Hainer & Sugg, 2007; Ragnarsson et al., 1987; Sandberg et al., 1988). Although this drug has been in use for some time, a solid-state structure determination was not yet available. Suitable crystals were obtained for the succinate of the active substance.

The structure of metoprolol succinate consists of cations formed by the N–protonated metoprolol molecule and of succinate dianions, in 2:1 ratio. The asymmetric unit (Fig. 1) contains one metoprolol cation and the symmetry–independent part of the succinate anion, the whole anion possessing two–fold rotational symmetry. Disorder affecting the positions of the ether oxygen O3 and of the hydroxyl oxygen O2 was accounted for. The hydrogen atoms were included in geometrically generated positions, although most of them, including the two ammonium H atoms, could be clearly identified in difference Fourier maps. Consistent with a complete deprotonation of the dicarboxylic acid, the lengths of the two carboxylate C—O bonds are similar. That formed by the O4 atom, which participates in two hydrogen bonds (see below), being only slightly larger (by 0.026 (2) Å) than the other one. In the structure, there are ribbons of hydrogen–bonded ions parallel to the c axis (Fig. 2), characterized by the presence of centrosymmetric arrangements where pairs of cations interact with pairs of carboxylate groups belonging to distinct anions. Contiguous arrangements of this type are related to each other along the ribbon by the two–fold rotation axis and two of these contiguous arrangements form the repeat motif in the c direction. There are no hydrogen–bond linkages between the ribbons. In detail, the metoprolol cation forms hydrogen bonds to the two O atoms of a carboxylate group through its hydroxyl group (O2···O4i = 2.723 (2) Å, O2—H2O···O4i = 179.4°; symmetry code (i): x, - y, -1/2 + z) and through an ammonium N—H bond (N···O5i = 2.745 (2) Å, N—H1N···O5i = 162.3°). The same metoprolol cation is furthermore linked to the second anion in the centrosymmetric arrangement along the ribbon, via the other N—H bond (N···O4ii = 2.796 (2) Å, N—H2N···O4ii = 169.7°; symmetry code (ii): 1 - x, y, 3/2 - z). In this way, each metoprolol cation forms hydrogen bonds to two anions and each succinate anion accepts hydrogen bonds from four cations, through its two carboxylate groups. No carbon atom of the phenyl group deviates by more than 0.005 (1) Å from the best plane through the ring and the O1 and C13 atoms deviate respectively by 0.014 (2) Å and 0.009 (2) Å from it. The dihedral angle between the planes through the two parts of the anion, namely atoms O4, O5, C16 and C17 and the symmetry–related ones, is 82.67 (5)° and the torsion angle through the carbon–atoms backbone of the succinate anion is 179.0 (2)°.

Related literature top

For general information on the medical applications of metoprolol, see: Benfield et al. (1986); Moses & Borer (1981); Brogden et al. (1977); Hainer & Sugg (2007); Ragnarsson et al. (1987); Sandberg et al. (1988).

Experimental top

Samples of metoprolol succinate were kindly provided by SIMS (SIMS srl, Reggello Firenze, Italy). Crystals of the compound, suitable for X-ray diffraction analysis, were obtained by slow evaporation from 3:1 methanol:octanol solutions.

Refinement top

Hydrogen atoms were in geometrically generated positions, riding, and the constraint U(H) = 1.2Ueq(C,N) was applied on the hydrogen temperature factors [U(H) = 1.5Ueq(C,O) for the H atoms of the methyl and hydroxyl groups]. It appears that a 2.03 Å H···H contact involving the H2' hydrogen of the disordered hydroxyl group, belonging to the fraction with 0.09 occupancy, whose position was (necessarily) geometrically generated, may be ignored, considering that it would be easily released if the hydroxyl O—H bond were allowed to rotate.

A small number (12) of restraints were employed to ensure that the geometry and displacement parameters of the minor-component disordered atoms maintained chemically reasonable values.

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2006); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. A view of the two ions in the structure of the title compound. The asymmetric unit comprises one metoprolol cation and a half succinate anion, as the latter lies in a site with two–fold rotational symmetry. Primed atoms are related by the operation 1 - x, y, 3/2 - z. Displacement ellipsoids are drawn at the 30% probability level. Minor component disordered atoms are denoted by labels with the trailing letter a and the bonds to which those atoms participate are denoted by dashed lines. For the methyl and methylene groups affected by disorder only the hydrogen atoms belonging to the major fractions are shown for clarity.
[Figure 2] Fig. 2. A view, approximately along b, of one of the ribbons, parallel to the c axis direction. Hydrogen bonds are denoted by dashed lines. Only the hydrogen atoms involved in the formation of hydrogen bonds and only the major fractions in the parts affected by disorder are shown.
{2-hydroxy-3-[4-(2-methoxyethyl)phenoxy]propyl}isopropylammonium hemisuccinate top
Crystal data top
C15H26NO3+·0.5C4H4O42F(000) = 1416
Mr = 326.40Dx = 1.248 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -C 2ycCell parameters from 14350 reflections
a = 26.2630 (4) Åθ = 5.0–72.4°
b = 7.9396 (2) ŵ = 0.75 mm1
c = 17.4629 (4) ÅT = 200 K
β = 107.348 (2)°Elongated plate, colorless
V = 3475.68 (13) Å30.60 × 0.20 × 0.06 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur PX Ultra CCD
diffractometer
3408 independent reflections
Radiation source: fine-focus sealed tube3108 reflections with I > 2σ(I)
Oxford Diffraction Enhance ULTRA assembly monochromatorRint = 0.028
Detector resolution: 8.1241 pixels mm-1θmax = 72.7°, θmin = 5.3°
ω scansh = 3232
Absorption correction: multi-scan
(ABSPACK in CrysAlis PRO RED; Oxford Diffraction, 2006)
k = 99
Tmin = 0.732, Tmax = 0.956l = 2118
22961 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0619P)2 + 2.6692P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3408 reflectionsΔρmax = 0.21 e Å3
226 parametersΔρmin = 0.19 e Å3
12 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00076 (10)
Crystal data top
C15H26NO3+·0.5C4H4O42V = 3475.68 (13) Å3
Mr = 326.40Z = 8
Monoclinic, C2/cCu Kα radiation
a = 26.2630 (4) ŵ = 0.75 mm1
b = 7.9396 (2) ÅT = 200 K
c = 17.4629 (4) Å0.60 × 0.20 × 0.06 mm
β = 107.348 (2)°
Data collection top
Oxford Diffraction Xcalibur PX Ultra CCD
diffractometer
3408 independent reflections
Absorption correction: multi-scan
(ABSPACK in CrysAlis PRO RED; Oxford Diffraction, 2006)
3108 reflections with I > 2σ(I)
Tmin = 0.732, Tmax = 0.956Rint = 0.028
22961 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04512 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.06Δρmax = 0.21 e Å3
3408 reflectionsΔρmin = 0.19 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.32938 (5)0.08129 (18)0.64968 (8)0.0315 (3)
C20.34141 (5)0.01034 (19)0.72575 (9)0.0349 (3)
H20.37680.02500.75260.042*
C30.30174 (6)0.00870 (19)0.76236 (9)0.0350 (3)
H30.31040.05700.81440.042*
C40.24918 (5)0.04133 (18)0.72460 (8)0.0321 (3)
C50.23807 (6)0.1099 (2)0.64854 (9)0.0357 (3)
H50.20260.14390.62130.043*
C60.27752 (6)0.1304 (2)0.61068 (9)0.0371 (3)
H60.26890.17780.55840.044*
O10.37140 (4)0.09661 (14)0.61815 (6)0.0375 (3)
C70.36075 (6)0.1715 (2)0.54105 (8)0.0370 (3)0.907 (3)
H710.34870.28930.54230.044*0.907 (3)
H720.33250.10810.50120.044*0.907 (3)
C80.41267 (6)0.1664 (2)0.51900 (9)0.0317 (4)0.907 (3)
H80.42590.04770.52190.038*0.907 (3)
O20.39950 (4)0.22479 (17)0.43853 (7)0.0407 (4)0.907 (3)
H2O0.41990.17970.41550.061*0.907 (3)
C90.45477 (6)0.27692 (19)0.57594 (9)0.0349 (3)0.907 (3)
H910.44570.39710.56410.042*0.907 (3)
H920.45530.25460.63200.042*0.907 (3)
C7'0.36075 (6)0.1715 (2)0.54105 (8)0.0370 (3)0.093 (3)
H71'0.34020.27590.54130.044*0.093 (3)
H72'0.33700.09400.50190.044*0.093 (3)
C8'0.4070 (4)0.2166 (17)0.5093 (7)0.0317 (4)0.093 (3)
H8'0.39680.29430.46210.038*0.093 (3)
O2'0.4208 (5)0.0535 (14)0.4903 (7)0.043 (3)*0.093 (3)
H2'0.40390.03110.44240.065*0.093 (3)
C9'0.45477 (6)0.27692 (19)0.57594 (9)0.0349 (3)0.093 (3)
H91'0.45140.40020.58140.042*0.093 (3)
H92'0.45320.22500.62670.042*0.093 (3)
N0.50840 (4)0.24135 (15)0.56677 (7)0.0311 (3)
H1N0.50560.24560.51300.037*
H2N0.51780.13300.58390.037*
C100.55297 (6)0.3574 (2)0.61095 (9)0.0367 (3)
H100.54520.47310.58770.044*
C110.60366 (6)0.2938 (2)0.59633 (10)0.0463 (4)
H1110.61330.18440.62260.069*
H1120.63260.37440.61840.069*
H1130.59790.28150.53850.069*
C120.55708 (7)0.3651 (3)0.69955 (10)0.0487 (4)
H1210.56050.25070.72160.073*
H1220.52490.41810.70610.073*
H1230.58850.43140.72810.073*
C130.20539 (6)0.0195 (2)0.76350 (9)0.0375 (3)
H1310.17260.07380.72910.045*
H1320.19790.10230.76580.045*
C140.21768 (7)0.0914 (2)0.84700 (10)0.0427 (4)0.942 (5)
H1410.24780.03020.88440.051*0.942 (5)
H1420.22730.21200.84720.051*0.942 (5)
O30.17048 (7)0.0715 (2)0.87015 (10)0.0595 (6)0.942 (5)
C150.17273 (11)0.1557 (3)0.94139 (14)0.0731 (7)0.942 (5)
H1510.20060.10530.98590.110*0.942 (5)
H1520.13820.14610.95190.110*0.942 (5)
H1530.18090.27490.93630.110*0.942 (5)
C14'0.21768 (7)0.0914 (2)0.84700 (10)0.0427 (4)0.058 (5)
H1430.25700.08760.86960.051*0.058 (5)
H1440.20800.21220.83980.051*0.058 (5)
O3'0.1975 (8)0.0335 (14)0.9084 (11)0.038 (6)*0.058 (5)
C15'0.17273 (11)0.1557 (3)0.94139 (14)0.0731 (7)0.058 (5)
H1540.14010.10920.94940.110*0.058 (5)
H1550.16360.25250.90500.110*0.058 (5)
H1560.19690.19200.99310.110*0.058 (5)
C160.50084 (5)0.18399 (18)0.86196 (8)0.0307 (3)
C170.52161 (6)0.1855 (2)0.78974 (8)0.0380 (3)
H1710.54450.08540.79230.046*
H1720.54410.28670.79260.046*
O40.46519 (4)0.07642 (13)0.86371 (6)0.0372 (3)
O50.52021 (4)0.28659 (14)0.91717 (6)0.0430 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0271 (6)0.0390 (7)0.0318 (7)0.0020 (5)0.0136 (5)0.0015 (6)
C20.0280 (6)0.0432 (8)0.0338 (7)0.0009 (6)0.0100 (5)0.0023 (6)
C30.0324 (7)0.0431 (8)0.0311 (7)0.0010 (6)0.0117 (5)0.0030 (6)
C40.0303 (7)0.0363 (7)0.0324 (7)0.0022 (5)0.0136 (5)0.0024 (6)
C50.0272 (6)0.0447 (8)0.0361 (7)0.0017 (6)0.0107 (6)0.0013 (6)
C60.0323 (7)0.0487 (9)0.0315 (7)0.0013 (6)0.0115 (6)0.0049 (6)
O10.0293 (5)0.0535 (6)0.0340 (5)0.0016 (4)0.0157 (4)0.0066 (4)
C70.0311 (7)0.0529 (9)0.0300 (7)0.0016 (6)0.0136 (6)0.0029 (6)
C80.0310 (7)0.0402 (11)0.0265 (7)0.0013 (7)0.0125 (6)0.0035 (7)
O20.0367 (6)0.0593 (8)0.0300 (6)0.0071 (5)0.0157 (5)0.0061 (5)
C90.0323 (7)0.0409 (8)0.0359 (8)0.0019 (6)0.0170 (6)0.0016 (6)
C7'0.0311 (7)0.0529 (9)0.0300 (7)0.0016 (6)0.0136 (6)0.0029 (6)
C8'0.0310 (7)0.0402 (11)0.0265 (7)0.0013 (7)0.0125 (6)0.0035 (7)
C9'0.0323 (7)0.0409 (8)0.0359 (8)0.0019 (6)0.0170 (6)0.0016 (6)
N0.0296 (6)0.0377 (6)0.0290 (6)0.0030 (5)0.0132 (5)0.0003 (5)
C100.0352 (7)0.0433 (8)0.0342 (7)0.0086 (6)0.0143 (6)0.0051 (6)
C110.0331 (8)0.0720 (11)0.0372 (8)0.0087 (7)0.0158 (6)0.0074 (8)
C120.0401 (8)0.0724 (12)0.0373 (9)0.0115 (8)0.0169 (7)0.0167 (8)
C130.0323 (7)0.0452 (8)0.0395 (8)0.0027 (6)0.0177 (6)0.0009 (6)
C140.0455 (8)0.0484 (9)0.0421 (8)0.0002 (7)0.0251 (7)0.0009 (7)
O30.0598 (11)0.0758 (10)0.0593 (11)0.0063 (8)0.0428 (9)0.0093 (8)
C150.1075 (18)0.0667 (13)0.0690 (14)0.0119 (13)0.0630 (14)0.0016 (11)
C14'0.0455 (8)0.0484 (9)0.0421 (8)0.0002 (7)0.0251 (7)0.0009 (7)
C15'0.1075 (18)0.0667 (13)0.0690 (14)0.0119 (13)0.0630 (14)0.0016 (11)
C160.0314 (7)0.0360 (7)0.0260 (7)0.0034 (5)0.0106 (5)0.0038 (5)
C170.0337 (7)0.0535 (9)0.0303 (7)0.0025 (6)0.0150 (6)0.0017 (6)
O40.0383 (5)0.0404 (6)0.0370 (6)0.0025 (4)0.0173 (4)0.0002 (4)
O50.0512 (6)0.0502 (7)0.0313 (5)0.0110 (5)0.0179 (5)0.0078 (5)
Geometric parameters (Å, º) top
C1—O11.3778 (16)N—H1N0.9200
C1—C61.385 (2)N—H2N0.9200
C1—C21.390 (2)C10—C111.515 (2)
C2—C31.3834 (19)C10—C121.520 (2)
C2—H20.9500C10—H101.0000
C3—C41.398 (2)C11—H1110.9800
C3—H30.9500C11—H1120.9800
C4—C51.384 (2)C11—H1130.9800
C4—C131.5099 (18)C12—H1210.9800
C5—C61.395 (2)C12—H1220.9800
C5—H50.9500C12—H1230.9800
C6—H60.9500C13—C141.509 (2)
O1—C71.4214 (17)C13—H1310.9900
C7—C81.5241 (19)C13—H1320.9900
C7—H710.9900C14—O31.4228 (19)
C7—H720.9900C14—H1410.9900
C8—O21.4210 (19)C14—H1420.9900
C8—C91.525 (2)O3—C151.398 (2)
C8—H81.0000C15—H1510.9800
O2—H2O0.8400C15—H1520.9800
C9—N1.4913 (17)C15—H1530.9800
C9—H910.9900C16—O51.2487 (17)
C9—H920.9900C16—O41.2744 (17)
C8'—O2'1.410 (9)C16—C171.5161 (18)
C8'—H8'1.0000C17—C17i1.508 (3)
O2'—H2'0.8400C17—H1710.9900
N—C101.5086 (18)C17—H1720.9900
O1—C1—C6124.49 (13)C10—N—H2N108.2
O1—C1—C2115.91 (12)H1N—N—H2N107.4
C6—C1—C2119.60 (12)N—C10—C11107.28 (12)
C3—C2—C1119.88 (13)N—C10—C12110.72 (12)
C3—C2—H2120.1C11—C10—C12112.69 (13)
C1—C2—H2120.1N—C10—H10108.7
C2—C3—C4121.64 (13)C11—C10—H10108.7
C2—C3—H3119.2C12—C10—H10108.7
C4—C3—H3119.2C10—C11—H111109.5
C5—C4—C3117.41 (12)C10—C11—H112109.5
C5—C4—C13120.40 (13)H111—C11—H112109.5
C3—C4—C13122.18 (13)C10—C11—H113109.5
C4—C5—C6121.80 (13)H111—C11—H113109.5
C4—C5—H5119.1H112—C11—H113109.5
C6—C5—H5119.1C10—C12—H121109.5
C1—C6—C5119.66 (13)C10—C12—H122109.5
C1—C6—H6120.2H121—C12—H122109.5
C5—C6—H6120.2C10—C12—H123109.5
C1—O1—C7117.42 (10)H121—C12—H123109.5
O1—C7—C8106.85 (12)H122—C12—H123109.5
O1—C7—H71110.4C14—C13—C4114.78 (12)
C8—C7—H71110.4C14—C13—H131108.6
O1—C7—H72110.4C4—C13—H131108.6
C8—C7—H72110.4C14—C13—H132108.6
H71—C7—H72108.6C4—C13—H132108.6
O2—C8—C7105.59 (12)H131—C13—H132107.5
O2—C8—C9111.85 (13)O3—C14—C13106.20 (14)
C7—C8—C9110.43 (12)O3—C14—H141110.5
O2—C8—H8109.6C13—C14—H141110.5
C7—C8—H8109.6O3—C14—H142110.5
C9—C8—H8109.6C13—C14—H142110.5
N—C9—C8110.19 (12)H141—C14—H142108.7
N—C9—H91109.6C15—O3—C14112.98 (17)
C8—C9—H91109.6O5—C16—O4123.48 (12)
N—C9—H92109.6O5—C16—C17118.19 (12)
C8—C9—H92109.6O4—C16—C17118.32 (12)
H91—C9—H92108.1C17i—C17—C16113.99 (15)
O2'—C8'—H8'113.4C17i—C17—H171108.8
C8'—O2'—H2'109.5C16—C17—H171108.8
C9—N—C10116.31 (11)C17i—C17—H172108.8
C9—N—H1N108.2C16—C17—H172108.8
C10—N—H1N108.2H171—C17—H172107.6
C9—N—H2N108.2
O1—C1—C2—C3179.49 (13)O1—C7—C8—O2173.83 (12)
C6—C1—C2—C30.8 (2)O1—C7—C8—C965.09 (17)
C1—C2—C3—C40.2 (2)O2—C8—C9—N75.80 (16)
C2—C3—C4—C50.5 (2)C7—C8—C9—N166.91 (12)
C2—C3—C4—C13179.31 (14)C8—C9—N—C10171.96 (12)
C3—C4—C5—C60.6 (2)C9—N—C10—C11177.49 (12)
C13—C4—C5—C6179.44 (14)C9—N—C10—C1254.15 (17)
O1—C1—C6—C5179.62 (14)C5—C4—C13—C14128.73 (16)
C2—C1—C6—C50.7 (2)C3—C4—C13—C1452.5 (2)
C4—C5—C6—C10.0 (2)C4—C13—C14—O3175.14 (14)
C6—C1—O1—C71.5 (2)C13—C14—O3—C15170.64 (17)
C2—C1—O1—C7178.87 (13)O5—C16—C17—C17i132.10 (11)
C1—O1—C7—C8177.63 (12)O4—C16—C17—C17i49.01 (14)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O4ii0.841.882.7231 (15)179
N—H2N···O4i0.921.892.7961 (16)170
N—H1N···O5ii0.921.852.7448 (15)162
Symmetry codes: (i) x+1, y, z+3/2; (ii) x, y, z1/2.

Experimental details

Crystal data
Chemical formulaC15H26NO3+·0.5C4H4O42
Mr326.40
Crystal system, space groupMonoclinic, C2/c
Temperature (K)200
a, b, c (Å)26.2630 (4), 7.9396 (2), 17.4629 (4)
β (°) 107.348 (2)
V3)3475.68 (13)
Z8
Radiation typeCu Kα
µ (mm1)0.75
Crystal size (mm)0.60 × 0.20 × 0.06
Data collection
DiffractometerOxford Diffraction Xcalibur PX Ultra CCD
diffractometer
Absorption correctionMulti-scan
(ABSPACK in CrysAlis PRO RED; Oxford Diffraction, 2006)
Tmin, Tmax0.732, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
22961, 3408, 3108
Rint0.028
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.124, 1.06
No. of reflections3408
No. of parameters226
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.19

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2006), CrysAlis PRO RED (Oxford Diffraction, 2006), SIR97 (Altomare et al., 1999), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O4i0.841.882.7231 (15)179.4
N—H2N···O4ii0.921.892.7961 (16)169.7
N—H1N···O5i0.921.852.7448 (15)162.3
Symmetry codes: (i) x, y, z1/2; (ii) x+1, y, z+3/2.
 

Acknowledgements

The authors acknowledge financial support from the Italian Ministero dell'Istruzione, dell'Universitá e della Ricerca.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBenfield, P., Clissold, S. P. & Brogden, R. N. (1986). Drugs, 31, 376–429.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBrogden, R. N., Heel, R. C., Speight, T. M. & Avery, G. S. (1977). Drugs, 14, 321–348.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHainer, J. W. & Sugg, J. (2007). Vasc. Heal. Risk Manag. 3, 279–288.  CAS Google Scholar
First citationMoses, J. W. & Borer, J. S. (1981). Dis. Mon. 27, 1–61.  CrossRef CAS PubMed Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlisPro CCD and CrysAlisPro RED (including ABSPACK). Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationRagnarsson, G., Sandberg, A., Jonsson, U. E. & Sjoegren, J. (1987). Drug Dev. Ind. Pharm. 13 1495–1509.  CrossRef CAS Web of Science Google Scholar
First citationSandberg, A., Blomqvist, I., Jonsson, U. E. & Lundborg, P. (1988). Eur. J. Clin. Pharmacol. 33, S9–14.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages o1364-o1365
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds