organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Meth­oxy­phen­yl)-1-phenyl­pyridine-2,6(1H,3H)-dione

aSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India, bF-12, Organic Chemistry Research Laboratory, Ramanujan Ruia College, Matunga (East), Mumbai 400 019, India, and cJai Research Foundation, C-12, Road No. 16, Wagale Industrial Estate, Thane (West) 400 064, India
*Correspondence e-mail: ssctng@sscu.iisc.ernet.in

(Received 13 April 2009; accepted 12 May 2009; online 20 May 2009)

In the title compound, C18H15NO3, the pyridine-2,6-dione ring adopts an envelope conformation. The phenyl ring lies approximately perpendicular to the mean plane of the pyridine-2,6-dione ring [dihedral angle = 81.5 (1)°], while the methoxy­phenyl ring is tilted to the same plane by a dihedral angle of 34.8 (1)°. Inter­molecular C—H⋯O inter­actions link the mol­ecules into chains along [100].

Related literature

For background literature concerning pyridine-2,6-diones, see: Kon & Nanji (1933[Kon, G. A. R. & Nanji, E. R. (1933). J. Chem. Soc. pp. 2426-2433.]). For ring conformation analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C18H15NO3

  • Mr = 293.31

  • Triclinic, [P \overline 1]

  • a = 7.4652 (5) Å

  • b = 9.0885 (7) Å

  • c = 11.1181 (8) Å

  • α = 77.384 (1)°

  • β = 88.747 (2)°

  • γ = 77.493 (1)°

  • V = 718.40 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 292 K

  • 0.52 × 0.41 × 0.32 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.921, Tmax = 0.970

  • 7298 measured reflections

  • 2714 independent reflections

  • 2233 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.105

  • S = 0.91

  • 2714 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.93 2.52 3.4260 (18) 164.00
C17—H17B⋯O1ii 0.96 2.55 3.073 (2) 114.00
Symmetry codes: (i) x-1, y, z; (ii) x, y-1, z+1.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1993[Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound belongs to the pyridine-2,6-dione family (Kon & Nanji, 1933). Pyridine-2,6-diones have a π-conjugated system and an extremely reactive methylene group, which has been exploited to carry out various condensations to form fused ring systems. The Mannich reaction is one of the important processes in medicinal chemistry that introduces an aminomethyl group, which acts as a pharmacophore when introduced into an appropriate substrate, and the title compound has been exploited via this reaction to form a wide array of compounds.

In the crystal structure, the pyridine-2,6-dione ring [N1/C10/C4/C2/C12/C11] adopts an envelope conformation (Cremer & Pople, 1975) with puckering parameters q2 = 0.1394 (15)°, q3 = 0.0581 (15)°, ϕ = 247.1 (6)°, puckering amplitude Q = 0.1510 (16) Å. The phenyl ring is nearly perpendicular to the pyridine-2,6-dione ring (torsion angle C11—N1—C7—C9 = 100.49 °) while the methoxy phenyl ring is tilted to the plane of the heterocyclic ring with a torsion angle C4—C2—C1—C6 = 31.14 °. Within the aryl rings, the C—C bonds are in the range of 1.343 (3) to 1.381 (3) Å, which is in accordance with those found in similar structures. The C—N single bonds (1.388 (3) to 1.448 (3) Å), C—O single bonds (1.365 (3) to 1.426 (3) Å), and C=O double bonds (1.213 (3) to 1.220 (2) Å) are within the usual range. The structure contains intermolecular C—H···O hydrogen bonds (see Table and Figure 2) which link the molecules into chains along the a axis. Alternating C—H···π and π···π interactions are also present (Figure 3).

Related literature top

For background literature concerning pyridine-2,6-diones, see: Kon & Nanji (1933). For details of the conformation of the heterocyclic ring, see: Cremer & Pople (1975).

Experimental top

The title compound was prepared by microwave treatment of 3-(4-methoxyphenyl)-2-pentene-1,5-dioic acid with acetic anhydride to form the corresponding dione, which was then reacted further with aniline to give the resultant compound (yield 96%). 1H NMR (DMSO): δ 6.98 (m, 9H), 3.87 (s, 3H), 3.97(s, 2H), 6.67 (s, 1H).

Refinement top

H atoms were placed geometrically with C—H = 0.93–0.97 Å and refined as riding with Uiso(H) = 1.2 or 1.5 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Packing diagram viewed down the c axis. The dotted lines indicate intermolecular C—H···O interactions. H atoms not involved in these interactions are omitted.
[Figure 3] Fig. 3. Packing diagram viewed down the a axis. The dotted lines indicate intermolecular C—H···π and π···π interactions. H atoms not involved in these interactions are omitted.
4-(4-Methoxyphenyl)-1-phenylpyridine-2,6(1H,3H)-dione top
Crystal data top
C18H15NO3Z = 2
Mr = 293.31F(000) = 308
Triclinic, P1Dx = 1.356 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4652 (5) ÅCell parameters from 2604 reflections
b = 9.0885 (7) Åθ = 2.4–28.0°
c = 11.1181 (8) ŵ = 0.09 mm1
α = 77.384 (1)°T = 292 K
β = 88.747 (2)°Block, colourless
γ = 77.493 (1)°0.52 × 0.41 × 0.32 mm
V = 718.40 (9) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
2714 independent reflections
Radiation source: fine-focus sealed tube2233 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 25.7°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.921, Tmax = 0.970k = 1111
7298 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.2183P]
where P = (Fo2 + 2Fc2)/3
2714 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C18H15NO3γ = 77.493 (1)°
Mr = 293.31V = 718.40 (9) Å3
Triclinic, P1Z = 2
a = 7.4652 (5) ÅMo Kα radiation
b = 9.0885 (7) ŵ = 0.09 mm1
c = 11.1181 (8) ÅT = 292 K
α = 77.384 (1)°0.52 × 0.41 × 0.32 mm
β = 88.747 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2714 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2233 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.970Rint = 0.017
7298 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 0.91Δρmax = 0.15 e Å3
2714 reflectionsΔρmin = 0.17 e Å3
200 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.43237 (14)0.81573 (14)0.09890 (10)0.0584 (4)
O21.00465 (13)0.63224 (13)0.07261 (10)0.0538 (4)
O30.28108 (15)0.25107 (13)0.62184 (10)0.0569 (4)
N10.72144 (15)0.72212 (13)0.01738 (10)0.0388 (4)
C10.49575 (18)0.45771 (15)0.29553 (12)0.0369 (4)
C20.56872 (18)0.54010 (15)0.18235 (12)0.0370 (4)
C30.3591 (2)0.31101 (17)0.51532 (13)0.0418 (5)
C40.46008 (19)0.63892 (17)0.09213 (13)0.0420 (5)
C50.5880 (2)0.31397 (17)0.36111 (13)0.0428 (5)
C60.33201 (19)0.52602 (17)0.34314 (13)0.0432 (5)
C70.79229 (18)0.82360 (16)0.11708 (13)0.0387 (4)
C80.2655 (2)0.45429 (18)0.45097 (14)0.0465 (5)
C90.8359 (2)0.95658 (17)0.09782 (14)0.0462 (5)
C100.53018 (19)0.73075 (16)0.01525 (13)0.0406 (4)
C110.84395 (19)0.62585 (16)0.07338 (13)0.0397 (5)
C120.77132 (19)0.51251 (18)0.16928 (13)0.0446 (5)
C130.5210 (2)0.24011 (17)0.46966 (13)0.0449 (5)
C140.8175 (2)0.78459 (18)0.23010 (14)0.0475 (5)
C150.9349 (2)1.0118 (2)0.30544 (16)0.0576 (6)
C160.8880 (2)0.8799 (2)0.32436 (15)0.0567 (6)
C170.3837 (3)0.1142 (2)0.70023 (15)0.0585 (6)
C180.9086 (2)1.04971 (19)0.19256 (16)0.0541 (6)
H40.333720.649380.098400.0504*
H50.697550.265990.331430.0513*
H60.266740.621960.300980.0518*
H80.156380.502400.481150.0558*
H90.816480.983330.021730.0554*
H12A0.826010.509850.248290.0536*
H12B0.813190.410970.151460.0536*
H130.584540.143390.511530.0539*
H140.787340.694960.242750.0570*
H150.984201.074810.368930.0692*
H160.903960.855010.401260.0680*
H17A0.500780.130920.720800.0878*
H17B0.317680.089070.774300.0878*
H17C0.401470.030500.658330.0878*
H180.940041.138800.179760.0650*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0395 (6)0.0727 (8)0.0496 (6)0.0081 (5)0.0031 (5)0.0114 (6)
O20.0335 (6)0.0649 (7)0.0596 (7)0.0153 (5)0.0013 (5)0.0016 (5)
O30.0537 (7)0.0605 (7)0.0484 (6)0.0121 (5)0.0116 (5)0.0042 (5)
N10.0332 (6)0.0435 (7)0.0380 (6)0.0104 (5)0.0028 (5)0.0035 (5)
C10.0359 (7)0.0391 (7)0.0369 (7)0.0111 (6)0.0015 (6)0.0081 (6)
C20.0363 (7)0.0381 (7)0.0382 (7)0.0104 (6)0.0043 (6)0.0100 (6)
C30.0423 (8)0.0474 (8)0.0372 (8)0.0171 (7)0.0044 (6)0.0056 (6)
C40.0311 (7)0.0512 (9)0.0434 (8)0.0120 (6)0.0038 (6)0.0071 (7)
C50.0380 (8)0.0453 (8)0.0425 (8)0.0055 (6)0.0057 (6)0.0083 (6)
C60.0403 (8)0.0391 (8)0.0454 (8)0.0057 (6)0.0038 (6)0.0022 (6)
C70.0315 (7)0.0421 (8)0.0401 (8)0.0086 (6)0.0009 (6)0.0035 (6)
C80.0379 (8)0.0510 (9)0.0481 (9)0.0074 (7)0.0092 (7)0.0085 (7)
C90.0458 (9)0.0458 (8)0.0470 (9)0.0102 (7)0.0020 (7)0.0096 (7)
C100.0351 (7)0.0454 (8)0.0393 (8)0.0074 (6)0.0007 (6)0.0061 (6)
C110.0345 (8)0.0450 (8)0.0401 (8)0.0086 (6)0.0033 (6)0.0104 (6)
C120.0362 (8)0.0514 (9)0.0414 (8)0.0072 (6)0.0013 (6)0.0021 (7)
C130.0465 (8)0.0407 (8)0.0434 (8)0.0067 (7)0.0006 (7)0.0029 (6)
C140.0451 (9)0.0538 (9)0.0471 (9)0.0167 (7)0.0060 (7)0.0130 (7)
C150.0453 (9)0.0647 (11)0.0555 (10)0.0196 (8)0.0034 (7)0.0099 (8)
C160.0498 (10)0.0783 (12)0.0418 (9)0.0183 (9)0.0090 (7)0.0094 (8)
C170.0640 (11)0.0593 (10)0.0460 (9)0.0164 (9)0.0044 (8)0.0046 (8)
C180.0501 (9)0.0446 (9)0.0655 (11)0.0177 (7)0.0054 (8)0.0006 (8)
Geometric parameters (Å, º) top
O1—C101.2109 (18)C11—C121.493 (2)
O2—C111.2133 (18)C14—C161.379 (2)
O3—C31.3653 (18)C15—C161.378 (2)
O3—C171.427 (2)C15—C181.372 (2)
N1—C71.4485 (18)C4—H40.930
N1—C101.4129 (19)C5—H50.930
N1—C111.3886 (18)C6—H60.930
C1—C21.4751 (19)C8—H80.930
C1—C51.389 (2)C9—H90.930
C1—C61.395 (2)C12—H12A0.970
C2—C41.341 (2)C12—H12B0.970
C2—C121.488 (2)C13—H130.930
C3—C81.384 (2)C14—H140.930
C3—C131.383 (2)C15—H150.930
C4—C101.457 (2)C16—H160.930
C5—C131.387 (2)C17—H17A0.960
C6—C81.372 (2)C17—H17B0.960
C7—C91.378 (2)C17—H17C0.960
C7—C141.377 (2)C18—H180.930
C9—C181.380 (2)
O1···C143.1810 (19)C17···H132.5500
O1···C17i3.073 (2)C18···H17Ai3.1000
O1···C5ii3.3926 (19)C18···H6iv2.9800
O2···C93.1501 (19)H4···O2x2.5200
O2···O2iii3.1878 (16)H4···C62.7100
O2···C11iii3.1383 (19)H4···H62.2700
O1···H9iv2.8400H5···C122.7000
O1···H17Bi2.5500H5···H12A2.5800
O2···H4v2.5200H5···H12B2.4000
O2···H12Biii2.8700H5···C16iii3.1000
O2···H18vi2.7200H6···C42.7000
O3···H12Avii2.8300H6···H42.2700
C2···C10ii3.592 (2)H6···C18iv2.9800
C3···C6vii3.556 (2)H6···H18iv2.5100
C4···C4ii3.533 (2)H8···H8xi2.3700
C5···O1ii3.3926 (19)H9···O1iv2.8400
C6···C3vii3.556 (2)H12A···C52.8600
C9···O23.1501 (19)H12A···H52.5800
C10···C2ii3.592 (2)H12A···O3vii2.8300
C11···C11iii3.533 (2)H12B···C52.9300
C11···O2iii3.1383 (19)H12B···H52.4000
C12···C14iii3.588 (2)H12B···O2iii2.8700
C14···O13.1810 (19)H12B···C14iii2.9700
C14···C12iii3.588 (2)H13···C172.5500
C17···O1viii3.073 (2)H13···H17A2.3800
C1···H14ii2.9000H13···H17C2.3200
C4···H62.7000H14···C1ii2.9000
C5···H12A2.8600H14···C6ii2.8100
C5···H12B2.9300H14···C8ii3.0000
C6···H42.7100H17A···C132.7600
C6···H14ii2.8100H17A···C18viii3.1000
C8···H14ii3.0000H17A···H132.3800
C12···H52.7000H17B···O1viii2.5500
C13···H17Cix3.0500H17C···C132.7800
C13···H17C2.7800H17C···H132.3200
C13···H17A2.7600H17C···C13ix3.0500
C14···H12Biii2.9700H18···O2vi2.7200
C16···H5iii3.1000H18···H6iv2.5100
C3—O3—C17117.96 (13)C9—C18—C15120.48 (16)
C7—N1—C10118.12 (11)C2—C4—H4118.00
C7—N1—C11118.34 (11)C10—C4—H4118.00
C10—N1—C11123.50 (12)C1—C5—H5119.00
C2—C1—C5122.31 (13)C13—C5—H5119.00
C2—C1—C6120.23 (12)C1—C6—H6119.00
C5—C1—C6117.42 (13)C8—C6—H6119.00
C1—C2—C4122.65 (13)C3—C8—H8120.00
C1—C2—C12118.18 (12)C6—C8—H8120.00
C4—C2—C12119.17 (13)C7—C9—H9120.00
O3—C3—C8115.66 (13)C18—C9—H9120.00
O3—C3—C13125.04 (14)C2—C12—H12A108.00
C8—C3—C13119.30 (14)C2—C12—H12B108.00
C2—C4—C10123.24 (13)C11—C12—H12A108.00
C1—C5—C13121.73 (14)C11—C12—H12B108.00
C1—C6—C8121.22 (14)H12A—C12—H12B107.00
N1—C7—C9120.00 (13)C3—C13—H13120.00
N1—C7—C14119.30 (13)C5—C13—H13120.00
C9—C7—C14120.69 (14)C7—C14—H14120.00
C3—C8—C6120.67 (14)C16—C14—H14120.00
C7—C9—C18119.36 (14)C16—C15—H15120.00
O1—C10—N1119.66 (13)C18—C15—H15120.00
O1—C10—C4123.20 (13)C14—C16—H16120.00
N1—C10—C4117.10 (12)C15—C16—H16120.00
O2—C11—N1120.80 (13)O3—C17—H17A109.00
O2—C11—C12121.64 (13)O3—C17—H17B109.00
N1—C11—C12117.54 (12)O3—C17—H17C109.00
C2—C12—C11117.14 (13)H17A—C17—H17B109.00
C3—C13—C5119.65 (14)H17A—C17—H17C110.00
C7—C14—C16119.27 (15)H17B—C17—H17C109.00
C16—C15—C18119.70 (16)C9—C18—H18120.00
C14—C16—C15120.49 (15)C15—C18—H18120.00
C17—O3—C3—C8171.64 (14)C1—C2—C4—C10174.69 (13)
C17—O3—C3—C138.0 (2)C12—C2—C4—C104.8 (2)
C10—N1—C7—C9100.50 (16)C1—C2—C12—C11163.73 (12)
C10—N1—C7—C1480.33 (17)C4—C2—C12—C1115.8 (2)
C11—N1—C7—C977.12 (17)O3—C3—C8—C6179.52 (14)
C11—N1—C7—C14102.05 (16)C13—C3—C8—C60.1 (2)
C7—N1—C10—O13.7 (2)O3—C3—C13—C5178.98 (14)
C7—N1—C10—C4174.06 (12)C8—C3—C13—C50.6 (2)
C11—N1—C10—O1178.78 (14)C2—C4—C10—O1177.20 (15)
C11—N1—C10—C43.4 (2)C2—C4—C10—N15.1 (2)
C7—N1—C11—O23.7 (2)C1—C5—C13—C30.6 (2)
C7—N1—C11—C12174.81 (12)C1—C6—C8—C30.4 (2)
C10—N1—C11—O2173.76 (13)N1—C7—C9—C18178.01 (13)
C10—N1—C11—C127.7 (2)C14—C7—C9—C181.2 (2)
C5—C1—C2—C4151.27 (15)N1—C7—C14—C16178.87 (13)
C5—C1—C2—C1229.3 (2)C9—C7—C14—C160.3 (2)
C6—C1—C2—C431.1 (2)C7—C9—C18—C150.9 (2)
C6—C1—C2—C12148.33 (14)O2—C11—C12—C2164.44 (14)
C2—C1—C5—C13177.76 (14)N1—C11—C12—C217.04 (19)
C6—C1—C5—C130.1 (2)C7—C14—C16—C150.8 (2)
C2—C1—C6—C8177.30 (14)C18—C15—C16—C141.0 (2)
C5—C1—C6—C80.4 (2)C16—C15—C18—C90.1 (2)
Symmetry codes: (i) x, y+1, z1; (ii) x+1, y+1, z; (iii) x+2, y+1, z; (iv) x+1, y+2, z; (v) x+1, y, z; (vi) x+2, y+2, z; (vii) x+1, y+1, z+1; (viii) x, y1, z+1; (ix) x+1, y, z+1; (x) x1, y, z; (xi) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2x0.932.523.4260 (18)164.00
C17—H17B···O1viii0.962.553.073 (2)114.00
Symmetry codes: (viii) x, y1, z+1; (x) x1, y, z.

Experimental details

Crystal data
Chemical formulaC18H15NO3
Mr293.31
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)7.4652 (5), 9.0885 (7), 11.1181 (8)
α, β, γ (°)77.384 (1), 88.747 (2), 77.493 (1)
V3)718.40 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.52 × 0.41 × 0.32
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.921, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
7298, 2714, 2233
Rint0.017
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.105, 0.91
No. of reflections2714
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.17

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SAINT (Bruker, 2004, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.523.4260 (18)164.00
C17—H17B···O1ii0.962.553.073 (2)114.00
Symmetry codes: (i) x1, y, z; (ii) x, y1, z+1.
 

Acknowledgements

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the IRHPA–DST program at IISc.

References

First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKon, G. A. R. & Nanji, E. R. (1933). J. Chem. Soc. pp. 2426–2433.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds