organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1146

2-[1-(1-Naphth­yl)-1H-1,2,3-triazol-4-yl]pyridine

aLaboratory of Organic and Macromolecular Chemistry, Friedrich-Schiller-Universität Jena, Humboldtstrasse 10, 07743 Jena, Germany, bEindhoven University of Technology, Laboratory of Macromolecular Chemistry and Nanoscience, Den Dolech 2, NL-5612AZ Eindhoven, The Netherlands, and cVienna University of Technology, Institute of Materials Chemistry, Getreidemarkt 9/165, 1060 Wien, Austria
*Correspondence e-mail: ulrich.schubert@uni-jena.de

(Received 2 April 2009; accepted 15 April 2009; online 30 April 2009)

In the crystal structure of the title compound, C17H12N4, the angle between the naphthalene and 1H-1,2,3-triazole ring systems is 71.02 (4)° and that between the pyridine and triazole rings is 8.30 (9)°.

Related literature

For related literature on the synthesis of polypyridyl ligands and 1,2,3-triazole-containing compounds, see: Marin et al. (2007[Marin, V., Holder, E., Hoogenboom, R. & Schubert, U. S. (2007). Chem. Soc. Rev. 36, 618-635.]); Winter et al. (2007[Winter, A., Egbe, D. A. M. & Schubert, U. S. (2007). Org. Lett. 9, 2345-2348.]); Balzani et al. (1996[Balzani, V., Juris, A. & Venturi, M. (1996). Chem. Rev. 96, 759-833.]); Newkome et al. (2004[Newkome, G. R., Patri, A. K., Holder, E. & Schubert, U. S. (2004). Eur. J. Org. Chem. pp. 235-254.]); Chan et al. (2004[Chan, T. R., Hilgraf, R., Sharpless, K. B. & Fokin, V. V. (2004). Org. Lett. 6, 2853-2855.]); Rostovtsev et al. (2002[Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. (2002). Angew. Chem. Int. Ed. 41, 2596-2599.]); Kolb et al. (2001[Kolb, H. C., Finn, M. G. & Sharpless, K. B. (2001). Angew. Chem. Int. Ed. 40, 2004-2021.]). The synthesis of the title compound is reported in Happ et al. (2009[Happ, B., Friebe, C., Winter, A., Hager, M. D., Hoogenboom, R. & Schubert, U. S. (2009). Chem. Asian J. 4, 154-163.]). For related crystal structures, see: Obata et al. (2008[Obata, M., Kitamura, A., Mori, A., Kameyama, C., Czaplewska, J. A., Tanaka, R., Kinoshita, I., Kusumoto, T., Hashimoto, H., Harada, M., Mikata, Y., Funabiki, T. & Yano, S. (2008). Dalton Trans. pp. 3292-3300.]); Schweinfurth et al. (2008[Schweinfurth, D., Hardcastle, K. I. & Bunz, U. H. F. (2008). Chem. Commun. pp. 2203-2205.]); Schulze et al. (2009[Schulze, B., Friebe, C., Hager, M. D., Winter, A., Hoogenboom, R., Goerls, H. & Schubert, U. S. (2009). Dalton Trans. pp. 787-794.]); Li et al. (2007[Li, Y., Huffman, J. C. & Flood, A. H. (2007). Chem. Commun. pp. 2692-2694.]); Richardson et al. (2008[Richardson, C., Fitchett, C. M., Keene, F. R. & Steel, P. J. (2008). Dalton Trans. pp. 2534-2537.]); Angell & Burgess (2007[Angell, Y. & Burgess, K. (2007). Angew. Chem. Int. Ed. 46, 3649-3651.]).

[Scheme 1]

Experimental

Crystal data
  • C17H12N4

  • Mr = 272.31

  • Orthorhombic, P b c a

  • a = 11.6378 (4) Å

  • b = 9.3228 (4) Å

  • c = 25.0592 (9) Å

  • V = 2718.84 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.63 × 0.18 × 0.07 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.950, Tmax = 0.994

  • 14517 measured reflections

  • 2391 independent reflections

  • 1934 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.120

  • S = 1.01

  • 2391 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: CARINE (Boudias & Monceau, 1998[Boudias, C. & Monceau, D. (1998). CARINE. Carine Crystallography, Divergent S. A., Compiègne, France.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The development of novel functional materials for applications in solar cells or LEDs represents a major challenge in current materials science. Transition metal complexes have been investigated to extend the application possibilities in modern device technology (Marin et al., 2007; Ulbricht et al., 2009). RuII complexes of bipyridine-type ligands are highly interesting due to their predictable electro-optical properties (Balzani et al., 1996). The syntheses of functionalized 2,2'-bipyridines have been reviewed, revealing that the selective and easy synthesis of mono-functionalized ligands remains a synthetic challenge (Marin et al., 2007; Newkome et al., 2004). Li et al. (2007) and Obata et al. (2008) showed that the 1H-1,2,3-triazole ring system can serve as an alternative for pyridine in oligopyridine ligands. As comparable structures to 2,2':6',2''-terpyridines these examples have demonstrated the versatility of this approach to substitute pyridine rings of the oligopyridine ligands by functionalized triazoles (Schulze et al., 2009; Li et al., 2007). In order to explore the properties of such functionalized bidentate ligands, we have synthesized a library of pyridin-2-yl substituted 1H-1,2,3-triazole systems (Happ et al., 2009), utlizing the so-called Click reaction (Chan et al., 2004; Rostovtsev et al., 2002; Kolb et al., 2001) and their RuII complexes.

The crystal structures of 1-substituted 2-(1H-1,2,3-triazol-4-yl)pyridines have thus far been rarely discussed in the literature. The crystal structures of derivatives bearing a 4'-butyloxybenzene (Schweinfurth et al., 2008) or benzyl group (Obata et al., 2008) in the 1-position of the 1H-1,2,3-triazole ring have been reported. The structure of an unsubstituted derivative was studied by Richardson et al. (2008). Furthermore, the crystal structure of a dimeric species was discussed by Angell & Burgess (2007). The crystal structures of metal complexes of 2-(1H-1,2,3-triazol-4-yl)pyridines have been more extensively investigated. The structures of various RuII (Schulze et al., 2009; Li et al., 2007), FeII (Li et al., 2007) and ReI complexes (Obata et al., 2008) were reported recently.

Here we report the crystal structure of the title compound. The geometric parameters are in good agreement with literature values (Schweinfurth et al., 2008). The pyridine ring and the triazole ring are nearly coplanar and the N atoms N3 and N6 show the expected anti configuration. The planes through these two heterocyclic ring systems (N1–C5 and N6–C11) deviate only by an angle of 8.30 (9)°. The naphthalene (C12–C21) and triazole (N1–C5) ring systems are inclined at an angle of 71.02 (4)°.

Related literature top

For related literature on synthetic studies, see: Marin et al. (2007); Ulbricht et al. (2009); Balzani et al. (1996); Newkome et al. (2004); Happ et al. (2009); Chan et al. (2004); Rostovtsev et al. (2002); Kolb et al. (2001). For related crystal structures, see: Obata et al. (2008); Schweinfurth et al. (2008); Schulze et al. (2009); Li et al. (2007); Richardson et al. (2008); Angell & Burgess (2007).

Experimental top

The title compound, C17H12N4, was synthesized as reported previously (Happ et al., 2009): Sodium azide (6 mmol) and anhydrous CuSO4 (62 mg, 0.4 mmol) were dissolved in dry methanol (15 ml) in a 20 ml microwave vial. (Naphthalen-1-yl)boronic acid (663 mg, 3.84 mmol) was added to the brown solution and the mixture was stirred for 17 h at room temperature. The progress of the reaction was monitored by TLC (SiO2, CHCl3 as eluent). Then CuSO4.5H2O (30 mg, 0.2 mmol), sodium ascorbate (384 mg, 1.95 mmol), 2-ethynylpyridine (435 mg, 4.2 mmol) and water (5 ml) were added. The reaction mixture was heated under microwave irradiation at 100 °C for 1 h. Water (30 ml) was added and the product was extracted with toluene (3 × 15 ml). After drying (MgSO4) and evaporation of the solvent, the crude product was purified by column chromatography [Al2O3, CH2Cl2/EtOAc (1:1 ratio) as eluent]. The title compound was isolated as a white crystalline solid (673 mg, 64%). Single crystals of the purified compound were obtained by slow evaporation of a CH2Cl2/n-hexane solution (2:1 ratio).

Refinement top

H atoms were placed in idealized positions with C—H = 0.93 Å and refined as riding on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: CARINE (Boudias & Monceau, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. A plot of the molecular packing of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.
2-[1-(1-Naphthyl)-1H-1,2,3-triazol-4-yl]pyridine top
Crystal data top
C17H12N4Dx = 1.330 Mg m3
Mr = 272.31Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 4456 reflections
a = 11.6378 (4) Åθ = 2.4–20.9°
b = 9.3228 (4) ŵ = 0.08 mm1
c = 25.0592 (9) ÅT = 296 K
V = 2718.84 (18) Å3Stick, colourless
Z = 80.63 × 0.18 × 0.07 mm
F(000) = 1136
Data collection top
Bruker Kappa APEXII
diffractometer
2391 independent reflections
Radiation source: fine-focus sealed tube1934 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 1313
Tmin = 0.950, Tmax = 0.994k = 1011
14517 measured reflectionsl = 2829
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0842P)2 + 0.1848P]
where P = (Fo2 + 2Fc2)/3
2391 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C17H12N4V = 2718.84 (18) Å3
Mr = 272.31Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.6378 (4) ŵ = 0.08 mm1
b = 9.3228 (4) ÅT = 296 K
c = 25.0592 (9) Å0.63 × 0.18 × 0.07 mm
Data collection top
Bruker Kappa APEXII
diffractometer
2391 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
1934 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.994Rint = 0.027
14517 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.01Δρmax = 0.14 e Å3
2391 reflectionsΔρmin = 0.18 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.20019 (9)0.39250 (12)0.37942 (4)0.0428 (3)
N20.31490 (10)0.36728 (14)0.37933 (5)0.0509 (3)
N30.35790 (10)0.43998 (13)0.33925 (5)0.0489 (3)
C40.27219 (11)0.51071 (14)0.31370 (5)0.0403 (3)
C50.17170 (12)0.48053 (15)0.33923 (5)0.0450 (4)
H50.09870.51390.33060.054*
N60.19978 (11)0.66666 (14)0.24668 (5)0.0530 (4)
C70.29352 (12)0.60832 (15)0.26887 (5)0.0411 (3)
C80.40394 (13)0.64153 (17)0.25220 (5)0.0495 (4)
H80.46720.59710.26780.059*
C90.41850 (15)0.74114 (18)0.21229 (6)0.0590 (4)
H90.49180.76620.20080.071*
C100.32349 (16)0.80283 (19)0.18976 (7)0.0635 (5)
H100.33100.87110.16290.076*
C110.21677 (15)0.76197 (19)0.20758 (7)0.0619 (5)
H110.15260.80300.19150.074*
C120.12717 (11)0.32768 (14)0.41875 (5)0.0420 (3)
C130.13387 (11)0.37575 (14)0.47248 (5)0.0405 (3)
C140.20520 (12)0.48862 (16)0.48997 (6)0.0482 (4)
H140.25250.53570.46570.058*
C150.20518 (14)0.52911 (18)0.54222 (7)0.0573 (4)
H150.25190.60440.55320.069*
C160.13572 (14)0.4588 (2)0.57950 (6)0.0607 (4)
H160.13810.48600.61520.073*
C170.06506 (14)0.35138 (18)0.56387 (6)0.0552 (4)
H170.01870.30600.58900.066*
C180.06071 (12)0.30717 (15)0.50993 (5)0.0445 (4)
C190.01489 (14)0.19830 (16)0.49262 (7)0.0554 (4)
H190.06250.15320.51730.066*
C200.01924 (15)0.15834 (17)0.44059 (7)0.0587 (4)
H200.07030.08720.42980.070*
C210.05301 (13)0.22392 (16)0.40296 (6)0.0523 (4)
H210.05000.19630.36730.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0377 (6)0.0483 (6)0.0423 (6)0.0049 (5)0.0060 (5)0.0034 (5)
N20.0405 (7)0.0621 (8)0.0501 (7)0.0109 (6)0.0055 (5)0.0043 (6)
N30.0401 (7)0.0593 (8)0.0472 (7)0.0042 (6)0.0065 (5)0.0002 (6)
C40.0378 (7)0.0452 (7)0.0378 (7)0.0007 (6)0.0040 (5)0.0052 (6)
C50.0374 (7)0.0524 (8)0.0451 (8)0.0036 (6)0.0028 (6)0.0066 (6)
N60.0468 (8)0.0585 (8)0.0536 (8)0.0012 (6)0.0035 (5)0.0076 (6)
C70.0415 (8)0.0447 (7)0.0371 (7)0.0040 (6)0.0043 (5)0.0063 (6)
C80.0425 (9)0.0630 (9)0.0429 (8)0.0055 (7)0.0058 (6)0.0039 (6)
C90.0571 (10)0.0706 (10)0.0493 (9)0.0173 (8)0.0161 (7)0.0035 (8)
C100.0792 (12)0.0613 (10)0.0500 (9)0.0061 (9)0.0136 (8)0.0087 (8)
C110.0632 (11)0.0660 (10)0.0566 (10)0.0047 (8)0.0022 (8)0.0104 (8)
C120.0403 (7)0.0404 (7)0.0454 (8)0.0062 (6)0.0061 (6)0.0045 (6)
C130.0383 (8)0.0397 (7)0.0437 (7)0.0086 (6)0.0013 (5)0.0054 (6)
C140.0421 (8)0.0502 (8)0.0524 (9)0.0010 (6)0.0019 (6)0.0040 (7)
C150.0517 (9)0.0619 (10)0.0581 (9)0.0027 (7)0.0055 (7)0.0072 (8)
C160.0589 (10)0.0774 (11)0.0459 (9)0.0123 (9)0.0010 (7)0.0057 (8)
C170.0543 (9)0.0658 (10)0.0455 (8)0.0103 (8)0.0089 (7)0.0093 (7)
C180.0427 (8)0.0440 (8)0.0469 (8)0.0088 (6)0.0070 (6)0.0089 (6)
C190.0540 (9)0.0483 (8)0.0639 (10)0.0024 (7)0.0152 (7)0.0106 (7)
C200.0588 (10)0.0460 (8)0.0713 (11)0.0111 (7)0.0087 (8)0.0034 (8)
C210.0562 (9)0.0477 (9)0.0529 (9)0.0017 (7)0.0047 (7)0.0053 (6)
Geometric parameters (Å, º) top
N1—C51.3408 (17)C12—C211.355 (2)
N1—N21.3556 (16)C12—C131.4212 (19)
N1—C121.4348 (17)C13—C141.410 (2)
N2—N31.3110 (16)C13—C181.4195 (19)
N3—C41.3563 (18)C14—C151.363 (2)
C4—C51.3623 (19)C14—H140.9300
C4—C71.4669 (19)C15—C161.398 (2)
C5—H50.9300C15—H150.9300
N6—C111.337 (2)C16—C171.354 (2)
N6—C71.3398 (19)C16—H160.9300
C7—C81.386 (2)C17—C181.414 (2)
C8—C91.375 (2)C17—H170.9300
C8—H80.9300C18—C191.411 (2)
C9—C101.368 (2)C19—C201.357 (2)
C9—H90.9300C19—H190.9300
C10—C111.374 (2)C20—C211.403 (2)
C10—H100.9300C20—H200.9300
C11—H110.9300C21—H210.9300
C5—N1—N2110.40 (11)C13—C12—N1119.05 (12)
C5—N1—C12128.86 (11)C14—C13—C12124.20 (12)
N2—N1—C12120.75 (11)C14—C13—C18118.92 (13)
N3—N2—N1106.70 (11)C12—C13—C18116.84 (13)
N2—N3—C4109.41 (11)C15—C14—C13120.35 (14)
N3—C4—C5108.01 (12)C15—C14—H14119.8
N3—C4—C7122.59 (12)C13—C14—H14119.8
C5—C4—C7129.27 (12)C14—C15—C16120.81 (16)
N1—C5—C4105.48 (12)C14—C15—H15119.6
N1—C5—H5127.3C16—C15—H15119.6
C4—C5—H5127.3C17—C16—C15120.30 (15)
C11—N6—C7116.96 (13)C17—C16—H16119.9
N6—C7—C8122.62 (13)C15—C16—H16119.9
N6—C7—C4115.59 (12)C16—C17—C18120.93 (14)
C8—C7—C4121.75 (13)C16—C17—H17119.5
C9—C8—C7118.96 (15)C18—C17—H17119.5
C9—C8—H8120.5C19—C18—C17121.72 (13)
C7—C8—H8120.5C19—C18—C13119.63 (13)
C10—C9—C8118.97 (15)C17—C18—C13118.64 (14)
C10—C9—H9120.5C20—C19—C18121.07 (14)
C8—C9—H9120.5C20—C19—H19119.5
C9—C10—C11118.68 (16)C18—C19—H19119.5
C9—C10—H10120.7C19—C20—C21120.23 (15)
C11—C10—H10120.7C19—C20—H20119.9
N6—C11—C10123.78 (16)C21—C20—H20119.9
N6—C11—H11118.1C12—C21—C20119.76 (14)
C10—C11—H11118.1C12—C21—H21120.1
C21—C12—C13122.44 (13)C20—C21—H21120.1
C21—C12—N1118.51 (13)
C5—N1—N2—N30.24 (15)C5—N1—C12—C13109.53 (16)
C12—N1—N2—N3179.90 (12)N2—N1—C12—C1370.88 (16)
N1—N2—N3—C40.21 (15)C21—C12—C13—C14176.38 (14)
N2—N3—C4—C50.12 (16)N1—C12—C13—C142.65 (19)
N2—N3—C4—C7176.41 (12)C21—C12—C13—C181.60 (19)
N2—N1—C5—C40.16 (15)N1—C12—C13—C18179.37 (12)
C12—N1—C5—C4179.79 (13)C12—C13—C14—C15179.13 (13)
N3—C4—C5—N10.03 (16)C18—C13—C14—C151.2 (2)
C7—C4—C5—N1175.93 (13)C13—C14—C15—C160.7 (2)
C11—N6—C7—C81.1 (2)C14—C15—C16—C171.7 (2)
C11—N6—C7—C4176.54 (13)C15—C16—C17—C180.6 (2)
N3—C4—C7—N6177.95 (12)C16—C17—C18—C19178.08 (14)
C5—C4—C7—N66.6 (2)C16—C17—C18—C131.3 (2)
N3—C4—C7—C84.4 (2)C14—C13—C18—C19177.22 (13)
C5—C4—C7—C8171.04 (14)C12—C13—C18—C190.87 (18)
N6—C7—C8—C91.8 (2)C14—C13—C18—C172.18 (19)
C4—C7—C8—C9175.67 (13)C12—C13—C18—C17179.73 (12)
C7—C8—C9—C100.9 (2)C17—C18—C19—C20179.09 (14)
C8—C9—C10—C110.5 (3)C13—C18—C19—C200.3 (2)
C7—N6—C11—C100.5 (3)C18—C19—C20—C210.8 (2)
C9—C10—C11—N61.3 (3)C13—C12—C21—C201.1 (2)
C5—N1—C12—C2169.54 (19)N1—C12—C21—C20179.83 (13)
N2—N1—C12—C21110.05 (15)C19—C20—C21—C120.1 (2)

Experimental details

Crystal data
Chemical formulaC17H12N4
Mr272.31
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)11.6378 (4), 9.3228 (4), 25.0592 (9)
V3)2718.84 (18)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.63 × 0.18 × 0.07
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.950, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
14517, 2391, 1934
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.120, 1.01
No. of reflections2391
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.18

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), CARINE (Boudias & Monceau, 1998), SHELXTL (Sheldrick, 2008b).

 

Acknowledgements

This structure examination is part of ongoing work financially supported by the Dutch Polymer Institute (DPI), the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO, VICI award to USS) and the Fonds der Chemischen Industrie.

References

First citationAngell, Y. & Burgess, K. (2007). Angew. Chem. Int. Ed. 46, 3649–3651.  Web of Science CrossRef CAS Google Scholar
First citationBalzani, V., Juris, A. & Venturi, M. (1996). Chem. Rev. 96, 759–833.  CrossRef PubMed CAS Web of Science Google Scholar
First citationBoudias, C. & Monceau, D. (1998). CARINE. Carine Crystallography, Divergent S. A., Compiègne, France.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChan, T. R., Hilgraf, R., Sharpless, K. B. & Fokin, V. V. (2004). Org. Lett. 6, 2853–2855.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHapp, B., Friebe, C., Winter, A., Hager, M. D., Hoogenboom, R. & Schubert, U. S. (2009). Chem. Asian J. 4, 154–163.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKolb, H. C., Finn, M. G. & Sharpless, K. B. (2001). Angew. Chem. Int. Ed. 40, 2004–2021.  Web of Science CrossRef CAS Google Scholar
First citationLi, Y., Huffman, J. C. & Flood, A. H. (2007). Chem. Commun. pp. 2692–2694.  Web of Science CSD CrossRef Google Scholar
First citationMarin, V., Holder, E., Hoogenboom, R. & Schubert, U. S. (2007). Chem. Soc. Rev. 36, 618–635.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNewkome, G. R., Patri, A. K., Holder, E. & Schubert, U. S. (2004). Eur. J. Org. Chem. pp. 235–254.  Web of Science CrossRef Google Scholar
First citationObata, M., Kitamura, A., Mori, A., Kameyama, C., Czaplewska, J. A., Tanaka, R., Kinoshita, I., Kusumoto, T., Hashimoto, H., Harada, M., Mikata, Y., Funabiki, T. & Yano, S. (2008). Dalton Trans. pp. 3292–3300.  Web of Science CSD CrossRef Google Scholar
First citationRichardson, C., Fitchett, C. M., Keene, F. R. & Steel, P. J. (2008). Dalton Trans. pp. 2534–2537.  Web of Science CSD CrossRef PubMed Google Scholar
First citationRostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. (2002). Angew. Chem. Int. Ed. 41, 2596–2599.  CrossRef CAS Google Scholar
First citationSchulze, B., Friebe, C., Hager, M. D., Winter, A., Hoogenboom, R., Goerls, H. & Schubert, U. S. (2009). Dalton Trans. pp. 787–794.  Web of Science CSD CrossRef Google Scholar
First citationSchweinfurth, D., Hardcastle, K. I. & Bunz, U. H. F. (2008). Chem. Commun. pp. 2203–2205.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWinter, A., Egbe, D. A. M. & Schubert, U. S. (2007). Org. Lett. 9, 2345–2348.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1146
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds