organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-(5-bromo-3-ethyl­sulfinyl-1-benzo­furan-2-yl)acetate

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 11 March 2009; accepted 17 March 2009; online 25 March 2009)

The title compound, C14H15BrO4S, was prepared by the oxidation of ethyl 2-(5-bromo-3-ethyl­sulfanyl-1-benzofuran-2-yl)acetate with 3-chloro­peroxy­benzoic acid. The crystal structure is stabilized by aromatic ππ inter­actions between the benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.814 (9) Å], and possibly by weak C—H⋯π inter­actions. In addition, the crystal structure exhibits three inter­molecular C—H⋯O non-classical hydrogen bonds. The ethyl group bonded to carboxyl­ate O atom is disordered over two positions, with refined site-occupancy factors of 0.686 (18) and 0.314 (18).

Related literature

For the crystal structures of similar alkyl 2-(1-benzofuran-2-yl)acetate derivatives, see: Choi et al. (2008a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o2250.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o2397.], 2009[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o763.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15BrO4S

  • Mr = 359.23

  • Triclinic, [P \overline 1]

  • a = 8.311 (3) Å

  • b = 9.800 (3) Å

  • c = 10.621 (3) Å

  • α = 69.552 (5)°

  • β = 77.671 (6)°

  • γ = 66.259 (5)°

  • V = 739.3 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.93 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999[Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.]) Tmin = 0.496, Tmax = 0.750

  • 5330 measured reflections

  • 2562 independent reflections

  • 1790 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.168

  • S = 1.12

  • 2562 reflections

  • 191 parameters

  • 29 restraints

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12A—H12BCg2i 0.96 2.92 3.85 (1) 164
C3—H3⋯O4ii 0.93 2.67 3.556 (8) 160
C5—H5⋯O3iii 0.93 2.67 3.528 (9) 155
C9—H9B⋯O4iv 0.97 2.35 3.277 (9) 161
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y, -z; (iii) -x+1, -y, -z+1; (iv) -x+2, -y, -z. Cg2 is the centroid of the C1/C2/C7/O1/C8 furan ring.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our continuing studies on the synthesis and structure of alkyl 2-(1-benzofuran-2-yl)acetate analogues, we have recently described the crystal structure of isopropyl 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi et al., 2008a), methyl 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi et al., 2008b), and ethyl 2-(3-ethylsulfinyl-5-methyl-1-benzofuran-2-yl)acetate (Choi et al., 2009). Here we report the crystal structure of the title compound, ethyl 2-(5-bromo-3-ethylsulfinyl-1-benzofuran-2-yl)acetate (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.009 (5) Å from the least-squares plane defined by the nine constituent atoms. The ethyl group bonded to carboxylate O atom is disordered over two positions with site-occupancy factors of 0.686 (18) (for atoms labelled A) and 0.314 (18) (for atoms labelled B). The molecular packing (Fig. 2) is stabilized by aromatic ππ interactions between the benzene rings of the adjacent molecules, with a Cg1···Cg1ii distance of 3.814 (9) Å (Cg1 is the centroid of the C2–C7 benzene ring; symmetry code as in Fig. 2). The crystal packing is further stabilized by intermolecular C—H···π interactions; a first between the methylene H atom of ethoxy group and the benzene ring of a neighbouring molecule, with C11—H11B···Cg1i, a second between the methyl H atom of ethoxy group and the furan ring of a neighbouring benzofuran fragment, with C12—H12B···Cg2i, respectively (Table 1 and Fig. 2; Cg2 is the centroid of the C1/C2/C7/O1/C8 furan ring; symmetry code as in Fig. 2). Additionally, the crystal packing exhibits weak intermolecular C—H···O nonclassical hydrogen bonds; a first between a benzene H atom and the SO unit, a second between a benzene H atom and the CO unit, a third between an H atom of the methylene group bonded to carboxylate C atom and the SO unit, respectively (Table 1).

Related literature top

For the crystal structures of similar alkyl 2-(1-benzofuran-2-yl)acetate derivatives, see: Choi et al. (2008a,b, 2009). Cg1 is the centroid of the C2–C7 benzene ring and Cg2 is the centroid of the C1/C2/C7/O1/C8 furan ring.

Experimental top

The 77% 3-chloroperoxybenzoic acid (247 mg, 1.1 mmol) was added in small portions to a stirred solution of ethyl 2-(5-bromo-3-ethylsulfanyl-1-benzofuran-2-yl)acetate (343 mg, 1.0 mmol) in dichloromethane (40 ml) at 273 K. After being stirred for 3 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane–ethyl acetate, 1:2 v/v) to afford the title compound as a colourless solid [yield 78%, m.p. 391–392 K; Rf = 0.54 (hexane–ethyl acetate, 1:2 v/v)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in chloroform at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 1.28 (t, J = 6.96 Hz, 3H), 1.33 (t, J = 7.32 Hz, 3H), 3.28 (q, J = 7.32 Hz, 2H), 4.05 (s, 2H), 4.21 (q, J = 6.96 Hz, 2H), 7.40 (d, J = 8.76 Hz, 1H), 7.34 (dd, J = 8.44 Hz and J = 1.84 Hz, 1H), 8.01 (s, 1H); EI–MS 360 [M+2], 358 [M+].

Refinement top

All H atoms were geometrically positioned and refined using a riding model, with C—H = 0.93 Å for the aryl, 0.97 Å for the methylene, and 0.96 Å for the methyl H atoms with Uiso(H) = 1.2Ueq(C) for the aryl and methylene H atoms, and 1.5Ueq(C) for methyl H atoms. The ethyl group bonded to carboxylate O atom was found to be disordered over two positions and modelled with site-occupancy factors, from refinement, of 0.686 (18) (C11A–C12A) and 0.314 (18) (C11B–C12B). The both sets of C atoms were restrained using the command SADI(0.02), ISOR(0.01), DELU, EADP and the C—C distances (A & B) were restrained to 1.480 (2) Å using command DFIX.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small cycles with arbitrary radius. Only major component (C11A and C12A) is drawn.
[Figure 2] Fig. 2. The ππ and C—H···π interactions (dotted lines) in the crystal structure of title compound. Cg denotes the ring centroid. The disordered component of the ethyl group bonded to carboxylate O atom, part B, has been omitted for clairty as have H atoms not involved in intermolecular contacts. [Symmetry codes: (i) x, y+1, z; (ii) x, 1+y, z; (iii) -x+1, -y+1, -z+1; (iv) x, y-1, z; (v) -x+1, -y+2, -z+1].
Ethyl 2-(5-bromo-3-ethylsulfinyl-1-benzofuran-2-yl)acetate top
Crystal data top
C14H15BrO4SZ = 2
Mr = 359.23F(000) = 364
Triclinic, P1Dx = 1.614 Mg m3
Hall symbol: -P 1Melting point: 391.5 K
a = 8.311 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.800 (3) ÅCell parameters from 1919 reflections
c = 10.621 (3) Åθ = 2.4–25.0°
α = 69.552 (5)°µ = 2.93 mm1
β = 77.671 (6)°T = 298 K
γ = 66.259 (5)°Block, colourless
V = 739.3 (4) Å30.30 × 0.20 × 0.10 mm
Data collection top
Bruker SMART CCD
diffractometer
2562 independent reflections
Radiation source: Fine-focus sealed tube1790 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 10.0 pixels mm-1θmax = 25.0°, θmin = 2.1°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
k = 1111
Tmin = 0.496, Tmax = 0.750l = 1212
5330 measured reflections
Refinement top
Refinement on F2Primary atom site location: Direct
Least-squares matrix: FullSecondary atom site location: Difmap
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.168 w = 1/[σ2(Fo2) + (0.0738P)2 + 1.336P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
2562 reflectionsΔρmax = 0.65 e Å3
191 parametersΔρmin = 0.58 e Å3
29 restraints
Crystal data top
C14H15BrO4Sγ = 66.259 (5)°
Mr = 359.23V = 739.3 (4) Å3
Triclinic, P1Z = 2
a = 8.311 (3) ÅMo Kα radiation
b = 9.800 (3) ŵ = 2.93 mm1
c = 10.621 (3) ÅT = 298 K
α = 69.552 (5)°0.30 × 0.20 × 0.10 mm
β = 77.671 (6)°
Data collection top
Bruker SMART CCD
diffractometer
2562 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
1790 reflections with I > 2σ(I)
Tmin = 0.496, Tmax = 0.750Rint = 0.042
5330 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05729 restraints
wR(F2) = 0.168H-atom parameters constrained
S = 1.12Δρmax = 0.65 e Å3
2562 reflectionsΔρmin = 0.58 e Å3
191 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br0.31159 (11)0.28976 (10)0.39050 (8)0.0551 (3)
S0.7649 (2)0.1124 (2)0.02737 (16)0.0413 (5)
O10.8405 (6)0.0339 (5)0.4145 (4)0.0363 (11)
O20.9901 (7)0.3669 (6)0.2625 (6)0.0560 (14)
O30.7412 (8)0.3819 (6)0.2043 (7)0.0694 (17)
O40.7327 (7)0.0002 (6)0.0200 (5)0.0525 (13)
C10.7580 (8)0.0383 (7)0.2055 (6)0.0330 (15)
C20.6623 (8)0.0604 (7)0.2949 (6)0.0299 (14)
C30.5405 (9)0.1172 (8)0.2829 (6)0.0355 (15)
H30.49750.09210.20060.043*
C40.4856 (9)0.2139 (7)0.4000 (7)0.0359 (16)
C50.5436 (9)0.2537 (8)0.5241 (7)0.0403 (16)
H50.50060.31770.59920.048*
C60.6667 (9)0.1981 (8)0.5368 (6)0.0412 (17)
H60.71070.22540.61920.049*
C70.7211 (8)0.1005 (8)0.4222 (7)0.0352 (15)
C80.8584 (9)0.0501 (7)0.2814 (7)0.0356 (15)
C90.9829 (9)0.1352 (8)0.2529 (7)0.0413 (17)
H9A1.05760.09070.32670.050*
H9B1.05820.12080.17160.050*
C100.8891 (10)0.3058 (9)0.2353 (7)0.0427 (18)
C11A0.9188 (18)0.5401 (18)0.2280 (15)0.063 (4)0.686 (18)
H11A0.90560.58690.13210.076*0.686 (18)
H11B0.80460.57590.27680.076*0.686 (18)
C12A1.0484 (16)0.5825 (15)0.2679 (15)0.062 (4)0.686 (18)
H12A1.07040.52570.36040.093*0.686 (18)
H12B1.00230.69240.25750.093*0.686 (18)
H12C1.15660.55690.21170.093*0.686 (18)
C11B0.907 (4)0.515 (4)0.288 (3)0.063 (4)0.314 (18)
H11C0.91830.50810.37930.076*0.314 (18)
H11D0.78330.56220.27080.076*0.314 (18)
C12B1.014 (4)0.600 (3)0.187 (3)0.062 (4)0.314 (18)
H12D0.96530.64180.10130.093*0.314 (18)
H12E1.13300.52990.17920.093*0.314 (18)
H12F1.01140.68390.21540.093*0.314 (18)
C130.5715 (11)0.2879 (9)0.0038 (7)0.053 (2)
H13A0.58500.35580.04560.063*
H13B0.56620.34120.09210.063*
C140.3993 (12)0.2654 (10)0.0593 (9)0.069 (3)
H14A0.39470.18220.03390.103*
H14B0.30390.35990.02360.103*
H14C0.38900.23970.15580.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0555 (6)0.0564 (6)0.0633 (6)0.0350 (4)0.0083 (4)0.0095 (4)
S0.0424 (11)0.0489 (11)0.0339 (9)0.0210 (9)0.0021 (8)0.0089 (8)
O10.032 (3)0.044 (3)0.034 (2)0.013 (2)0.0099 (19)0.011 (2)
O20.037 (3)0.039 (3)0.101 (4)0.009 (2)0.016 (3)0.030 (3)
O30.052 (4)0.045 (3)0.109 (5)0.010 (3)0.045 (3)0.006 (3)
O40.059 (3)0.060 (3)0.046 (3)0.019 (3)0.007 (2)0.025 (3)
C10.032 (4)0.026 (3)0.038 (4)0.006 (3)0.005 (3)0.009 (3)
C20.027 (3)0.026 (3)0.035 (3)0.005 (3)0.004 (3)0.012 (3)
C30.033 (4)0.036 (4)0.034 (4)0.010 (3)0.006 (3)0.007 (3)
C40.035 (4)0.029 (4)0.045 (4)0.013 (3)0.002 (3)0.012 (3)
C50.042 (4)0.033 (4)0.039 (4)0.011 (3)0.003 (3)0.006 (3)
C60.046 (5)0.045 (4)0.029 (4)0.013 (4)0.005 (3)0.009 (3)
C70.029 (4)0.034 (4)0.043 (4)0.006 (3)0.007 (3)0.016 (3)
C80.033 (4)0.032 (4)0.044 (4)0.010 (3)0.008 (3)0.013 (3)
C90.034 (4)0.045 (4)0.050 (4)0.015 (3)0.007 (3)0.017 (3)
C100.047 (5)0.049 (5)0.041 (4)0.025 (4)0.012 (3)0.010 (3)
C11A0.066 (6)0.052 (6)0.081 (8)0.023 (4)0.014 (5)0.024 (5)
C12A0.061 (6)0.057 (5)0.077 (7)0.021 (4)0.015 (5)0.024 (5)
C11B0.066 (6)0.052 (6)0.081 (8)0.023 (4)0.014 (5)0.024 (5)
C12B0.061 (6)0.057 (5)0.077 (7)0.021 (4)0.015 (5)0.024 (5)
C130.070 (6)0.042 (4)0.045 (4)0.018 (4)0.016 (4)0.007 (3)
C140.065 (6)0.053 (5)0.058 (5)0.004 (5)0.002 (4)0.003 (4)
Geometric parameters (Å, º) top
Br—C41.907 (6)C9—C101.494 (10)
S—O41.487 (5)C9—H9A0.9700
S—C11.771 (6)C9—H9B0.9700
S—C131.802 (8)C11A—C12A1.480 (2)
O1—C71.366 (7)C11A—H11A0.9700
O1—C81.376 (8)C11A—H11B0.9700
O2—C101.332 (8)C12A—H12A0.9600
O2—C11B1.43 (4)C12A—H12B0.9600
O2—C11A1.489 (16)C12A—H12C0.9600
O3—C101.199 (9)C11B—C12B1.480 (2)
C1—C81.338 (9)C11B—H11C0.9700
C1—C21.458 (8)C11B—H11D0.9700
C2—C31.382 (9)C12B—H12D0.9600
C2—C71.405 (9)C12B—H12E0.9600
C3—C41.391 (9)C12B—H12F0.9600
C3—H30.9300C13—C141.499 (11)
C4—C51.371 (9)C13—H13A0.9700
C5—C61.387 (9)C13—H13B0.9700
C5—H50.9300C14—H14A0.9600
C6—C71.379 (9)C14—H14B0.9600
C6—H60.9300C14—H14C0.9600
C8—C91.498 (9)
O4—S—C1106.2 (3)C8—C9—H9B109.1
O4—S—C13108.0 (3)H9A—C9—H9B107.8
C1—S—C13101.7 (3)O3—C10—O2122.3 (7)
C7—O1—C8106.1 (5)O3—C10—C9126.6 (6)
C10—O2—C11B118.2 (14)O2—C10—C9111.2 (6)
C10—O2—C11A114.9 (6)C12A—C11A—O2106.0 (10)
C11B—O2—C11A23.6 (12)C12A—C11A—H11A110.5
C8—C1—C2107.1 (6)O2—C11A—H11A110.5
C8—C1—S124.6 (5)C12A—C11A—H11B110.5
C2—C1—S127.9 (5)O2—C11A—H11B110.5
C3—C2—C7119.2 (6)H11A—C11A—H11B108.7
C3—C2—C1136.8 (6)O2—C11B—C12B99 (2)
C7—C2—C1103.9 (5)O2—C11B—H11C111.9
C2—C3—C4116.7 (6)C12B—C11B—H11C111.9
C2—C3—H3121.7O2—C11B—H11D111.9
C4—C3—H3121.7C12B—C11B—H11D111.9
C5—C4—C3124.1 (6)H11C—C11B—H11D109.6
C5—C4—Br117.4 (5)C11B—C12B—H12D109.5
C3—C4—Br118.4 (5)C11B—C12B—H12E109.5
C4—C5—C6119.5 (6)H12D—C12B—H12E109.5
C4—C5—H5120.2C11B—C12B—H12F109.5
C6—C5—H5120.2H12D—C12B—H12F109.5
C7—C6—C5117.2 (6)H12E—C12B—H12F109.5
C7—C6—H6121.4C14—C13—S115.7 (6)
C5—C6—H6121.4C14—C13—H13A108.4
O1—C7—C6125.8 (6)S—C13—H13A108.4
O1—C7—C2111.0 (5)C14—C13—H13B108.4
C6—C7—C2123.2 (6)S—C13—H13B108.4
C1—C8—O1112.0 (6)H13A—C13—H13B107.4
C1—C8—C9134.0 (6)C13—C14—H14A109.5
O1—C8—C9114.1 (5)C13—C14—H14B109.5
C10—C9—C8112.5 (6)H14A—C14—H14B109.5
C10—C9—H9A109.1C13—C14—H14C109.5
C8—C9—H9A109.1H14A—C14—H14C109.5
C10—C9—H9B109.1H14B—C14—H14C109.5
O4—S—C1—C8144.9 (6)C1—C2—C7—C6178.0 (6)
C13—S—C1—C8102.2 (6)C2—C1—C8—O10.7 (8)
O4—S—C1—C227.1 (7)S—C1—C8—O1172.7 (4)
C13—S—C1—C285.8 (6)C2—C1—C8—C9178.5 (7)
C8—C1—C2—C3179.7 (7)S—C1—C8—C98.1 (12)
S—C1—C2—C37.2 (12)C7—O1—C8—C10.6 (7)
C8—C1—C2—C70.6 (7)C7—O1—C8—C9178.8 (5)
S—C1—C2—C7172.5 (5)C1—C8—C9—C1076.1 (10)
C7—C2—C3—C40.9 (9)O1—C8—C9—C10103.1 (7)
C1—C2—C3—C4178.8 (7)C11B—O2—C10—O315.7 (16)
C2—C3—C4—C50.5 (10)C11A—O2—C10—O310.5 (12)
C2—C3—C4—Br177.8 (5)C11B—O2—C10—C9162.7 (14)
C3—C4—C5—C61.0 (11)C11A—O2—C10—C9171.2 (8)
Br—C4—C5—C6178.3 (5)C8—C9—C10—O322.6 (10)
C4—C5—C6—C71.7 (10)C8—C9—C10—O2155.7 (6)
C8—O1—C7—C6178.4 (6)C10—O2—C11A—C12A179.1 (9)
C8—O1—C7—C20.2 (7)C11B—O2—C11A—C12A75 (4)
C5—C6—C7—O1179.9 (6)C10—O2—C11B—C12B126 (2)
C5—C6—C7—C22.1 (10)C11A—O2—C11B—C12B38 (2)
C3—C2—C7—O1180.0 (5)O4—S—C13—C1450.4 (7)
C1—C2—C7—O10.2 (7)C1—S—C13—C1461.1 (7)
C3—C2—C7—C61.7 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11A—H11B···Cg1i0.973.063.806 (9)135
C12A—H12B···Cg2i0.962.923.85 (1)164
C3—H3···O4ii0.932.673.556 (8)160
C5—H5···O3iii0.932.673.528 (9)155
C9—H9B···O4iv0.972.353.277 (9)161
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC14H15BrO4S
Mr359.23
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.311 (3), 9.800 (3), 10.621 (3)
α, β, γ (°)69.552 (5), 77.671 (6), 66.259 (5)
V3)739.3 (4)
Z2
Radiation typeMo Kα
µ (mm1)2.93
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1999)
Tmin, Tmax0.496, 0.750
No. of measured, independent and
observed [I > 2σ(I)] reflections
5330, 2562, 1790
Rint0.042
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.168, 1.12
No. of reflections2562
No. of parameters191
No. of restraints29
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.58

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11A—H11B···Cg1i0.973.063.806 (9)134.9
C12A—H12B···Cg2i0.962.923.85 (1)164.1
C3—H3···O4ii0.932.673.556 (8)159.7
C5—H5···O3iii0.932.673.528 (9)154.7
C9—H9B···O4iv0.972.353.277 (9)160.9
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x+2, y, z.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o2250.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o2397.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o763.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds