organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages o504-o505

5,7-Dimeth­­oxy-2-phenyl-4H-chromen-4-one

aDepartment of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India, bDepartment of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India, cDepartment of Chemistry, Urumu Dhanalakshmi College, Tiruchirappalli 620 019, India, and dDepartment of Chemistry, Kandasamy Kandar College, Velur 638 182, India
*Correspondence e-mail: vembu57@yahoo.com

(Received 26 January 2009; accepted 2 February 2009; online 11 February 2009)

The asymmetric unit of the title compound, C17H14O4, contains two independent mol­ecules which differ in the relative orientations of the phenyl rings with repect to the essentially planar [maximum deviations of 0.029 (2) and 0.050 (2) Å in the two mol­ecules] chromene fused-ring system, forming dihedral angles of 10.3 (5) and 30.86 (5)° in the two mol­ecules. The crystal structure is stabilized by weak C—H⋯O and C—-H⋯π inter­actions, and ππ stacking inter­actions.

Related literature

For the biological and pharmacological properties of benzopyrans and their derivatives, see Brooks (1998[Brooks, G. T. (1998). Pestic. Sci. 22, 41-50.]); Hatakeyama et al. (1988[Hatakeyama, S., Ochi, N., Numata, H. & Takano, S. (1988). J. Chem. Soc. Chem. Commun. pp. 1022-1024.]); Hyana & Saimoto (1987[Hyana, T. & Saimoto, H. (1987). Jpn Patent JP 621 812 768.]); Tang et al. (2007[Tang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437-o1438.]). For the importance of 4H-chromenes, see Liu et al. (2007[Liu, C.-B., Chen, Y.-H., Zhou, X.-Y., Ding, L. & Wen, H.-L. (2007). Acta Cryst. E63, o90-o91.]); Wang, Fang et al. (2003[Wang, J.-F., Fang, M.-J., Huang, H.-Q., Li, G.-L., Su, W.-J. & Zhao, Y.-F. (2003). Acta Cryst. E59, o1517-o1518.]); Wang, Zhang et al. (2003[Wang, J.-F., Zhang, Y.-J., Fang, M.-J., Huang, Y.-J., Wei, Z.-B., Zheng, Z.-H., Su, W.-J. & Zhao, Y.-F. (2003). Acta Cryst. E59, o1244-o1245.]). For hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Desiraju (1989[Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids, pp. 125-167. Amsterdam: Elsevier.]); Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 11-40. New York: Oxford University Press.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14O4

  • Mr = 282.28

  • Triclinic, [P \overline 1]

  • a = 7.3938 (17) Å

  • b = 11.430 (3) Å

  • c = 16.547 (4) Å

  • α = 92.414 (4)°

  • β = 102.723 (4)°

  • γ = 91.916 (4)°

  • V = 1361.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 (2) K

  • 0.35 × 0.32 × 0.29 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.]) Tmin = 0.967, Tmax = 0.977

  • 15401 measured reflections

  • 6096 independent reflections

  • 3897 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.126

  • S = 1.01

  • 6096 reflections

  • 386 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17A—H17A⋯O1A 0.93 2.38 2.713 (2) 101
C13B—H13E⋯O11Ai 0.96 2.37 3.169 (2) 141
C19A—H19A⋯O11Bii 0.93 2.57 3.256 (2) 131
C19A—H19A⋯O12Bii 0.93 2.55 3.442 (2) 161
C15B—H15DCg5 0.96 2.85 3.786 166
Symmetry codes: (i) -x+1, -y+2, -z; (ii) x, y-1, z. Cg5 is the centroids of the C16A–C21A ring.

Table 2
ππ Stacking interactions (Å, °)

Cgi Cgj CgiCgj α perp
Cg1 Cg2 3.972 (1) 10.9 3.575
Cg1 Cg4 3.646 (1) 8.1 3.578
Cg1 Cg4i 3.785 (1) 8.1 3.535
Cg2 Cg3i 3.792 (1) 9.9 3.599
Cg2 Cg3 3.883 (1) 9.9 3.743
Cg3 Cg4i 3.769 (1) 7.1 3.516
Symmetry code: (i) 1+x, y, z. Cg1, Cg2, Cg3, and Cg4 are the centroids of the O1A/C2A–C4A/C9A/C10A, O1B/C2B–C4B/C9B/C10B, C5A–C10A and C5B–C10B rings, respectively. α is the dihedral angle between ring planes and perp is the perpendicular distance between ring planes.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Chromenes (benzopyrans) and their derivatives have numerous biological and pharmacological properties (Tang et al., 2007) such as antisterility (Brooks, 1998) and anticancer activity (Hyana & Saimoto, 1987). In addition, polyfunctionalized chromene units are present in numerous natural products (Hatakeyama et al., 1988). 4H-chromenes are important synthons for some natural products (Liu et al., 2007). As a part of our structural investigations on 4H-chromene derivatives and compounds containing the benzopyran fragment, the single-crystal X-ray diffraction study on the title compound was carried out.

The two molecules (A and B) in the asymmetric unit are shown in Fig. 1. In each molecule, the chromene ring is essentially planar as found in the related chromene derivatives (Wang, Zhang et al., 2003; Wang, Fang et al., 2003). In the title compound, the maximun deviation for the chromene ring in each molecule is 0.029 (2) and 0.050 (2) Å, for atoms C4A and C4B, respectively. The dihedral angle between the chromene ring mean-plane and the phenyl ring is 10.3 (5)° in molecule A and 30.86 (5)° in molecule B. The methoxy substituent at C5 forms dihedral angles of 8.4 (1) and 2.1 (1)° in molecules A and B, respectively. The methoxy substituent at C7 forms dihedral angles of 1.75 (1) & 12.09 (8)° in molecules A and B, respectively.

In the crystal structure (see Fig.2), the intramolecular C17A–H17A···O1A interaction generates a S(5) ring motif (Bernstein et al., 1995; Etter, 1990) and the C19A–H19A···O11Bii and C19A—H19A···O12Bii interactions constitute two bifurcated weak hydrogen bonds bonds that generate a R21(6) ring motif. In addition, the crystal structure contains significant C—H···π interactions (Table 1) and π..π interactions (Table 2) whose distances agree with those described by Desiraju & Steiner (1999) and Desiraju (1989).

Related literature top

For the biological and pharmacological properties of benzopyrans and their derivatives, see Brooks (1998); Hatakeyama et al. (1988); Hyana & Saimoto (1987); Tang et al. (2007). For the importance of 4H-chromenes, see Liu et al. (2007); Wang, Fang et al. (2003); Wang, Zhang et al. (2003). For hydrogen bonding, see: Bernstein et al. (1995); Desiraju (1989); Desiraju & Steiner (1999); Etter (1990). Cg5 and Cg6 are the centroids of the C16A--C21A and C16B–C21B rings, respectively.

Experimental top

In to the RBF, a suspension of chrysin (1 g, 3.93 mmol) and potassium carbonate (1.62 g, 11.81 mmol) in dimethyl formamide (10 ml) were added. The reaction mixture was heated to 383 K for 2–3 hrs. The reaction mixture was cooled to 313 K and methyl iodide (10 ml, 15.74 mmol) was slowly added with the help of dropping funnel. The reaction mixture was maintained for 8–9 hr at 313 K and monitored by HPLC. After completion of the reaction, the contents were quenched with water and stirred for 30–45 min at 303 K. The crude solid obtained was filtered and washed with plenty of water followed by methanol and dried under vacuum at 343 K. The compound was purified by column chromatography using ethyl acetate: n-hexane (30:70) as diluent. All the fractions were analyzed by HPLC. The highly pure column fractions were mixed and concentrated in a rotary evaporator. The resulting product was recrystallized from dichloromethane: n-hexane mixture (10 ml each). The obtained crystals were washed with n-hexane and dried under vacuum at 348 K. Yield: 70%

Refinement top

All H atoms were observed in a difference Fourier map. However, they were placed in idealized positions with C–H = 0.93 and 0.96 Å for aryl and methyl H, respectively. Their isotropic displacement parameters were tied to common free variables which were refined in subsequent cycles (for the aryl H-atoms the free variable was set to 0.06 which refined to 0.0716 (16) Å2 and for the methyl H-atoms the free variable was set to 0.07 and refined to 0.0795 (19) Å2).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids shown at the 50% probability level for all non-H atoms. H-atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure viewed along the a-axis. Dashed lines represent weak C–H···O interactions.
5,7-Dimethoxy-2-phenyl-4H-chromen-4-one top
Crystal data top
C17H14O4Z = 4
Mr = 282.28F(000) = 592
Triclinic, P1Dx = 1.377 Mg m3
Hall symbol: -P 1Melting point = 413–415 K
a = 7.3938 (17) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.430 (3) ÅCell parameters from 547 reflections
c = 16.547 (4) Åθ = 2.7–27.0°
α = 92.414 (4)°µ = 0.10 mm1
β = 102.723 (4)°T = 293 K
γ = 91.916 (4)°Rectangular, colourless
V = 1361.5 (6) Å30.35 × 0.32 × 0.29 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
6096 independent reflections
Radiation source: fine-focus sealed tube3897 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 0.3 pixels mm-1θmax = 28.0°, θmin = 2.1°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1414
Tmin = 0.967, Tmax = 0.977l = 2121
15401 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0509P)2 + 0.201P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
6096 reflectionsΔρmax = 0.17 e Å3
386 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.051 (3)
Crystal data top
C17H14O4γ = 91.916 (4)°
Mr = 282.28V = 1361.5 (6) Å3
Triclinic, P1Z = 4
a = 7.3938 (17) ÅMo Kα radiation
b = 11.430 (3) ŵ = 0.10 mm1
c = 16.547 (4) ÅT = 293 K
α = 92.414 (4)°0.35 × 0.32 × 0.29 mm
β = 102.723 (4)°
Data collection top
Bruker SMART APEX CCD
diffractometer
6096 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3897 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.977Rint = 0.042
15401 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.01Δρmax = 0.17 e Å3
6096 reflectionsΔρmin = 0.17 e Å3
386 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.84670 (17)0.61660 (10)0.25891 (7)0.0474 (3)
C2A0.7660 (2)0.57055 (15)0.18112 (10)0.0424 (4)
C3A0.7470 (3)0.63612 (16)0.11527 (11)0.0511 (5)
H3A0.69150.60140.06350.0716 (16)*
C4A0.8077 (3)0.75819 (17)0.11977 (12)0.0534 (5)
C5A0.9527 (3)0.92519 (15)0.22512 (12)0.0482 (4)
C6A1.0295 (3)0.96129 (16)0.30639 (12)0.0506 (5)
H6A1.07101.03900.31930.0716 (16)*
C7A1.0455 (3)0.88267 (16)0.36930 (11)0.0471 (4)
C8A0.9833 (2)0.76767 (15)0.35194 (11)0.0459 (4)
H8A0.99310.71480.39370.0716 (16)*
C9A0.9053 (2)0.73324 (14)0.26986 (11)0.0416 (4)
C10A0.8873 (2)0.80697 (15)0.20411 (11)0.0437 (4)
O11A0.7924 (3)0.81279 (13)0.05644 (9)0.0885 (6)
O12A0.9347 (2)0.99695 (11)0.16087 (8)0.0626 (4)
C13A1.0217 (3)1.11127 (17)0.17698 (14)0.0670 (6)
H13A0.96541.15500.21500.0795 (19)*
H13B1.00681.15070.12600.0795 (19)*
H13C1.15151.10510.20080.0795 (19)*
O14A1.1259 (2)0.92860 (11)0.44691 (8)0.0607 (4)
C15A1.1399 (3)0.85301 (18)0.51405 (12)0.0651 (6)
H15A1.01800.82470.51720.0795 (19)*
H15B1.19780.89550.56500.0795 (19)*
H15C1.21310.78790.50520.0795 (19)*
C16A0.7055 (2)0.44676 (15)0.18240 (10)0.0419 (4)
C17A0.7040 (3)0.39431 (16)0.25611 (11)0.0525 (5)
H17A0.74610.43700.30620.0716 (16)*
C18A0.6406 (3)0.27909 (17)0.25620 (13)0.0596 (5)
H18A0.64100.24510.30630.0716 (16)*
C19A0.5772 (3)0.21453 (17)0.18291 (13)0.0583 (5)
H19A0.53410.13720.18320.0716 (16)*
C20A0.5780 (3)0.26564 (17)0.10883 (13)0.0591 (5)
H20A0.53420.22270.05890.0716 (16)*
C21A0.6430 (3)0.37968 (16)0.10844 (11)0.0521 (5)
H21A0.64550.41250.05820.0716 (16)*
O1B0.47575 (17)0.66672 (10)0.35030 (7)0.0481 (3)
C2B0.5506 (2)0.75030 (15)0.41057 (10)0.0430 (4)
C3B0.5514 (3)0.86351 (16)0.39514 (11)0.0482 (4)
H3B0.59940.91750.43890.0716 (16)*
C4B0.4812 (2)0.90719 (15)0.31364 (11)0.0458 (4)
C5B0.3403 (2)0.83268 (15)0.16260 (11)0.0432 (4)
C6B0.2695 (3)0.73982 (16)0.10767 (11)0.0474 (4)
H6B0.22460.75310.05190.0716 (16)*
C7B0.2645 (2)0.62654 (15)0.13467 (10)0.0439 (4)
C8B0.3323 (2)0.60447 (15)0.21647 (10)0.0425 (4)
H8B0.32930.52890.23500.0716 (16)*
C9B0.4054 (2)0.69884 (15)0.27057 (10)0.0397 (4)
C10B0.4104 (2)0.81474 (14)0.24840 (10)0.0407 (4)
O11B0.4835 (2)1.01305 (11)0.30281 (8)0.0661 (4)
O12B0.34727 (19)0.94462 (10)0.13977 (8)0.0578 (4)
C13B0.2722 (4)0.96692 (18)0.05480 (12)0.0726 (7)
H13D0.34370.92880.02040.0795 (19)*
H13E0.27661.04980.04780.0795 (19)*
H13F0.14570.93710.03920.0795 (19)*
O14B0.19111 (19)0.54206 (11)0.07452 (7)0.0582 (4)
C15B0.1540 (3)0.42788 (16)0.09996 (12)0.0571 (5)
H15D0.26790.39590.12800.0795 (19)*
H15E0.09840.37810.05210.0795 (19)*
H15F0.07050.43260.13690.0795 (19)*
C16B0.6345 (2)0.69686 (16)0.48880 (11)0.0477 (4)
C17B0.7041 (3)0.5870 (2)0.48775 (13)0.0708 (6)
H17B0.69160.54440.43750.0716 (16)*
C18B0.7922 (4)0.5393 (2)0.56032 (16)0.0905 (8)
H18B0.84010.46530.55840.0716 (16)*
C19B0.8101 (4)0.5986 (3)0.63429 (16)0.0886 (9)
H19B0.87130.56620.68290.0716 (16)*
C20B0.7371 (4)0.7066 (3)0.63683 (13)0.0845 (8)
H20B0.74600.74670.68770.0716 (16)*
C21B0.6504 (3)0.7572 (2)0.56492 (12)0.0640 (6)
H21B0.60290.83130.56740.0716 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0561 (8)0.0411 (7)0.0418 (7)0.0064 (6)0.0050 (6)0.0036 (5)
C2A0.0397 (10)0.0445 (10)0.0415 (9)0.0022 (8)0.0068 (8)0.0014 (8)
C3A0.0570 (12)0.0483 (11)0.0431 (10)0.0088 (9)0.0020 (9)0.0040 (8)
C4A0.0564 (12)0.0493 (11)0.0490 (11)0.0052 (9)0.0011 (9)0.0123 (9)
C5A0.0462 (11)0.0412 (10)0.0572 (11)0.0008 (8)0.0108 (9)0.0066 (9)
C6A0.0551 (12)0.0382 (10)0.0579 (12)0.0019 (8)0.0131 (9)0.0017 (9)
C7A0.0470 (11)0.0482 (11)0.0463 (10)0.0001 (8)0.0125 (8)0.0051 (8)
C8A0.0487 (11)0.0457 (11)0.0431 (10)0.0013 (8)0.0098 (8)0.0023 (8)
C9A0.0395 (10)0.0369 (10)0.0479 (10)0.0021 (7)0.0094 (8)0.0004 (8)
C10A0.0410 (10)0.0407 (10)0.0475 (10)0.0014 (8)0.0056 (8)0.0041 (8)
O11A0.1298 (15)0.0642 (10)0.0536 (9)0.0281 (9)0.0169 (9)0.0215 (8)
O12A0.0768 (10)0.0429 (8)0.0616 (8)0.0094 (7)0.0014 (7)0.0124 (6)
C13A0.0828 (16)0.0411 (11)0.0732 (14)0.0029 (11)0.0086 (12)0.0073 (10)
O14A0.0793 (10)0.0523 (8)0.0473 (8)0.0068 (7)0.0104 (7)0.0076 (6)
C15A0.0802 (16)0.0634 (14)0.0472 (11)0.0097 (11)0.0077 (10)0.0046 (10)
C16A0.0382 (10)0.0424 (10)0.0455 (10)0.0002 (8)0.0103 (8)0.0033 (8)
C17A0.0615 (13)0.0478 (11)0.0468 (10)0.0043 (9)0.0101 (9)0.0012 (9)
C18A0.0715 (14)0.0504 (12)0.0575 (12)0.0033 (10)0.0150 (11)0.0125 (10)
C19A0.0613 (13)0.0415 (11)0.0712 (14)0.0060 (9)0.0139 (11)0.0045 (10)
C20A0.0670 (14)0.0486 (12)0.0583 (12)0.0090 (10)0.0103 (10)0.0081 (10)
C21A0.0586 (12)0.0505 (11)0.0458 (10)0.0063 (9)0.0098 (9)0.0015 (9)
O1B0.0634 (8)0.0400 (7)0.0363 (6)0.0004 (6)0.0005 (6)0.0056 (5)
C2B0.0442 (10)0.0437 (10)0.0389 (9)0.0000 (8)0.0052 (8)0.0002 (8)
C3B0.0537 (12)0.0429 (11)0.0447 (10)0.0017 (8)0.0052 (9)0.0014 (8)
C4B0.0467 (11)0.0385 (10)0.0503 (10)0.0006 (8)0.0070 (8)0.0032 (8)
C5B0.0458 (10)0.0379 (10)0.0458 (10)0.0026 (8)0.0086 (8)0.0094 (8)
C6B0.0551 (11)0.0485 (11)0.0368 (9)0.0023 (9)0.0054 (8)0.0084 (8)
C7B0.0466 (11)0.0438 (10)0.0400 (9)0.0000 (8)0.0070 (8)0.0013 (8)
C8B0.0485 (11)0.0359 (9)0.0427 (10)0.0003 (8)0.0091 (8)0.0054 (7)
C9B0.0419 (10)0.0410 (10)0.0357 (9)0.0024 (7)0.0066 (7)0.0059 (7)
C10B0.0402 (10)0.0387 (9)0.0419 (9)0.0030 (7)0.0057 (8)0.0055 (7)
O11B0.0908 (11)0.0367 (8)0.0641 (9)0.0052 (7)0.0034 (8)0.0062 (6)
O12B0.0784 (10)0.0411 (7)0.0495 (7)0.0003 (6)0.0023 (7)0.0152 (6)
C13B0.112 (2)0.0524 (13)0.0505 (12)0.0059 (12)0.0084 (12)0.0219 (10)
O14B0.0795 (10)0.0478 (8)0.0414 (7)0.0099 (7)0.0034 (6)0.0021 (6)
C15B0.0674 (14)0.0449 (11)0.0562 (12)0.0079 (9)0.0101 (10)0.0039 (9)
C16B0.0450 (11)0.0562 (12)0.0401 (10)0.0037 (9)0.0058 (8)0.0066 (8)
C17B0.0904 (17)0.0693 (15)0.0514 (12)0.0209 (12)0.0086 (11)0.0136 (11)
C18B0.104 (2)0.0924 (19)0.0740 (17)0.0314 (16)0.0065 (15)0.0352 (15)
C19B0.0694 (17)0.131 (3)0.0593 (15)0.0098 (16)0.0052 (12)0.0459 (17)
C20B0.0812 (18)0.126 (2)0.0370 (11)0.0270 (17)0.0028 (11)0.0029 (13)
C21B0.0662 (14)0.0742 (15)0.0465 (11)0.0095 (11)0.0047 (10)0.0034 (10)
Geometric parameters (Å, º) top
O1A—C2A1.369 (2)O1B—C2B1.362 (2)
O1A—C9A1.380 (2)O1B—C9B1.3773 (19)
C2A—C3A1.333 (2)C2B—C3B1.329 (2)
C2A—C16A1.472 (2)C2B—C16B1.474 (2)
C3A—C4A1.445 (3)C3B—C4B1.450 (2)
C3A—H3A0.9300C3B—H3B0.9300
C4A—O11A1.228 (2)C4B—O11B1.231 (2)
C4A—C10A1.468 (3)C4B—C10B1.474 (2)
C5A—O12A1.356 (2)C5B—O12B1.3517 (19)
C5A—C6A1.379 (3)C5B—C6B1.378 (2)
C5A—C10A1.422 (2)C5B—C10B1.426 (2)
C6A—C7A1.392 (2)C6B—C7B1.389 (2)
C6A—H6A0.9300C6B—H6B0.9300
C7A—O14A1.365 (2)C7B—O14B1.365 (2)
C7A—C8A1.375 (2)C7B—C8B1.373 (2)
C8A—C9A1.388 (2)C8B—C9B1.387 (2)
C8A—H8A0.9300C8B—H8B0.9300
C9A—C10A1.390 (2)C9B—C10B1.391 (2)
O12A—C13A1.425 (2)O12B—C13B1.430 (2)
C13A—H13A0.9600C13B—H13D0.9600
C13A—H13B0.9600C13B—H13E0.9600
C13A—H13C0.9600C13B—H13F0.9600
O14A—C15A1.424 (2)O14B—C15B1.425 (2)
C15A—H15A0.9600C15B—H15D0.9600
C15A—H15B0.9600C15B—H15E0.9600
C15A—H15C0.9600C15B—H15F0.9600
C16A—C17A1.384 (2)C16B—C17B1.374 (3)
C16A—C21A1.395 (2)C16B—C21B1.390 (3)
C17A—C18A1.383 (3)C17B—C18B1.378 (3)
C17A—H17A0.9300C17B—H17B0.9300
C18A—C19A1.373 (3)C18B—C19B1.352 (4)
C18A—H18A0.9300C18B—H18B0.9300
C19A—C20A1.381 (3)C19B—C20B1.366 (4)
C19A—H19A0.9300C19B—H19B0.9300
C20A—C21A1.375 (3)C20B—C21B1.381 (3)
C20A—H20A0.9300C20B—H20B0.9300
C21A—H21A0.9300C21B—H21B0.9300
C2A—O1A—C9A119.71 (13)C2B—O1B—C9B119.73 (13)
C3A—C2A—O1A120.94 (16)C3B—C2B—O1B121.51 (15)
C3A—C2A—C16A127.26 (16)C3B—C2B—C16B127.33 (16)
O1A—C2A—C16A111.79 (14)O1B—C2B—C16B111.08 (15)
C2A—C3A—C4A123.68 (17)C2B—C3B—C4B123.40 (17)
C2A—C3A—H3A118.2C2B—C3B—H3B118.3
C4A—C3A—H3A118.2C4B—C3B—H3B118.3
O11A—C4A—C3A120.59 (18)O11B—C4B—C3B120.83 (16)
O11A—C4A—C10A124.93 (17)O11B—C4B—C10B125.04 (16)
C3A—C4A—C10A114.47 (16)C3B—C4B—C10B114.12 (15)
O12A—C5A—C6A123.64 (16)O12B—C5B—C6B123.15 (15)
O12A—C5A—C10A115.79 (16)O12B—C5B—C10B116.05 (15)
C6A—C5A—C10A120.57 (17)C6B—C5B—C10B120.80 (15)
C5A—C6A—C7A120.67 (17)C5B—C6B—C7B120.73 (16)
C5A—C6A—H6A119.7C5B—C6B—H6B119.6
C7A—C6A—H6A119.7C7B—C6B—H6B119.6
O14A—C7A—C8A124.12 (17)O14B—C7B—C8B123.99 (16)
O14A—C7A—C6A115.13 (16)O14B—C7B—C6B115.29 (15)
C8A—C7A—C6A120.76 (17)C8B—C7B—C6B120.71 (16)
C7A—C8A—C9A117.70 (16)C7B—C8B—C9B117.70 (16)
C7A—C8A—H8A121.2C7B—C8B—H8B121.1
C9A—C8A—H8A121.2C9B—C8B—H8B121.1
O1A—C9A—C8A113.28 (15)O1B—C9B—C8B113.06 (14)
O1A—C9A—C10A122.35 (15)O1B—C9B—C10B122.23 (15)
C8A—C9A—C10A124.36 (16)C8B—C9B—C10B124.70 (15)
C9A—C10A—C5A115.92 (16)C9B—C10B—C5B115.31 (15)
C9A—C10A—C4A118.78 (16)C9B—C10B—C4B118.81 (15)
C5A—C10A—C4A125.28 (16)C5B—C10B—C4B125.86 (15)
C5A—O12A—C13A117.71 (15)C5B—O12B—C13B117.79 (14)
O12A—C13A—H13A109.5O12B—C13B—H13D109.5
O12A—C13A—H13B109.5O12B—C13B—H13E109.5
H13A—C13A—H13B109.5H13D—C13B—H13E109.5
O12A—C13A—H13C109.5O12B—C13B—H13F109.5
H13A—C13A—H13C109.5H13D—C13B—H13F109.5
H13B—C13A—H13C109.5H13E—C13B—H13F109.5
C7A—O14A—C15A117.48 (15)C7B—O14B—C15B117.91 (13)
O14A—C15A—H15A109.5O14B—C15B—H15D109.5
O14A—C15A—H15B109.5O14B—C15B—H15E109.5
H15A—C15A—H15B109.5H15D—C15B—H15E109.5
O14A—C15A—H15C109.5O14B—C15B—H15F109.5
H15A—C15A—H15C109.5H15D—C15B—H15F109.5
H15B—C15A—H15C109.5H15E—C15B—H15F109.5
C17A—C16A—C21A118.04 (16)C17B—C16B—C21B118.44 (18)
C17A—C16A—C2A121.46 (16)C17B—C16B—C2B120.39 (17)
C21A—C16A—C2A120.47 (15)C21B—C16B—C2B121.14 (18)
C18A—C17A—C16A120.81 (18)C16B—C17B—C18B120.7 (2)
C18A—C17A—H17A119.6C16B—C17B—H17B119.7
C16A—C17A—H17A119.6C18B—C17B—H17B119.7
C19A—C18A—C17A120.55 (18)C19B—C18B—C17B120.9 (3)
C19A—C18A—H18A119.7C19B—C18B—H18B119.5
C17A—C18A—H18A119.7C17B—C18B—H18B119.5
C18A—C19A—C20A119.32 (18)C18B—C19B—C20B119.3 (2)
C18A—C19A—H19A120.3C18B—C19B—H19B120.4
C20A—C19A—H19A120.3C20B—C19B—H19B120.4
C21A—C20A—C19A120.36 (18)C19B—C20B—C21B121.0 (2)
C21A—C20A—H20A119.8C19B—C20B—H20B119.5
C19A—C20A—H20A119.8C21B—C20B—H20B119.5
C20A—C21A—C16A120.90 (17)C20B—C21B—C16B119.7 (2)
C20A—C21A—H21A119.5C20B—C21B—H21B120.2
C16A—C21A—H21A119.5C16B—C21B—H21B120.2
C9A—O1A—C2A—C3A1.6 (2)C9B—O1B—C2B—C3B2.6 (2)
C9A—O1A—C2A—C16A177.46 (14)C9B—O1B—C2B—C16B174.21 (14)
O1A—C2A—C3A—C4A0.1 (3)O1B—C2B—C3B—C4B2.6 (3)
C16A—C2A—C3A—C4A178.82 (18)C16B—C2B—C3B—C4B173.59 (17)
C2A—C3A—C4A—O11A177.3 (2)C2B—C3B—C4B—O11B179.30 (18)
C2A—C3A—C4A—C10A2.1 (3)C2B—C3B—C4B—C10B0.8 (3)
O12A—C5A—C6A—C7A179.36 (17)O12B—C5B—C6B—C7B179.50 (16)
C10A—C5A—C6A—C7A0.4 (3)C10B—C5B—C6B—C7B0.1 (3)
C5A—C6A—C7A—O14A179.18 (16)C5B—C6B—C7B—O14B179.95 (16)
C5A—C6A—C7A—C8A0.7 (3)C5B—C6B—C7B—C8B0.9 (3)
O14A—C7A—C8A—C9A179.62 (16)O14B—C7B—C8B—C9B179.06 (16)
C6A—C7A—C8A—C9A0.3 (3)C6B—C7B—C8B—C9B0.0 (3)
C2A—O1A—C9A—C8A179.66 (14)C2B—O1B—C9B—C8B179.34 (15)
C2A—O1A—C9A—C10A0.7 (2)C2B—O1B—C9B—C10B1.1 (2)
C7A—C8A—C9A—O1A179.81 (15)C7B—C8B—C9B—O1B177.72 (15)
C7A—C8A—C9A—C10A0.6 (3)C7B—C8B—C9B—C10B1.8 (3)
O1A—C9A—C10A—C5A179.54 (15)O1B—C9B—C10B—C5B176.98 (15)
C8A—C9A—C10A—C5A0.9 (3)C8B—C9B—C10B—C5B2.5 (3)
O1A—C9A—C10A—C4A1.6 (3)O1B—C9B—C10B—C4B4.5 (2)
C8A—C9A—C10A—C4A177.98 (16)C8B—C9B—C10B—C4B176.01 (16)
O12A—C5A—C10A—C9A179.87 (15)O12B—C5B—C10B—C9B178.86 (15)
C6A—C5A—C10A—C9A0.4 (3)C6B—C5B—C10B—C9B1.5 (2)
O12A—C5A—C10A—C4A1.4 (3)O12B—C5B—C10B—C4B2.7 (3)
C6A—C5A—C10A—C4A178.39 (17)C6B—C5B—C10B—C4B176.92 (17)
O11A—C4A—C10A—C9A176.5 (2)O11B—C4B—C10B—C9B175.93 (17)
C3A—C4A—C10A—C9A2.9 (3)C3B—C4B—C10B—C9B4.1 (2)
O11A—C4A—C10A—C5A2.2 (3)O11B—C4B—C10B—C5B2.5 (3)
C3A—C4A—C10A—C5A178.40 (17)C3B—C4B—C10B—C5B177.47 (16)
C6A—C5A—O12A—C13A8.5 (3)C6B—C5B—O12B—C13B1.8 (3)
C10A—C5A—O12A—C13A171.26 (17)C10B—C5B—O12B—C13B177.77 (17)
C8A—C7A—O14A—C15A2.3 (3)C8B—C7B—O14B—C15B11.0 (3)
C6A—C7A—O14A—C15A177.86 (17)C6B—C7B—O14B—C15B169.90 (16)
C3A—C2A—C16A—C17A168.56 (19)C3B—C2B—C16B—C17B148.0 (2)
O1A—C2A—C16A—C17A10.4 (2)O1B—C2B—C16B—C17B28.5 (3)
C3A—C2A—C16A—C21A9.7 (3)C3B—C2B—C16B—C21B30.0 (3)
O1A—C2A—C16A—C21A171.29 (15)O1B—C2B—C16B—C21B153.46 (17)
C21A—C16A—C17A—C18A0.6 (3)C21B—C16B—C17B—C18B1.8 (3)
C2A—C16A—C17A—C18A177.72 (17)C2B—C16B—C17B—C18B176.3 (2)
C16A—C17A—C18A—C19A0.3 (3)C16B—C17B—C18B—C19B0.9 (4)
C17A—C18A—C19A—C20A0.3 (3)C17B—C18B—C19B—C20B0.9 (4)
C18A—C19A—C20A—C21A0.5 (3)C18B—C19B—C20B—C21B1.8 (4)
C19A—C20A—C21A—C16A1.5 (3)C19B—C20B—C21B—C16B0.9 (4)
C17A—C16A—C21A—C20A1.5 (3)C17B—C16B—C21B—C20B0.9 (3)
C2A—C16A—C21A—C20A176.89 (17)C2B—C16B—C21B—C20B177.16 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17A—H17A···O1A0.932.382.713 (2)101
C13B—H13E···O11Ai0.962.373.169 (2)141
C19A—H19A···O11Bii0.932.573.256 (2)131
C19A—H19A···O12Bii0.932.553.442 (2)161
C13A—H13A···Cg5iii0.963.143.838131
C15A—H15A···Cg60.963.164.059156
C15B—H15D···Cg50.962.853.786166
Symmetry codes: (i) x+1, y+2, z; (ii) x, y1, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H14O4
Mr282.28
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.3938 (17), 11.430 (3), 16.547 (4)
α, β, γ (°)92.414 (4), 102.723 (4), 91.916 (4)
V3)1361.5 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.35 × 0.32 × 0.29
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.967, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
15401, 6096, 3897
Rint0.042
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.126, 1.01
No. of reflections6096
No. of parameters386
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.17

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17A—H17A···O1A0.932.382.713 (2)100.8
C13B—H13E···O11Ai0.962.373.169 (2)140.9
C19A—H19A···O11Bii0.932.573.256 (2)131.0
C19A—H19A···O12Bii0.932.553.442 (2)161.1
C13A—H13A···Cg5iii0.963.1423.838130.71
C15A—H15A···Cg60.963.1644.059155.88
C15B—H15D···Cg50.962.8473.786166.25
Symmetry codes: (i) x+1, y+2, z; (ii) x, y1, z; (iii) x, y+1, z.
ππ Stacking interactions (Å, °) top
Cg···Cgαperp
Cg1Cg23.972 (1)10.883.575
Cg1Cg43.646 (1)8.063.578
Cg1Cg4i3.785 (1)8.063.535
Cg2Cg3i3.792 (1)9.893.599
Cg2Cg33.883 (1)9.893.743
Cg3Cg4i3.769 (1)7.073.516
Symmetry code: (i) 1+x, y, z.

Cg1, Cg2, Cg3, and Cg4 are the centroids of the O1A/C2A–C4A/C9A/C10A, O1B/C2B–C4B/C9B/C10B, C5A–C10A and C5B–C10B rings, respectively. α is the dihedral angle between ring planes and perp is the perpendicular distance between ring planes.
 

Acknowledgements

AN thanks Dr S. Kannan and Dr B. S. Krishnamurthy, School of Chemistry, Bharathidasan University, Tiruchirappalli, and Organica Aromatics Pvt Ltd Bangalore, India, for providing laboratory facilities.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrooks, G. T. (1998). Pestic. Sci. 22, 41–50.  CrossRef Web of Science Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids, pp. 125–167. Amsterdam: Elsevier.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 11–40. New York: Oxford University Press.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationHatakeyama, S., Ochi, N., Numata, H. & Takano, S. (1988). J. Chem. Soc. Chem. Commun. pp. 1022–1024.  Google Scholar
First citationHyana, T. & Saimoto, H. (1987). Jpn Patent JP 621 812 768.  Google Scholar
First citationLiu, C.-B., Chen, Y.-H., Zhou, X.-Y., Ding, L. & Wen, H.-L. (2007). Acta Cryst. E63, o90–o91.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437–o1438.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWang, J.-F., Fang, M.-J., Huang, H.-Q., Li, G.-L., Su, W.-J. & Zhao, Y.-F. (2003). Acta Cryst. E59, o1517–o1518.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, J.-F., Zhang, Y.-J., Fang, M.-J., Huang, Y.-J., Wei, Z.-B., Zheng, Z.-H., Su, W.-J. & Zhao, Y.-F. (2003). Acta Cryst. E59, o1244–o1245.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages o504-o505
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds