organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages o490-o491

(E)-2-[(2-Hydr­­oxy-5-nitro­phen­yl)iminiometh­yl]phenolate

aDepartment of Chemistry, Morgan State University, Baltimore, MD 21251, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA, and cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 8 January 2009; accepted 8 January 2009; online 11 February 2009)

In the title mol­ecule, C13H10N2O4, the dihedral angle between the mean planes of the benzene and phenolate rings is 21.6 (4)°. The nitro O atoms are twisted slightly out of the plane of the ring to which the nitro group is attached [dihedral angle 8.4 (3)°]. The amine group forms an intra­molecular hydrogen bond with both nearby O atoms. An extended π delocalization throughout the entire mol­ecule exists producing a zwitterionic effect in this region of the mol­ecule. The shortened C—O bond [1.2997 (15) Å] in concert with the slightly longer C—OH bond [1.3310 (16) Å] provide evidence for this effect. The crystal packing is influenced by strong inter­molecular O—H⋯O hydrogen bonding. As a result, mol­ecules are linked into an infinite zigzag chain running along the b axis. A MOPAC PM3 calculation provides support to these observations.

Related literature

For related structures, see: Ersanlı et al. (2003[Ersanlı, C. C., Albayrak, Ç., Odabaşoǧlu, M. & Erdönmez, A. (2003). Acta Cryst. C59, o601-o602.]); Odabaşoğlu et al. (2006[Odabaşoğlu, M., Albayrak, C. & Büyükgüngör, O. (2006). Acta Cryst. E62, o1094-o1096.]); Jasinski et al. (2007[Jasinski, J. P., Butcher, R. J., Narayana, B., Swamy, M. T. & Yathirajan, H. S. (2007). Acta Cryst. E63, o4566-o4567.]); Elerman et al. (1995[Elerman, Y., Elmali, A., Atakol, O. & Svoboda, I. (1995). Acta Cryst. C51, 2344-2346.]); Hijji et al. (2008[Hijji, Y. M., Barare, B., Kennedy, A. P. & Butcher, R. (2008). Sensors Actuators B Chem. doi:10.1016/j.SnB.2008.11.045. ], 2009[Hijji, Y. M., Barare, B., Butcher, R. J. & Jasinski, J. P. (2009). Acta Cryst. E65, o291-o292.]). For the application of Schiff bases in organic synthesis, see: Barba et al. (2001[Barba, V., Cuahutle, D., Santillan, R. & Farfan, N. (2001). Can. J. Chem. 79, 1229-1237.]); Rodriguez et al. (2005[Rodriguez, M., Ocha, M. E., Santillan, R., Farfan, N. & Barba, V. (2005). J. Organomet. Chem., 690, 2975-2988.]). For details of the MOPAC PM3 calculation, see: Schmidt & Polik (2007[Schmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO, LLC, Holland, MI, USA, available from http://www.webmo.net.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10N2O4

  • Mr = 258.23

  • Monoclinic, P 21 /c

  • a = 7.3949 (3) Å

  • b = 9.1058 (4) Å

  • c = 17.2734 (6) Å

  • β = 96.387 (4)°

  • V = 1155.91 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 (2) K

  • 0.45 × 0.36 × 0.21 mm

Data collection
  • Oxford Diffraction Gemini R diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlisPro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.950, Tmax = 0.977

  • 16362 measured reflections

  • 3889 independent reflections

  • 2071 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.161

  • S = 1.01

  • 3889 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O4i 0.82 1.72 2.5407 (13) 175
N2—H2B⋯O4 0.86 1.91 2.5973 (15) 135
N2—H2B⋯O1 0.86 2.34 2.6532 (14) 102
C2—H2A⋯O4i 0.93 2.60 3.2233 (18) 125
C13—H13A⋯O2ii 0.93 2.65 3.5555 (19) 163
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+2, -z+1.

Data collection: CrysAlisPro (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlisPro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlisPro; data reduction: CrysAlisRed (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlisPro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have extensive application in industry. Much interest in these compounds and their complexes is due to their anti-tumor activities. The boronate complex derivative of the title compound (Barba et al. 2001) displays it in the phenol-imine form, which can undergo an imine Diels-Alder reaction to produce a 3,4-dihydroquinoline (Rodriguez et al., 2005). Compounds of this type can also be used as anion sensors in acetonitrile (Hijji et al., 2008) and tend to exist in the keto-amine form, which is generally favored over the phenol-imine form in the solid state. While the keto-amine tautomer is commonly produced in these complexes (Ersanlı et al., 2003; Odabaşoğlu et al., 2006; Elerman et al., 1995; Jasinski et al., 2007), the title compound adapts a phenol-iminio tautomer as the stable form which is confirmed by the X-ray data and in agreement with that found via NMR data in DMSO solution. The stability of this form may be enhanced by the electronic effect of the nitro group. The dark color in the solid state is generally an indication of increased conjugation, while the yellow colored solutions, as in acetonitrile or anhydrous DMSO, may be due to conversion to the phenol-iminio tautomer.

The title molecule, C13H10N2O4, consists of a 2-hydroxy-5-nitrophenyliminio group and a phenolate group bonded to a methylene carbon atom with both of the planar six-membered rings twisted from the plane of the molecule. The dihedral angle between the mean planes of the phenyl and phenolate rings measures 21.6 (4)°. The nitro oxygen atoms are twisted slightly out of the plane of the molecule [torsion angles = 170.80 (13) (O2—N1—C4—C5); -7.5 (2)° (O3—N1—C4—C5); -5.8 (2)° (O2—N1—C4—C3); 175.92 (14)° (O3—N1—C4—C3)]. The phenolate (O4) and hydroxy (O1) oxygen atoms are essentially in the plane of the molecule [torsion angles = -179.51 (13)° (O4—C9—C10—C11); -3.2 (2)° (O4—C9—C8—C7); -178.63 (14)° (O1—C1—C2—C3); 178.83 (12)° (O1—C1—C6—C5)]. The iminio group forms an intramolecular hydrogen bond with each of the nearby oxygen atoms (O1 and O4) (see Fig. 1 and Table 1). There appears to be an extended π delocalization effect throughout the entire molecule producing a zwitterionic effect in this region of the molecule similar to that seen in a close structurally related dinitro compound (Hijji et al., 2009). The shortened C9—O4 bond (1.2997 (15) Å in concert with the slightly longer C1—O1 bond (1.3310 (16) Å) provide structural evidence of this effect in a similar fashion.

Crystal packing is influenced by extensive strong intermolecular O—H···O hydrogen bonding between the phenolate and hydroxy oxygen atoms (O4 & O1) and their respective hydrogen atoms within the π delocalized region (O1—H10···O4; 2.540 (7) Å) of the molecule. Additional weak intermolecular C—H···O hydrogen bond interactions occur involving the phenyl (C2) and phenolate (C13) groups, respectively. All of the hydrogen bond interactions are summarized in Table 1. A s a result the molecules are linked into an infinite polymeric chain diagonally along the [101] plane of the unit cell in an alternate inverted pattern (Fig. 2). In addition, weak Cg2–Cg2 (3.895 (2) Å; slippage = 1.09 (2)°; -x, 2 - y, -z) π-π stacking ring interactions and N1–O2···Cg2 π-ring interactions (3.648 (4) Å; x, -1 + y, z) also occur where Cg2 = center of gravity of the C8–C13 ring.

After a MOPAC PM3 calculation [Parameterized Model 3 approximation together with the Hartree-Fock closed-shell (restricted) wavefunction was used and minimizations were teminnated at an r.m.s. gradient of less than 0.01 kJ mol-1 Å-1] of the zwitterionic form with WebMO Pro (Schmidt & Polik, 2007), the mean planes between the phenyl and phenolate rings changes to 3.7 (7)°, producing a significantly less twisted, nearly planar, molecule than that observed in the crystalline environment. It is apparent that the extensive hydrogen bonding, π-π stacking and π-ring intermolecular interactions significantly influence crystal packing with this molecule.

Related literature top

For related structures, see: Ersanlı et al. (2003); Odabaşoğlu et al. (2006); Jasinski et al. (2007); Elerman et al. (1995); Hijji et al. (2008, 2009). For the application of Schiff bases in organic synthesis, see: Barba et al. (2001); Rodriguez et al. (2005). For related literature, see: Schmidt & Polik (2007).

Experimental top

2-Amino-4-nitrophenol (0.15 g, 1 mmol) and salicylaldehyde (0.12 g, 1 mmol) were mixed neat in a loosely capped vial, forming a light orange solid. The mixture was heated at full power in a conventional spacemaker II microwave oven for two minutes forming a deep orange product. The reaction mixture was recrystallized from a 1:1 mixture (v:v) of methanol and diethyl ether affording 0.18 g, 67% yield of the title compound as dark purple crystals. The physical data is in agreement with literature (Barba et al., 2001), mp 505–508 K, GC/MS, m/z: 258 (M+), 211,165, 77, 51. 1H-NMR (400 MHz, DMSO-d6) δ (p.p.m.): 13.21(s, 1H), 11.41(s, 1H), 9.10(s, 1H), 8.28(d, J = 2.7 Hz, 1H), 8.07 (dd, J = 8.87, 2.7 Hz, 1H), 7.70 (dd, J = 7.65, 1.3 Hz, 1H), 7.44 (dt, J = 7.6,1.5 Hz, 1H), 7.14 (d, J = 9.03 Hz, 1H), 6.98 (t, J = 7.7, H), 6.96 (d, J = 8.5 Hz, 1H). 13C-NMR (100 MHz, DMSO-d6) δ (p.p.m.): 164.4 (CH), 160.5 (C), 157.6 (C), 139.9 (C), 135.7 (C), 133.5 (CH), 132.7 (CH), 123.7 (CH), 119.4 (CH), 117.2 (CH), 116.7 (CH), 116.3 (CH), 115.3 (CH).

Refinement top

All H atoms could be seen in a difference fourier map. Nevertheless, they were placed in their calculated positions and then refined using the riding model with O—H = 0.82, N—H = 0.86 and C—H = 0.93 Å, and with Uiso(H) = 1.18–1.20Ueq(C, N, O).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of C13H10N2O4, showing the atom numbering scheme and 50% probability displacement ellipsoids. Dashed lines indicate intramolecular N–H···O hydrogen bonds.
[Figure 2] Fig. 2. The molecular packing for C13H10N2O4 viewed down the b axis. Dashed lines indicate intermolecular O–H···O, C–H···O and intramolecular N–H···O hydrogen bonds.
(E)-2-[(2-Hydroxy-5-nitrophenyl)iminiomethyl]phenolate top
Crystal data top
C13H10N2O4F(000) = 536
Mr = 258.23Dx = 1.484 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5321 reflections
a = 7.3949 (3) Åθ = 4.6–32.6°
b = 9.1058 (4) ŵ = 0.11 mm1
c = 17.2734 (6) ÅT = 296 K
β = 96.387 (4)°Prism, yellow
V = 1155.91 (8) Å30.45 × 0.36 × 0.21 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R
diffractometer
3889 independent reflections
Radiation source: fine-focus sealed tube2071 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 10.5081 pixels mm-1θmax = 32.5°, θmin = 4.6°
ϕ and ω scansh = 1011
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1213
Tmin = 0.950, Tmax = 0.977l = 2524
16362 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0893P)2]
where P = (Fo2 + 2Fc2)/3
3889 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C13H10N2O4V = 1155.91 (8) Å3
Mr = 258.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.3949 (3) ŵ = 0.11 mm1
b = 9.1058 (4) ÅT = 296 K
c = 17.2734 (6) Å0.45 × 0.36 × 0.21 mm
β = 96.387 (4)°
Data collection top
Oxford Diffraction Gemini R
diffractometer
3889 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
2071 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.977Rint = 0.045
16362 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.01Δρmax = 0.36 e Å3
3889 reflectionsΔρmin = 0.23 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.07674 (16)0.78106 (11)0.74658 (6)0.0506 (3)
H1O0.02130.82530.77790.061*
O20.56661 (19)1.27359 (14)0.63179 (8)0.0696 (4)
O30.64896 (19)1.09097 (16)0.56567 (8)0.0797 (5)
O40.10989 (15)0.42056 (11)0.66269 (5)0.0475 (3)
N10.56076 (17)1.14379 (16)0.61491 (7)0.0494 (3)
N20.25299 (15)0.67241 (13)0.63378 (6)0.0367 (3)
H2B0.20980.61460.66650.044*
C70.27637 (17)0.61689 (15)0.56560 (7)0.0353 (3)
H7A0.33010.67550.53040.042*
C10.19513 (18)0.87143 (15)0.71860 (7)0.0372 (3)
C20.2271 (2)1.01473 (16)0.74472 (8)0.0433 (4)
H2A0.16531.05080.78470.052*
C30.3485 (2)1.10366 (16)0.71228 (8)0.0430 (4)
H3A0.36881.19950.72970.052*
C40.44018 (19)1.04784 (16)0.65308 (8)0.0383 (3)
C50.41405 (19)0.90591 (15)0.62591 (8)0.0382 (3)
H5A0.47780.87060.58630.046*
C60.29168 (18)0.81772 (15)0.65867 (7)0.0346 (3)
C80.22475 (18)0.47420 (15)0.54298 (7)0.0330 (3)
C90.13664 (18)0.37863 (15)0.59295 (7)0.0357 (3)
C100.0795 (2)0.23976 (16)0.56283 (8)0.0430 (4)
H10A0.01990.17580.59340.052*
C110.1105 (2)0.19794 (16)0.48953 (9)0.0464 (4)
H11A0.07240.10560.47140.056*
C120.1984 (2)0.29107 (17)0.44103 (8)0.0443 (4)
H12A0.21960.26010.39150.053*
C130.25243 (19)0.42681 (15)0.46681 (8)0.0380 (3)
H13A0.30820.48950.43420.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0648 (7)0.0424 (6)0.0510 (6)0.0085 (5)0.0346 (5)0.0106 (5)
O20.0823 (9)0.0445 (8)0.0842 (9)0.0225 (7)0.0183 (7)0.0007 (6)
O30.0888 (10)0.0751 (10)0.0847 (9)0.0308 (8)0.0520 (8)0.0116 (7)
O40.0642 (7)0.0413 (6)0.0418 (5)0.0029 (5)0.0272 (5)0.0021 (4)
N10.0507 (8)0.0468 (8)0.0520 (7)0.0143 (6)0.0115 (6)0.0001 (6)
N20.0446 (6)0.0301 (6)0.0385 (6)0.0019 (5)0.0180 (5)0.0009 (5)
C70.0367 (7)0.0335 (7)0.0383 (7)0.0011 (6)0.0153 (5)0.0007 (5)
C10.0465 (8)0.0325 (7)0.0348 (6)0.0015 (6)0.0140 (6)0.0004 (5)
C20.0530 (9)0.0387 (8)0.0407 (7)0.0013 (7)0.0159 (6)0.0064 (6)
C30.0518 (9)0.0337 (8)0.0439 (7)0.0056 (6)0.0068 (6)0.0033 (6)
C40.0412 (7)0.0361 (8)0.0383 (7)0.0059 (6)0.0075 (6)0.0018 (6)
C50.0422 (8)0.0354 (8)0.0390 (7)0.0021 (6)0.0138 (6)0.0021 (6)
C60.0407 (7)0.0298 (7)0.0346 (6)0.0003 (6)0.0091 (5)0.0021 (5)
C80.0347 (6)0.0303 (7)0.0360 (6)0.0010 (5)0.0133 (5)0.0007 (5)
C90.0378 (7)0.0324 (7)0.0390 (7)0.0034 (6)0.0138 (5)0.0035 (5)
C100.0466 (8)0.0327 (8)0.0509 (8)0.0040 (6)0.0109 (6)0.0070 (6)
C110.0552 (9)0.0316 (8)0.0522 (8)0.0028 (7)0.0050 (7)0.0038 (6)
C120.0551 (9)0.0401 (9)0.0390 (7)0.0018 (7)0.0113 (6)0.0043 (6)
C130.0434 (7)0.0347 (8)0.0382 (7)0.0007 (6)0.0156 (6)0.0002 (5)
Geometric parameters (Å, º) top
O1—C11.3310 (16)C3—C41.3847 (19)
O1—H1O0.8200C3—H3A0.9300
O2—N11.2170 (18)C4—C51.3813 (19)
O3—N11.2262 (16)C5—C61.3776 (19)
O4—C91.2997 (15)C5—H5A0.9300
N1—C41.4574 (18)C8—C131.4210 (17)
N2—C71.3105 (16)C8—C91.4325 (18)
N2—C61.4107 (17)C9—C101.414 (2)
N2—H2B0.8600C10—C111.366 (2)
C7—C81.3977 (19)C10—H10A0.9300
C7—H7A0.9300C11—C121.402 (2)
C1—C21.392 (2)C11—H11A0.9300
C1—C61.4089 (18)C12—C131.359 (2)
C2—C31.374 (2)C12—H12A0.9300
C2—H2A0.9300C13—H13A0.9300
C1—O1—H1O109.5C6—C5—H5A120.7
O2—N1—O3122.66 (14)C4—C5—H5A120.7
O2—N1—C4118.75 (13)C5—C6—C1120.61 (12)
O3—N1—C4118.56 (14)C5—C6—N2122.80 (12)
C7—N2—C6126.38 (12)C1—C6—N2116.58 (12)
C7—N2—H2B116.8C7—C8—C13118.57 (12)
C6—N2—H2B116.8C7—C8—C9121.65 (11)
N2—C7—C8123.41 (12)C13—C8—C9119.70 (12)
N2—C7—H7A118.3O4—C9—C10122.26 (12)
C8—C7—H7A118.3O4—C9—C8120.42 (12)
O1—C1—C2123.82 (12)C10—C9—C8117.32 (12)
O1—C1—C6117.37 (12)C11—C10—C9121.09 (13)
C2—C1—C6118.80 (12)C11—C10—H10A119.5
C3—C2—C1121.01 (13)C9—C10—H10A119.5
C3—C2—H2A119.5C10—C11—C12121.48 (14)
C1—C2—H2A119.5C10—C11—H11A119.3
C2—C3—C4118.72 (14)C12—C11—H11A119.3
C2—C3—H3A120.6C13—C12—C11119.57 (13)
C4—C3—H3A120.6C13—C12—H12A120.2
C5—C4—C3122.21 (13)C11—C12—H12A120.2
C5—C4—N1118.47 (13)C12—C13—C8120.82 (13)
C3—C4—N1119.23 (13)C12—C13—H13A119.6
C6—C5—C4118.64 (12)C8—C13—H13A119.6
C6—N2—C7—C8175.95 (12)C2—C1—C6—N2179.38 (12)
O1—C1—C2—C3178.63 (14)C7—N2—C6—C522.8 (2)
C6—C1—C2—C30.9 (2)C7—N2—C6—C1155.85 (13)
C1—C2—C3—C40.4 (2)N2—C7—C8—C13178.40 (13)
C2—C3—C4—C50.3 (2)N2—C7—C8—C91.8 (2)
C2—C3—C4—N1176.22 (13)C7—C8—C9—O43.2 (2)
O2—N1—C4—C5170.80 (13)C13—C8—C9—O4179.81 (12)
O3—N1—C4—C57.5 (2)C7—C8—C9—C10176.10 (12)
O2—N1—C4—C35.8 (2)C13—C8—C9—C100.49 (19)
O3—N1—C4—C3175.92 (14)O4—C9—C10—C11179.51 (13)
C3—C4—C5—C60.4 (2)C8—C9—C10—C111.2 (2)
N1—C4—C5—C6176.08 (12)C9—C10—C11—C120.6 (2)
C4—C5—C6—C10.1 (2)C10—C11—C12—C130.8 (2)
C4—C5—C6—N2178.66 (12)C11—C12—C13—C81.5 (2)
O1—C1—C6—C5178.83 (12)C7—C8—C13—C12177.54 (13)
C2—C1—C6—C50.7 (2)C9—C8—C13—C120.8 (2)
O1—C1—C6—N20.15 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O4i0.821.722.5407 (13)175
N2—H2B···O40.861.912.5973 (15)135
N2—H2B···O10.862.342.6532 (14)102
C2—H2A···O4i0.932.603.2233 (18)125
C13—H13A···O2ii0.932.653.5555 (19)163
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC13H10N2O4
Mr258.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.3949 (3), 9.1058 (4), 17.2734 (6)
β (°) 96.387 (4)
V3)1155.91 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.45 × 0.36 × 0.21
Data collection
DiffractometerOxford Diffraction Gemini R
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.950, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
16362, 3889, 2071
Rint0.045
(sin θ/λ)max1)0.757
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.161, 1.01
No. of reflections3889
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.23

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O4i0.821.722.5407 (13)175.1
N2—H2B···O40.861.912.5973 (15)135.4
N2—H2B···O10.862.342.6532 (14)101.7
C2—H2A···O4i0.932.603.2233 (18)124.5
C13—H13A···O2ii0.932.653.5555 (19)163.4
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y+2, z+1.
 

Acknowledgements

Support to YMH and BB was provided by DOE-CETBR grant No. DE—FG02–03ER63580 and NSF–RISE Award No. HRD-0627276. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationBarba, V., Cuahutle, D., Santillan, R. & Farfan, N. (2001). Can. J. Chem. 79, 1229–1237.  Web of Science CSD CrossRef CAS Google Scholar
First citationElerman, Y., Elmali, A., Atakol, O. & Svoboda, I. (1995). Acta Cryst. C51, 2344–2346.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationErsanlı, C. C., Albayrak, Ç., Odabaşoǧlu, M. & Erdönmez, A. (2003). Acta Cryst. C59, o601–o602.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHijji, Y. M., Barare, B., Butcher, R. J. & Jasinski, J. P. (2009). Acta Cryst. E65, o291–o292.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHijji, Y. M., Barare, B., Kennedy, A. P. & Butcher, R. (2008). Sensors Actuators B Chem. doi:10.1016/j.SnB.2008.11.045.  Google Scholar
First citationJasinski, J. P., Butcher, R. J., Narayana, B., Swamy, M. T. & Yathirajan, H. S. (2007). Acta Cryst. E63, o4566–o4567.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOdabaşoğlu, M., Albayrak, C. & Büyükgüngör, O. (2006). Acta Cryst. E62, o1094–o1096.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlisPro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRodriguez, M., Ocha, M. E., Santillan, R., Farfan, N. & Barba, V. (2005). J. Organomet. Chem., 690, 2975–2988.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO, LLC, Holland, MI, USA, available from http://www.webmo.net.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages o490-o491
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds