metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m257-m258

{6,6′-Dimeth­­oxy-2,2′-[naphthalene-2,3-diylbis(nitrilo­methyl­­idyne)]diphenolato}thio­cyanato­cobalt(III) di­ethyl ether di­chloro­methane solvate

aDepartment of Chemistry, Faculty of Science and Engineering, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan, and bDepartment of Applied Chemistry, School of Science, Xi'an University of Technology, Xi'an 710048, People's Republic of China
*Correspondence e-mail: yuzhong@xaut.edu.cn

(Received 6 December 2008; accepted 8 January 2009; online 6 February 2009)

In the title complex, [Co(C26H20N2O4)(NCS)]·C4H10O·CH2Cl2, the penta­coordinated CoIII atom exhibits a distorted square-pyramidal geometry with an N,N′,O,O′ tetra­dentate Schiff base ligand in the basal plane and one thio­cyanate ligand at the apical site. The diethyl ether mol­ecule is located in a cavity provided by four O atoms of the ligand with weak C—H⋯O inter­actions, generating two short O⋯O contact distances [2.766 (3) and 2.745 (3) Å] between the diethyl ether mol­ecule and the ligand. The crystal structure is stabilized by the weak C—H⋯O and C—H⋯N inter­actions and ππ inter­actions between the naphthyl ring system and the benzene ring [centroid–centroid distance = 3.657 (5) Å] and between the two naphthyl ring systems [centroid–centroid distance = 4.305 (2) Å].

Related literature

For the properties of Co(III) complexes with Schiff base ligands, see: Ito & Katsuki (1999[Ito, Y. N. & Katsuki, T. (1999). Bull. Chem. Soc. Jpn, 72, 603-619.]); Wezenberg & Kleij (2008[Wezenberg, S. J. & Kleij, A. W. (2008). Angew. Chem. Int. Ed. 47, 2354-2364.]); Di Bella et al. (1995[Di Bella, S., Fragala, I., Ledoux, I. & Marks, I. J. (1995). J. Am. Chem. Soc. 117, 9481-9485.]). For related structures, see: Kennedy et al. (1984[Kennedy, B. J., Fallon, G. D., Gatehouse, B. M. K. C. & Murray, K. S. (1984). Inorg. Chem. 23, 580-588.]); Marzilli et al. (1985[Marzilli, L. G., Summers, M. F., Bresciani-Pahor, N., Zangrando, E., Charland, J. P. & Randaccio, L. (1985). J. Am. Chem. Soc. 107, 6880-6888.]); Álvarez et al. (2002[Álvarez, R., Cabrera, A., Espinosa-Pérez, G., Hernández-Ortega, S., Velasco, L. & Esquivel, B. (2002). Transition Met. Chem. 27, 213-217.]). For hydrogen-bond length data, see: Desiraju & Steiner (1999[Desiraju, G. & Steiner, T. (1999). The Weak Hydrogen Bond: Applications to Structural Chemistry and Biology. New York: Oxford University Press.]). For non-bonded contact distances, see: Rowland & Taylor (1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.]); De Angelis et al. (1996[De Angelis, S., Solari, E., Gallo, E., Floriani, C., Chiesi-Villa, A. & Rizzoli, C. (1996). Inorg. Chem. 35, 5995-6003.]). For the preparation of bis­(o-vanillin)-2,3-naphthalene­diimine, see: Nabei et al. (2008[Nabei, A., Kuroda-Sowa, T., Okubo, T., Maekawa, M. & Munakata, M. (2008). Inorg. Chim. Acta, 361, 3489-3493.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C26H20N2O4)(NCS)]·C4H10O·CH2Cl2

  • Mr = 700.52

  • Monoclinic, P 21 /n

  • a = 9.1935 (9) Å

  • b = 13.3640 (11) Å

  • c = 25.910 (3) Å

  • β = 92.462 (6)°

  • V = 3180.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.82 mm−1

  • T = 120 (1) K

  • 0.40 × 0.10 × 0.10 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (Jacobson, 1998[Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.799, Tmax = 0.921

  • 24340 measured reflections

  • 7241 independent reflections

  • 6234 reflections with I2 > 2σ(I2)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.136

  • S = 1.21

  • 7241 reflections

  • 397 parameters

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯N3i 0.95 2.64 3.579 (4) 172
C28—H28A⋯O2 0.99 2.42 3.352 (4) 157
C29—H29B⋯O4 0.99 2.94 3.424 (4) 111
C30—H30B⋯O3 0.98 2.96 3.607 (5) 125
C32—H32B⋯O2 0.98 2.80 3.453 (4) 124
C32—H32C⋯O1 0.98 2.80 3.423 (4) 122
Symmetry code: (i) -x+2, -y, -z.

Data collection: CrystalClear (Rigaku, 2001[Rigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2007[Rigaku/MSC (2007). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXL97; software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Cobalt Schiff base complexes have undergone extensive research as a promising catalyst for various homogeneous reactions (Ito & Katsuki, 1999). Since novel solid state properties on structural types, conductive and magnetic properties (Wezenberg & Kleij, 2008; Di Bella et al., 1995), they recently attract new attentions on the material applications. Herein we report a new Co(III) complex based on the Schiff base ligand bis(o-vanillin)-2,3-naphthalenediimine.

In the title complex, the Co(III) ion shows the five-coordinated square pyramidal geometry, which is defined by two N and two O atoms of the tetradentate ligand in the approximate basal plane and one N atoms of thiocyanate in the apical position (Fig. 1). The bond distances and angles associated with Co(III) atoms are comparable with related five-coordinated cobalt species (Kennedy et al., 1984; Marzilli et al., 1985; Álvarez et al., 2002). The ligand plane is distorted with a dihedral angle of 27.81 (12)° between two phenyl rings. The diethyl ether molecule is approximately perpendicular to ligand plane, with the O atom almost coplanar in the ligand.

In the crystal structure, the complex molecule provides a planar cavity of four O atoms which accommodates a diethyl ether molecule via weak C—H···O interactions (Table 1). The range for the H···O distances agree with those found for weak C—H···O hydrogen bonds (Desiraju & Steiner, 1999). There are short non-bonded intramolecular distances between O atoms of diethyl ether and ligand: O1···O5 = 2.766 (3) Å and O2···O5 = 2.745 (3) Å, slightly less than the corresponding van der Waals distances (O···O = 2.80 Å; Rowland & Taylor, 1996). It may be attributed to those weak interactions between diethyl ether and complex, as well as some effects of crystal packing, which is comparable with a distance [Na···O(Me) = 2.54 (3) Å] in a similar structure (De Angelis et al., 1996). The crystal structure is further stabilized by additional interactions C1—H1···N3i and C28—H28A···O2 (Table 2), together with extended π-π interactions between naphthyl rings and phenyl rings [centroid-centroidi distances of 3.657 (5) Å, dihedral angles of 12.97 (10)°] as well as naphthyl rings [centroid-centroidii distances of 4.305 (2) Å, interplanar distances of 3.521 (4) Å] of adjacent molecules [symmetry codes: (i) -x + 2, -y, -z; (ii) -x + 1, -y, -z], forming an infinite three-dimensional network (Fig. 2).

Related literature top

For the properties of Co(III) complexes with Schiff base ligands, see: Ito & Katsuki (1999); Wezenberg & Kleij (2008); Di Bella et al. (1995). For related structures, see: Kennedy et al. (1984); Marzilli et al. (1985); Álvarez et al. (2002). For hydrogen-bond length data, see: Desiraju et al. (1999). For non-bonded contact distances, see: Rowland & Taylor (1996); De Angelis et al. (1996). For the preparation of bis(o-vanillin)-2,3-naphthalenediimine, see: Nabei et al. (2008).

Experimental top

The desired ligand, bis(o-vanillin)-2,3-naphthalenediimine, was synthesized according to the literature procedures (Nabei et al., 2008). A solution of Co(SCN)2 (0.1 mmol, 17.6 mg) in methanol (10 ml) was layered over a solution of ligand (0.1 mmol, 42.6 mg) in dichloromethane (10 ml). After standing for two weeks at room temperature, the brown brick crystals of title complex suitable for X-ray analysis were obtained.

Refinement top

All H atoms were placed in calculated positions and refined as riding, with C—H = 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear (Rigaku, 2001); data reduction: CrystalStructure (Rigaku/MSC, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2007.

Figures top
[Figure 1] Fig. 1. A view of the title molecule, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Weak hydrogen bonds are indicated with dashed lines.
[Figure 2] Fig. 2. A view of crystal packing of the title complex. The π-π interactions are indicated with dashed lines. For clarity, H atoms are not shown.
{6,6'-Dimethoxy-2,2'-[naphthalene-2,3- diylbis(nitrilomethylidyne)]diphenolato}thiocyanatocobalt(III) diethyl ether dichloromethane solvate top
Crystal data top
[Co(C26H20N2O4)(NCS)]·C4H10O·CH2Cl2F(000) = 1448.00
Mr = 700.52Dx = 1.463 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ynCell parameters from 8164 reflections
a = 9.1935 (9) Åθ = 3.0–27.5°
b = 13.3640 (11) ŵ = 0.82 mm1
c = 25.910 (3) ÅT = 120 K
β = 92.462 (6)°Block, brown
V = 3180.4 (5) Å30.40 × 0.10 × 0.10 mm
Z = 4
Data collection top
Rigaku Mercury
diffractometer
6234 reflections with F2 > 2σ(F2)
Detector resolution: 7.31 pixels mm-1Rint = 0.051
ω scansθmax = 27.5°
Absorption correction: multi-scan
(Jacobson, 1998)
h = 1111
Tmin = 0.799, Tmax = 0.921k = 1716
24340 measured reflectionsl = 3333
7241 independent reflections
Refinement top
Refinement on F20 restraints
R[F2 > 2σ(F2)] = 0.075H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0406P)2 + 5.4074P]
where P = (Fo2 + 2Fc2)/3
S = 1.21(Δ/σ)max < 0.001
7241 reflectionsΔρmax = 0.69 e Å3
397 parametersΔρmin = 0.60 e Å3
Crystal data top
[Co(C26H20N2O4)(NCS)]·C4H10O·CH2Cl2V = 3180.4 (5) Å3
Mr = 700.52Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.1935 (9) ŵ = 0.82 mm1
b = 13.3640 (11) ÅT = 120 K
c = 25.910 (3) Å0.40 × 0.10 × 0.10 mm
β = 92.462 (6)°
Data collection top
Rigaku Mercury
diffractometer
7241 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
6234 reflections with F2 > 2σ(F2)
Tmin = 0.799, Tmax = 0.921Rint = 0.051
24340 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0750 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.21Δρmax = 0.69 e Å3
7241 reflectionsΔρmin = 0.60 e Å3
397 parameters
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.86917 (5)0.14242 (3)0.104634 (16)0.01291 (12)
Cl10.94249 (14)0.01789 (9)0.26072 (5)0.0457 (3)
Cl21.08816 (13)0.13888 (10)0.32166 (4)0.0432 (2)
S11.23023 (10)0.10089 (7)0.16110 (3)0.0209 (2)
O10.9600 (2)0.26531 (17)0.07695 (9)0.0169 (5)
O20.8278 (2)0.20652 (17)0.17258 (9)0.0169 (5)
O31.1184 (2)0.42651 (18)0.06792 (9)0.0208 (5)
O40.8313 (2)0.30348 (19)0.25937 (9)0.0227 (5)
O50.9766 (3)0.3836 (2)0.16464 (11)0.0342 (7)
N10.8470 (3)0.0896 (2)0.02833 (10)0.0136 (5)
N20.6785 (3)0.0629 (2)0.10650 (10)0.0125 (5)
N31.0299 (3)0.0455 (2)0.12721 (11)0.0200 (6)
C10.7473 (3)0.0599 (2)0.01750 (12)0.0143 (6)
C20.7520 (3)0.0062 (2)0.02329 (13)0.0135 (6)
C30.6577 (3)0.0073 (2)0.06516 (12)0.0136 (6)
C40.5599 (3)0.0851 (2)0.06453 (13)0.0152 (6)
C50.4501 (3)0.2336 (2)0.02066 (14)0.0212 (7)
C60.4441 (4)0.2974 (2)0.02095 (14)0.0231 (8)
C70.5377 (4)0.2840 (2)0.06230 (15)0.0237 (8)
C80.6372 (3)0.2082 (2)0.06120 (13)0.0188 (7)
C90.6461 (3)0.1400 (2)0.01923 (13)0.0159 (6)
C100.5509 (3)0.1530 (2)0.02226 (13)0.0155 (6)
C110.8959 (3)0.1312 (2)0.01225 (12)0.0151 (6)
C120.9881 (3)0.2190 (2)0.01257 (13)0.0151 (6)
C131.0523 (3)0.2418 (2)0.05992 (13)0.0185 (7)
C141.1415 (4)0.3229 (2)0.06411 (14)0.0224 (8)
C151.1658 (4)0.3869 (2)0.02166 (14)0.0202 (7)
C161.1014 (3)0.3677 (2)0.02430 (13)0.0175 (7)
C171.0133 (3)0.2812 (2)0.03134 (13)0.0156 (7)
C181.2007 (4)0.5168 (2)0.06299 (15)0.0267 (8)
C190.5787 (3)0.0745 (2)0.14003 (13)0.0140 (6)
C200.5903 (3)0.1340 (2)0.18630 (12)0.0144 (6)
C210.4719 (3)0.1279 (2)0.21954 (13)0.0176 (7)
C220.4720 (4)0.1784 (2)0.26559 (13)0.0207 (7)
C230.5933 (4)0.2381 (2)0.28035 (13)0.0193 (7)
C240.7092 (3)0.2458 (2)0.24873 (13)0.0165 (7)
C250.7134 (3)0.1936 (2)0.20060 (12)0.0141 (6)
C260.8445 (4)0.3472 (3)0.30996 (14)0.0286 (9)
C271.1133 (3)0.0151 (2)0.14180 (13)0.0163 (7)
C281.0497 (4)0.0897 (3)0.25913 (15)0.0294 (9)
C291.1140 (4)0.4060 (2)0.19570 (14)0.0223 (7)
C301.2196 (4)0.3211 (3)0.19249 (17)0.0334 (9)
C310.8751 (4)0.4713 (2)0.16089 (15)0.0229 (8)
C320.7414 (4)0.4437 (3)0.12821 (15)0.0258 (8)
H10.81230.05170.04470.017*
H40.49770.09350.09260.018*
H50.38700.24340.04830.025*
H60.37630.35110.02200.028*
H70.53120.32810.09110.028*
H80.70110.20100.08880.023*
H110.86910.10190.04470.018*
H131.03300.20020.08910.022*
H141.18700.33580.09570.027*
H151.22690.44380.02470.024*
H18A1.20520.55240.09610.032*
H18B1.15360.55950.03640.032*
H18C1.29960.50030.05310.032*
H190.48930.04030.13330.017*
H210.39020.08770.20960.021*
H220.39160.17320.28730.025*
H230.59500.27310.31230.023*
H26A0.93450.38640.31320.034*
H26B0.84710.29410.33610.034*
H26C0.76090.39100.31520.034*
H28A0.99850.14110.23770.035*
H28B1.14230.07370.24280.035*
H29A1.15860.46790.18250.027*
H29B1.09100.41730.23220.027*
H30A1.30870.33720.21300.040*
H30B1.24330.31060.15640.040*
H30C1.17600.26020.20610.040*
H31A0.92470.52890.14520.027*
H31B0.84660.49110.19590.027*
H32A0.67530.50120.12570.031*
H32B0.69200.38740.14410.031*
H32C0.77000.42470.09360.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0163 (2)0.0129 (2)0.0096 (2)0.00135 (19)0.00109 (17)0.00003 (18)
Cl10.0561 (7)0.0395 (6)0.0431 (6)0.0178 (5)0.0187 (5)0.0048 (5)
Cl20.0424 (6)0.0508 (7)0.0355 (6)0.0001 (5)0.0067 (5)0.0069 (5)
S10.0193 (4)0.0229 (4)0.0203 (4)0.0029 (3)0.0010 (3)0.0034 (3)
O10.0238 (13)0.0165 (12)0.0107 (11)0.0038 (10)0.0018 (9)0.0011 (9)
O20.0203 (12)0.0179 (12)0.0128 (11)0.0037 (10)0.0036 (9)0.0025 (9)
O30.0301 (14)0.0181 (12)0.0142 (12)0.0102 (11)0.0006 (10)0.0005 (9)
O40.0307 (14)0.0230 (13)0.0145 (12)0.0071 (11)0.0018 (10)0.0085 (10)
O50.0363 (17)0.0322 (16)0.0337 (16)0.0014 (13)0.0025 (13)0.0020 (12)
N10.0176 (14)0.0122 (13)0.0109 (13)0.0019 (11)0.0002 (11)0.0002 (10)
N20.0181 (14)0.0104 (12)0.0089 (12)0.0011 (11)0.0013 (11)0.0010 (10)
N30.0247 (16)0.0222 (16)0.0132 (14)0.0026 (13)0.0005 (12)0.0002 (12)
C10.0149 (16)0.0161 (16)0.0119 (15)0.0025 (13)0.0015 (13)0.0024 (12)
C20.0141 (16)0.0124 (15)0.0137 (15)0.0031 (13)0.0031 (13)0.0012 (12)
C30.0164 (16)0.0138 (16)0.0102 (15)0.0023 (13)0.0043 (13)0.0014 (12)
C40.0161 (16)0.0165 (16)0.0130 (15)0.0026 (13)0.0001 (13)0.0002 (12)
C50.0193 (18)0.0216 (18)0.0228 (18)0.0006 (15)0.0002 (15)0.0013 (14)
C60.0213 (18)0.0219 (19)0.0257 (19)0.0073 (15)0.0045 (15)0.0028 (15)
C70.028 (2)0.0192 (18)0.0233 (19)0.0012 (16)0.0072 (16)0.0064 (14)
C80.0209 (18)0.0200 (17)0.0151 (16)0.0053 (14)0.0040 (14)0.0003 (13)
C90.0171 (16)0.0146 (16)0.0155 (16)0.0040 (14)0.0040 (13)0.0005 (13)
C100.0164 (16)0.0134 (16)0.0164 (16)0.0011 (13)0.0043 (13)0.0010 (13)
C110.0193 (17)0.0142 (16)0.0118 (15)0.0027 (13)0.0011 (13)0.0008 (12)
C120.0185 (17)0.0139 (16)0.0129 (16)0.0017 (13)0.0005 (13)0.0035 (12)
C130.0262 (19)0.0163 (17)0.0133 (16)0.0008 (14)0.0037 (14)0.0011 (13)
C140.029 (2)0.0248 (19)0.0141 (16)0.0014 (16)0.0080 (15)0.0073 (14)
C150.0218 (18)0.0183 (17)0.0202 (17)0.0032 (14)0.0012 (15)0.0053 (14)
C160.0196 (17)0.0172 (17)0.0153 (16)0.0011 (14)0.0048 (13)0.0011 (13)
C170.0167 (17)0.0160 (16)0.0140 (16)0.0026 (13)0.0019 (13)0.0030 (13)
C180.032 (2)0.0218 (19)0.026 (2)0.0113 (16)0.0010 (17)0.0001 (15)
C190.0142 (16)0.0115 (15)0.0162 (16)0.0029 (12)0.0013 (13)0.0014 (12)
C200.0197 (17)0.0105 (15)0.0131 (15)0.0050 (13)0.0012 (13)0.0027 (12)
C210.0170 (16)0.0168 (17)0.0193 (17)0.0009 (14)0.0019 (13)0.0003 (13)
C220.0238 (19)0.0217 (18)0.0173 (17)0.0043 (15)0.0102 (15)0.0019 (14)
C230.030 (2)0.0138 (16)0.0140 (16)0.0032 (14)0.0037 (14)0.0026 (13)
C240.0226 (18)0.0139 (16)0.0129 (16)0.0005 (14)0.0004 (14)0.0015 (12)
C250.0217 (17)0.0103 (15)0.0102 (15)0.0029 (13)0.0010 (13)0.0021 (12)
C260.035 (2)0.034 (2)0.0175 (18)0.0041 (18)0.0019 (16)0.0138 (16)
C270.0176 (17)0.0192 (17)0.0119 (15)0.0047 (14)0.0012 (13)0.0020 (13)
C280.027 (2)0.035 (2)0.026 (2)0.0033 (18)0.0015 (17)0.0021 (17)
C290.0241 (19)0.0248 (19)0.0176 (17)0.0020 (15)0.0053 (15)0.0033 (14)
C300.031 (2)0.031 (2)0.037 (2)0.0029 (18)0.0063 (19)0.0046 (18)
C310.0255 (19)0.0165 (17)0.026 (2)0.0014 (15)0.0012 (16)0.0001 (14)
C320.026 (2)0.025 (2)0.026 (2)0.0010 (16)0.0039 (16)0.0008 (16)
Geometric parameters (Å, º) top
Co1—O11.990 (2)C20—C211.419 (4)
Co1—O22.009 (2)C20—C251.420 (4)
Co1—N12.101 (2)C21—C221.371 (4)
Co1—N22.053 (2)C22—C231.411 (5)
Co1—N32.033 (3)C23—C241.376 (5)
Cl1—C281.745 (4)C24—C251.430 (4)
Cl2—C281.770 (4)C29—C301.498 (5)
S1—C271.635 (3)C31—C321.508 (5)
O1—C171.316 (4)C1—H10.950
O2—C251.315 (4)C4—H40.950
O3—C161.380 (4)C5—H50.950
O3—C181.433 (4)C6—H60.950
O4—C241.380 (4)C7—H70.950
O4—C261.436 (4)C8—H80.950
O5—C291.499 (4)C11—H110.950
O5—C311.499 (4)C13—H130.950
N1—C21.419 (4)C14—H140.950
N1—C111.287 (4)C15—H150.950
N2—C31.430 (4)C18—H18A0.980
N2—C191.299 (4)C18—H18B0.980
N3—C271.166 (4)C18—H18C0.980
C1—C21.376 (4)C19—H190.950
C1—C91.418 (4)C21—H210.950
C2—C31.428 (4)C22—H220.950
C3—C41.375 (4)C23—H230.950
C4—C101.422 (4)C26—H26A0.980
C5—C61.374 (5)C26—H26B0.980
C5—C101.420 (4)C26—H26C0.980
C6—C71.414 (5)C28—H28A0.990
C7—C81.364 (5)C28—H28B0.990
C8—C91.419 (4)C29—H29A0.990
C9—C101.426 (4)C29—H29B0.990
C11—C121.448 (4)C30—H30A0.980
C12—C131.417 (4)C30—H30B0.980
C12—C171.420 (4)C30—H30C0.980
C13—C141.366 (5)C31—H31A0.990
C14—C151.404 (5)C31—H31B0.990
C15—C161.377 (5)C32—H32A0.980
C16—C171.428 (4)C32—H32B0.980
C19—C201.439 (4)C32—H32C0.980
O1···O52.766 (3)O1···H30B3.305
O1···C323.423 (4)O1···H32B3.483
O2···O52.745 (3)O1···H32C2.799
O2···C283.352 (4)O2···H28A2.417
O2···C313.580 (4)O2···H30C3.358
O2···C323.453 (4)O2···H32B2.804
O3···O52.931 (3)O2···H32C3.589
O3···C293.324 (4)O3···H29A3.028
O3···C313.410 (4)O3···H30B2.957
O4···O53.039 (3)O3···H31A3.059
O4···C293.424 (4)O3···H32C3.299
O4···C313.434 (4)O4···H28A2.732
O5···O12.766 (3)O4···H29B2.942
O5···O22.745 (3)O4···H30C3.558
O5···O32.931 (3)O4···H31B3.006
O5···O43.039 (3)O4···H32B3.389
O5···C302.464 (5)H1···N3i2.636
O5···C322.457 (4)H28A···O22.417
C1···N3i3.579 (4)H29A···O33.028
C28···O23.352 (4)H29B···O42.942
C29···O33.324 (4)H30B···O13.305
C29···O43.424 (4)H30B···O32.957
C30···O52.464 (5)H31A···O33.059
C31···O23.580 (4)H31B···O43.006
C31···O33.410 (4)H32B···O13.483
C31···O43.434 (4)H32B···O22.804
C32···Cl1ii3.438 (4)H32B···O43.389
C32···O13.423 (4)H32C···O12.799
C32···O23.453 (4)H32C···O23.589
C32···O52.457 (4)H32C···O33.299
O1—Co1—O293.56 (9)O5—C31—C32109.6 (2)
O1—Co1—N187.90 (10)C2—C1—H1119.7
O1—Co1—N2143.89 (10)C9—C1—H1119.8
O1—Co1—N3108.59 (11)C3—C4—H4119.7
O2—Co1—N1162.48 (10)C10—C4—H4119.7
O2—Co1—N290.36 (10)C6—C5—H5120.1
O2—Co1—N3100.51 (10)C10—C5—H5120.1
N1—Co1—N278.44 (10)C5—C6—H6119.7
N1—Co1—N395.54 (11)C7—C6—H6119.7
N2—Co1—N3105.92 (11)C6—C7—H7119.7
Co1—O1—C17129.4 (2)C8—C7—H7119.7
Co1—O2—C25127.9 (2)C7—C8—H8119.7
C16—O3—C18116.6 (2)C9—C8—H8119.7
C24—O4—C26116.5 (2)N1—C11—H11117.3
C29—O5—C31112.7 (2)C12—C11—H11117.3
Co1—N1—C2112.7 (2)C12—C13—H13119.6
Co1—N1—C11126.9 (2)C14—C13—H13119.5
C2—N1—C11119.9 (2)C13—C14—H14120.1
Co1—N2—C3114.1 (2)C15—C14—H14120.1
Co1—N2—C19125.6 (2)C14—C15—H15119.9
C3—N2—C19120.3 (2)C16—C15—H15119.9
Co1—N3—C27174.4 (2)O3—C18—H18A109.5
C2—C1—C9120.5 (3)O3—C18—H18B109.5
N1—C2—C1125.0 (3)O3—C18—H18C109.5
N1—C2—C3114.8 (2)H18A—C18—H18B109.5
C1—C2—C3120.2 (2)H18A—C18—H18C109.5
N2—C3—C2114.9 (2)H18B—C18—H18C109.5
N2—C3—C4124.8 (2)N2—C19—H19116.8
C2—C3—C4120.3 (2)C20—C19—H19116.8
C3—C4—C10120.6 (3)C20—C21—H21119.1
C6—C5—C10119.9 (3)C22—C21—H21119.1
C5—C6—C7120.7 (3)C21—C22—H22120.5
C6—C7—C8120.5 (3)C23—C22—H22120.5
C7—C8—C9120.6 (3)C22—C23—H23119.9
C1—C9—C8121.7 (3)C24—C23—H23119.9
C1—C9—C10119.5 (3)O4—C26—H26A109.5
C8—C9—C10118.8 (3)O4—C26—H26B109.5
C4—C10—C5121.5 (3)O4—C26—H26C109.5
C4—C10—C9119.0 (3)H26A—C26—H26B109.5
C5—C10—C9119.4 (3)H26A—C26—H26C109.5
N1—C11—C12125.4 (2)H26B—C26—H26C109.5
C11—C12—C13116.4 (2)Cl1—C28—H28A109.2
C11—C12—C17123.0 (3)Cl1—C28—H28B109.2
C13—C12—C17120.5 (3)Cl2—C28—H28A109.2
C12—C13—C14120.9 (3)Cl2—C28—H28B109.2
C13—C14—C15119.8 (3)H28A—C28—H28B107.9
C14—C15—C16120.2 (3)O5—C29—H29A109.5
O3—C16—C15124.3 (3)O5—C29—H29B109.5
O3—C16—C17113.7 (2)C30—C29—H29A109.5
C15—C16—C17122.0 (3)C30—C29—H29B109.5
O1—C17—C12124.8 (3)H29A—C29—H29B108.1
O1—C17—C16118.7 (2)C29—C30—H30A109.5
C12—C17—C16116.5 (3)C29—C30—H30B109.5
N2—C19—C20126.4 (3)C29—C30—H30C109.5
C19—C20—C21116.3 (2)H30A—C30—H30B109.5
C19—C20—C25123.9 (3)H30A—C30—H30C109.5
C21—C20—C25119.8 (2)H30B—C30—H30C109.5
C20—C21—C22121.9 (3)O5—C31—H31A109.8
C21—C22—C23119.1 (3)O5—C31—H31B109.8
C22—C23—C24120.3 (3)C32—C31—H31A109.8
O4—C24—C23124.5 (3)C32—C31—H31B109.8
O4—C24—C25113.2 (2)H31A—C31—H31B108.2
C23—C24—C25122.2 (3)C31—C32—H32A109.5
O2—C25—C20125.2 (2)C31—C32—H32B109.5
O2—C25—C24118.0 (2)C31—C32—H32C109.5
C20—C25—C24116.7 (3)H32A—C32—H32B109.5
S1—C27—N3178.9 (3)H32A—C32—H32C109.5
Cl1—C28—Cl2112.0 (2)H32B—C32—H32C109.5
O5—C29—C30110.6 (3)
O1—Co1—O2—C25142.7 (2)N1—C2—C3—N22.6 (4)
O2—Co1—O1—C17178.3 (2)N1—C2—C3—C4179.5 (2)
O1—Co1—N1—C2166.2 (2)C1—C2—C3—N2176.7 (2)
O1—Co1—N1—C115.6 (2)C1—C2—C3—C41.2 (4)
N1—Co1—O1—C1715.8 (2)N2—C3—C4—C10177.8 (3)
O1—Co1—N2—C388.5 (2)C2—C3—C4—C100.1 (3)
O1—Co1—N2—C1989.0 (3)C3—C4—C10—C5179.7 (3)
N2—Co1—O1—C1782.8 (3)C3—C4—C10—C90.7 (4)
N3—Co1—O1—C1779.3 (2)C6—C5—C10—C4179.7 (3)
O2—Co1—N1—C271.0 (4)C6—C5—C10—C90.7 (5)
O2—Co1—N1—C11100.8 (4)C10—C5—C6—C70.2 (5)
N1—Co1—O2—C2548.4 (4)C5—C6—C7—C81.0 (5)
O2—Co1—N2—C3175.0 (2)C6—C7—C8—C91.6 (5)
O2—Co1—N2—C197.6 (2)C7—C8—C9—C1179.2 (3)
N2—Co1—O2—C251.3 (2)C7—C8—C9—C101.1 (5)
N3—Co1—O2—C25107.6 (2)C1—C9—C10—C40.0 (4)
N1—Co1—N2—C318.6 (2)C1—C9—C10—C5179.6 (3)
N1—Co1—N2—C19158.9 (2)C8—C9—C10—C4179.7 (3)
N2—Co1—N1—C219.8 (2)C8—C9—C10—C50.1 (3)
N2—Co1—N1—C11152.0 (3)N1—C11—C12—C13168.5 (3)
N3—Co1—N1—C285.4 (2)N1—C11—C12—C1712.5 (5)
N3—Co1—N1—C11102.9 (2)C11—C12—C13—C14179.7 (3)
N3—Co1—N2—C374.0 (2)C11—C12—C17—O11.8 (5)
N3—Co1—N2—C19108.6 (2)C11—C12—C17—C16177.1 (3)
Co1—O1—C17—C1214.8 (4)C13—C12—C17—O1179.1 (3)
Co1—O1—C17—C16166.3 (2)C13—C12—C17—C161.9 (4)
Co1—O2—C25—C203.5 (4)C17—C12—C13—C141.2 (5)
Co1—O2—C25—C24178.4 (2)C12—C13—C14—C152.6 (5)
C18—O3—C16—C154.5 (4)C13—C14—C15—C160.8 (5)
C18—O3—C16—C17177.5 (2)C14—C15—C16—O3179.7 (3)
C26—O4—C24—C238.5 (4)C14—C15—C16—C172.5 (5)
C26—O4—C24—C25171.8 (2)O3—C16—C17—O10.8 (4)
C29—O5—C31—C32178.8 (2)O3—C16—C17—C12178.3 (2)
C31—O5—C29—C30172.5 (3)C15—C16—C17—O1177.2 (3)
Co1—N1—C2—C1161.2 (2)C15—C16—C17—C123.7 (5)
Co1—N1—C2—C318.0 (3)N2—C19—C20—C21174.3 (3)
Co1—N1—C11—C126.0 (4)N2—C19—C20—C253.3 (5)
C2—N1—C11—C12177.2 (3)C19—C20—C21—C22177.8 (3)
C11—N1—C2—C126.4 (4)C19—C20—C25—O23.9 (5)
C11—N1—C2—C3154.4 (3)C19—C20—C25—C24178.0 (3)
Co1—N2—C3—C214.6 (3)C21—C20—C25—O2178.6 (3)
Co1—N2—C3—C4163.2 (2)C21—C20—C25—C240.5 (4)
Co1—N2—C19—C209.6 (4)C25—C20—C21—C220.1 (3)
C3—N2—C19—C20173.2 (3)C21—C22—C23—C240.4 (5)
C19—N2—C3—C2163.0 (2)C22—C23—C24—O4178.8 (3)
C19—N2—C3—C419.2 (4)C22—C23—C24—C250.8 (5)
C2—C1—C9—C8178.9 (3)O4—C24—C25—O20.6 (4)
C2—C1—C9—C101.4 (4)O4—C24—C25—C20178.8 (2)
C9—C1—C2—N1178.8 (3)C23—C24—C25—O2179.1 (3)
C9—C1—C2—C32.0 (4)C23—C24—C25—C200.9 (4)
Symmetry codes: (i) x+2, y, z; (ii) x+3/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N3i0.952.643.579 (4)172
C28—H28A···O20.992.423.352 (4)157
C29—H29B···O40.992.943.424 (4)111
C30—H30B···O30.982.963.607 (5)125
C32—H32B···O20.982.803.453 (4)124
C32—H32C···O10.982.803.423 (4)122
Symmetry code: (i) x+2, y, z.

Experimental details

Crystal data
Chemical formula[Co(C26H20N2O4)(NCS)]·C4H10O·CH2Cl2
Mr700.52
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)9.1935 (9), 13.3640 (11), 25.910 (3)
β (°) 92.462 (6)
V3)3180.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.82
Crystal size (mm)0.40 × 0.10 × 0.10
Data collection
DiffractometerRigaku Mercury
diffractometer
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.799, 0.921
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
24340, 7241, 6234
Rint0.051
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.136, 1.21
No. of reflections7241
No. of parameters397
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 0.60

Computer programs: CrystalClear (Rigaku, 2001), CrystalStructure (Rigaku/MSC, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku/MSC, 2007.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N3i0.952.6363.579 (4)172
C28—H28A···O20.992.4173.352 (4)157
C29—H29B···O40.992.9423.424 (4)111
C30—H30B···O30.982.9573.607 (5)125
C32—H32B···O20.982.8043.453 (4)124
C32—H32C···O10.982.7993.423 (4)122
Symmetry code: (i) x+2, y, z.
 

Acknowledgements

This work was supported in part by a Grant-in-Aid for Science Research from the Ministry of Education, Science and Culture, Japan (grant No. 18033054). The authors are grateful to Kinki University for financial support. Partial financial support from Xi'an Applied Materials Innovation Fund (grant No. 200713) is also acknowledged.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationÁlvarez, R., Cabrera, A., Espinosa-Pérez, G., Hernández-Ortega, S., Velasco, L. & Esquivel, B. (2002). Transition Met. Chem. 27, 213–217.  Web of Science CSD CrossRef Google Scholar
First citationDe Angelis, S., Solari, E., Gallo, E., Floriani, C., Chiesi-Villa, A. & Rizzoli, C. (1996). Inorg. Chem. 35, 5995–6003.  CSD CrossRef CAS Web of Science Google Scholar
First citationDesiraju, G. & Steiner, T. (1999). The Weak Hydrogen Bond: Applications to Structural Chemistry and Biology. New York: Oxford University Press.  Google Scholar
First citationDi Bella, S., Fragala, I., Ledoux, I. & Marks, I. J. (1995). J. Am. Chem. Soc. 117, 9481–9485.  CrossRef CAS Web of Science Google Scholar
First citationIto, Y. N. & Katsuki, T. (1999). Bull. Chem. Soc. Jpn, 72, 603–619.  Web of Science CrossRef CAS Google Scholar
First citationJacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKennedy, B. J., Fallon, G. D., Gatehouse, B. M. K. C. & Murray, K. S. (1984). Inorg. Chem. 23, 580–588.  CSD CrossRef CAS Web of Science Google Scholar
First citationMarzilli, L. G., Summers, M. F., Bresciani-Pahor, N., Zangrando, E., Charland, J. P. & Randaccio, L. (1985). J. Am. Chem. Soc. 107, 6880–6888.  CSD CrossRef CAS Web of Science Google Scholar
First citationNabei, A., Kuroda-Sowa, T., Okubo, T., Maekawa, M. & Munakata, M. (2008). Inorg. Chim. Acta, 361, 3489–3493.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2007). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWezenberg, S. J. & Kleij, A. W. (2008). Angew. Chem. Int. Ed. 47, 2354–2364.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m257-m258
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds