organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-(2,2-Di­methylpropanamido)-2-methyl-1,8-naphthyridin-1-ium chloride monohydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, India
*Correspondence e-mail: hkfun@usm.my

(Received 15 December 2008; accepted 17 December 2008; online 17 January 2009)

The asymmetric unit of the title compound, C14H18N3O+·Cl·H2O, comprises a substituted amido–naphthyridine cation, a chloride anion and a water mol­ecule of crystallization. Intra­molecular C—H⋯O hydrogen bonds generate six-membered rings, producing an S(6) ring motif. The amido group is twisted from the naphthyridine ring, making a dihedral angle of 17.65 (7)°. The crystal structure is stabilized by inter­molecular N—H⋯O, N—H⋯Cl, O—H⋯Cl (× 2), and C—H⋯O (× 2) hydrogen bonds. These inter­actions linked neighbouring mol­ecules into chains along the a and b axes of the crystal, thus forming mol­ecular sheets parallel to the (001) plane.

Related literature

For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For biological activity and mol­ecular recognition, see: Goswami et al. (2005[Goswami, S., Mukherjee, R., Mukherjee, S., Jana, S., Maity, A. C. & Adak, A. K. (2005). Molecules, 10, 929-934.]); Carmen et al. (2004[Carmen, A.-R., Garcia-Granda, S., Goswami, S., Mukherjee, R., Dey, S., Claramunt, R. M., Santa Maria, M. D., Rozas, I., Jagerovic, N., Alkorta, I. & Elguero, J. (2004). New J. Chem. 28, 700-705.]); Goswami & Mukherjee (1997[Goswami, S. & Mukherjee, R. (1997). Tetrahedron Lett. 38, 1619-1621.]); Yu et al. (2008[Yu, M.-M., Li, Z.-X., Wei, L.-H., Wei, D.-H. & Tang, M.-S. (2008). Org. Lett. 10, 5115-5118.]).

[Scheme 1]

Experimental

Crystal data
  • C14H18N3O+·Cl·H2O

  • Mr = 297.78

  • Orthorhombic, P b c n

  • a = 19.0092 (5) Å

  • b = 9.0077 (2) Å

  • c = 17.7294 (5) Å

  • V = 3035.79 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 100.0 (1) K

  • 0.41 × 0.29 × 0.19 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.902, Tmax = 0.954

  • 19927 measured reflections

  • 4489 independent reflections

  • 3470 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.102

  • S = 1.07

  • 4489 reflections

  • 198 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1W 0.833 (18) 2.041 (17) 2.8633 (16) 169.1 (16)
N3—H1N3⋯Cl1 0.877 (18) 2.213 (18) 3.0870 (11) 175.2 (16)
O1W—H1W1⋯Cl1i 0.891 (19) 2.219 (19) 3.1091 (12) 176.5 (18)
O1W—H2W1⋯Cl1 0.85 (2) 2.61 (2) 3.3960 (12) 155.3 (16)
C7—H7A⋯O1 0.93 2.27 2.8298 (17) 118
C11—H11A⋯O1ii 0.96 2.54 3.3742 (18) 145
C13—H13A⋯O1W 0.96 2.60 3.4997 (18) 157
Symmetry codes: (i) -x+1, -y, -z+2; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])'; data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Naphthyridine or naphthyridone systems are of great importance due to their broad spectrum of biological activities. Substituted 1,8-naphthyridine compounds are used as antihypertensives, antiarrhythmics, herbicide safeners and also as immunostimulants (Goswami et al., 2005). Naphthyridine molecules also have interesting crystal structures (Carmen et al., 2004) and are used in molecular recognition chemistry (Goswami et al., 2005; Yu et al., 2008).

In the title compound (I), Fig. 1, intramolecular C—H···O hydrogen bond generates six-membered ring, producing S(6) ring motif (Bernstein et al., 1995). The chloride anion and water molecule are mediated to link neighbouring molecules together through hydrogen bonds. The amido group is twisted from the naphthyridine ring making a dihedral angle of 17.65 (7)°. The crystal structure is stabilized by intermolecular N—H···O, N—H···Cl, O—H···Cl(x 2), and C—H···O (x 2) hydrogen bonds. These interactions linked neighbouring molecules together as chains along the a and b axes of the crystal, thus forming 2-D molecular sheets parallel to the (001) plane.

Related literature top

For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For biological activity and molecular recognition, see: Goswami et al. (2005); Carmen et al. (2004); Goswami & Mukherjee (1997); Yu et al. (2008).

Experimental top

In a round bottom flask, 7-methyl-[1,8]naphthyridin-2-ylamine (100 mg, 0.63 mmol) and triethyl amine (0.1 mL) were stirred in dry dichloromethane (1 mL) under nitrogen at 0 ° C. Pivaloyl chloride (0.116 mL, 0.95 mmol) was then added dropwise. After 1 h, the solvent was removed and the residue was neutralized with saturated NaHCO3 and fresh dichloromethane was added. The organic part was collected and removed under reduced pressure. The crude product was then purified by column chromatography using ethylacetate and petroleum ether (1:1) which offered the entitled compound as an off-white crystalline solid (82 mg, 53%), m.p. 66-68 ° C.

Refinement top

Hydrogen atoms of the water molecule and N-bound H atoms were located from the difference Fourier map and refined freely, see Table 1. The rest of the hydrogen atoms were positioned geometrically and constrained to refine with the parent atoms with Uiso (H) = 1.2 or 1.5 Ueq (C). A rotating group model applied for the methyl group bound to the naphthyridine ring.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005)'; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering. Dashed line show intramolecular hydrogen bond.
[Figure 2] Fig. 2. The crystal packing for (I), viewed down the b-axis showing linking of molecules along the a-axis. Intermolecular interactions are drawn as dashed lines.
7-(2,2-Dimethylpropanamido)-2-methyl-1,8-naphthyridin-1-ium chloride monohydrate top
Crystal data top
C14H18N3O+·Cl·H2OF(000) = 1264
Mr = 297.78Dx = 1.303 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 5042 reflections
a = 19.0092 (5) Åθ = 2.3–29.9°
b = 9.0077 (2) ŵ = 0.26 mm1
c = 17.7294 (5) ÅT = 100 K
V = 3035.79 (14) Å3Block, colourless
Z = 80.41 × 0.29 × 0.19 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4489 independent reflections
Radiation source: fine-focus sealed tube3470 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 30.2°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2623
Tmin = 0.902, Tmax = 0.954k = 1212
19927 measured reflectionsl = 2518
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0453P)2 + 0.653P]
where P = (Fo2 + 2Fc2)/3
4489 reflections(Δ/σ)max = 0.001
198 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C14H18N3O+·Cl·H2OV = 3035.79 (14) Å3
Mr = 297.78Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 19.0092 (5) ŵ = 0.26 mm1
b = 9.0077 (2) ÅT = 100 K
c = 17.7294 (5) Å0.41 × 0.29 × 0.19 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4489 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3470 reflections with I > 2σ(I)
Tmin = 0.902, Tmax = 0.954Rint = 0.037
19927 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.36 e Å3
4489 reflectionsΔρmin = 0.27 e Å3
198 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.613003 (17)0.14014 (4)0.995585 (18)0.02130 (9)
O10.35100 (5)0.43024 (11)0.71527 (5)0.0247 (2)
N10.41076 (6)0.32279 (13)0.81210 (7)0.0197 (2)
N20.50292 (6)0.40348 (12)0.88207 (6)0.0180 (2)
N30.59795 (6)0.47140 (12)0.95397 (6)0.0174 (2)
C10.54282 (6)0.51370 (14)0.90903 (7)0.0166 (3)
C20.64346 (7)0.56681 (15)0.98399 (7)0.0194 (3)
C30.63409 (7)0.71897 (15)0.97088 (8)0.0224 (3)
H3A0.66530.78700.99180.027*
C40.57933 (7)0.76783 (15)0.92753 (8)0.0218 (3)
H4A0.57300.86900.91960.026*
C50.53258 (7)0.66552 (14)0.89490 (7)0.0182 (3)
C60.47437 (7)0.70180 (15)0.84855 (8)0.0216 (3)
H6A0.46410.80060.83810.026*
C70.43369 (7)0.59217 (15)0.81942 (8)0.0209 (3)
H7A0.39580.61470.78830.025*
C80.45006 (7)0.44204 (14)0.83733 (7)0.0178 (3)
C90.36274 (7)0.32093 (15)0.75354 (7)0.0191 (3)
C100.32593 (7)0.17247 (15)0.74131 (7)0.0209 (3)
C110.27199 (8)0.19006 (18)0.67779 (8)0.0276 (3)
H11A0.24820.09730.66980.041*
H11B0.29560.21900.63230.041*
H11C0.23830.26480.69140.041*
C120.28790 (8)0.12662 (18)0.81407 (8)0.0288 (3)
H12A0.32160.11480.85390.043*
H12B0.26370.03440.80600.043*
H12C0.25450.20200.82780.043*
C130.38030 (8)0.05470 (16)0.71945 (8)0.0272 (3)
H13A0.41360.04310.75970.041*
H13B0.40440.08530.67450.041*
H13C0.35690.03810.71050.041*
C140.70189 (7)0.50748 (17)1.03071 (8)0.0254 (3)
H14A0.69710.40171.03520.038*
H14B0.70030.55181.07990.038*
H14C0.74600.53051.00720.038*
O1W0.46432 (6)0.07427 (12)0.89481 (6)0.0233 (2)
H1N10.4218 (9)0.244 (2)0.8337 (9)0.028 (4)*
H1N30.6013 (9)0.376 (2)0.9631 (11)0.037 (5)*
H1W10.4421 (10)0.016 (2)0.9277 (11)0.042 (5)*
H2W10.4959 (11)0.119 (2)0.9197 (11)0.048 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02288 (18)0.01664 (16)0.02439 (17)0.00058 (12)0.00160 (12)0.00273 (13)
O10.0238 (5)0.0249 (5)0.0254 (5)0.0023 (4)0.0030 (4)0.0028 (4)
N10.0191 (6)0.0159 (6)0.0241 (6)0.0016 (4)0.0036 (4)0.0020 (5)
N20.0171 (5)0.0146 (5)0.0223 (5)0.0005 (4)0.0002 (4)0.0004 (4)
N30.0182 (5)0.0136 (5)0.0204 (5)0.0008 (4)0.0004 (4)0.0003 (4)
C10.0163 (6)0.0157 (6)0.0177 (6)0.0000 (5)0.0027 (5)0.0003 (5)
C20.0182 (6)0.0200 (7)0.0200 (6)0.0025 (5)0.0013 (5)0.0020 (5)
C30.0232 (7)0.0193 (7)0.0247 (7)0.0064 (5)0.0020 (5)0.0026 (6)
C40.0265 (7)0.0146 (6)0.0242 (7)0.0022 (5)0.0039 (5)0.0005 (5)
C50.0211 (7)0.0147 (6)0.0187 (6)0.0002 (5)0.0042 (5)0.0004 (5)
C60.0250 (7)0.0159 (6)0.0238 (6)0.0027 (5)0.0027 (5)0.0015 (5)
C70.0211 (7)0.0188 (6)0.0228 (6)0.0029 (5)0.0013 (5)0.0018 (5)
C80.0163 (6)0.0177 (6)0.0193 (6)0.0001 (5)0.0022 (5)0.0001 (5)
C90.0146 (6)0.0235 (7)0.0191 (6)0.0011 (5)0.0033 (5)0.0016 (5)
C100.0187 (7)0.0253 (7)0.0187 (6)0.0052 (5)0.0017 (5)0.0023 (5)
C110.0221 (7)0.0360 (8)0.0248 (7)0.0061 (6)0.0017 (6)0.0019 (6)
C120.0277 (8)0.0362 (9)0.0226 (7)0.0125 (7)0.0037 (6)0.0010 (6)
C130.0301 (8)0.0246 (7)0.0270 (7)0.0018 (6)0.0006 (6)0.0048 (6)
C140.0207 (7)0.0254 (7)0.0300 (7)0.0025 (6)0.0049 (6)0.0010 (6)
O1W0.0259 (6)0.0190 (5)0.0251 (5)0.0034 (4)0.0011 (4)0.0035 (4)
Geometric parameters (Å, º) top
O1—C91.2164 (16)C7—H7A0.9300
N1—C91.3824 (17)C9—C101.5248 (19)
N1—C81.3827 (17)C10—C131.531 (2)
N1—H1N10.834 (17)C10—C111.5312 (19)
N2—C81.3266 (17)C10—C121.5353 (19)
N2—C11.3377 (16)C11—H11A0.9600
N3—C21.3305 (17)C11—H11B0.9600
N3—C11.3705 (17)C11—H11C0.9600
N3—H1N30.881 (18)C12—H12A0.9600
C1—C51.4039 (18)C12—H12B0.9600
C2—C31.401 (2)C12—H12C0.9600
C2—C141.4851 (19)C13—H13A0.9600
C3—C41.367 (2)C13—H13B0.9600
C3—H3A0.9300C13—H13C0.9600
C4—C51.4050 (19)C14—H14A0.9600
C4—H4A0.9300C14—H14B0.9600
C5—C61.4163 (19)C14—H14C0.9600
C6—C71.3565 (19)O1W—H1W10.89 (2)
C6—H6A0.9300O1W—H2W10.85 (2)
C7—C81.4236 (18)
C9—N1—C8127.52 (12)N1—C9—C10114.86 (12)
C9—N1—H1N1120.1 (12)C9—C10—C13109.50 (11)
C8—N1—H1N1112.1 (12)C9—C10—C11108.73 (12)
C8—N2—C1116.67 (11)C13—C10—C11109.72 (11)
C2—N3—C1123.38 (12)C9—C10—C12109.43 (11)
C2—N3—H1N3120.8 (12)C13—C10—C12110.14 (12)
C1—N3—H1N3115.8 (12)C11—C10—C12109.30 (11)
N2—C1—N3115.78 (11)C10—C11—H11A109.5
N2—C1—C5125.49 (12)C10—C11—H11B109.5
N3—C1—C5118.73 (12)H11A—C11—H11B109.5
N3—C2—C3118.86 (12)C10—C11—H11C109.5
N3—C2—C14118.48 (12)H11A—C11—H11C109.5
C3—C2—C14122.65 (13)H11B—C11—H11C109.5
C4—C3—C2120.34 (13)C10—C12—H12A109.5
C4—C3—H3A119.8C10—C12—H12B109.5
C2—C3—H3A119.8H12A—C12—H12B109.5
C3—C4—C5120.14 (13)C10—C12—H12C109.5
C3—C4—H4A119.9H12A—C12—H12C109.5
C5—C4—H4A119.9H12B—C12—H12C109.5
C1—C5—C4118.54 (12)C10—C13—H13A109.5
C1—C5—C6115.89 (12)C10—C13—H13B109.5
C4—C5—C6125.57 (12)H13A—C13—H13B109.5
C7—C6—C5119.89 (13)C10—C13—H13C109.5
C7—C6—H6A120.1H13A—C13—H13C109.5
C5—C6—H6A120.1H13B—C13—H13C109.5
C6—C7—C8118.81 (13)C2—C14—H14A109.5
C6—C7—H7A120.6C2—C14—H14B109.5
C8—C7—H7A120.6H14A—C14—H14B109.5
N2—C8—N1113.54 (12)C2—C14—H14C109.5
N2—C8—C7123.21 (12)H14A—C14—H14C109.5
N1—C8—C7123.21 (12)H14B—C14—H14C109.5
O1—C9—N1122.02 (13)H1W1—O1W—H2W1106.0 (17)
O1—C9—C10123.12 (12)
C8—N2—C1—N3178.82 (11)C4—C5—C6—C7178.98 (13)
C8—N2—C1—C51.12 (19)C5—C6—C7—C81.0 (2)
C2—N3—C1—N2178.57 (12)C1—N2—C8—N1179.49 (11)
C2—N3—C1—C51.37 (19)C1—N2—C8—C71.82 (19)
C1—N3—C2—C31.62 (19)C9—N1—C8—N2165.13 (12)
C1—N3—C2—C14178.93 (12)C9—N1—C8—C717.2 (2)
N3—C2—C3—C40.5 (2)C6—C7—C8—N20.8 (2)
C14—C2—C3—C4179.88 (13)C6—C7—C8—N1178.26 (12)
C2—C3—C4—C50.9 (2)C8—N1—C9—O11.8 (2)
N2—C1—C5—C4179.98 (12)C8—N1—C9—C10177.97 (12)
N3—C1—C5—C40.04 (18)O1—C9—C10—C13117.22 (14)
N2—C1—C5—C60.55 (19)N1—C9—C10—C1363.06 (15)
N3—C1—C5—C6179.51 (11)O1—C9—C10—C112.65 (18)
C3—C4—C5—C11.12 (19)N1—C9—C10—C11177.07 (11)
C3—C4—C5—C6179.46 (13)O1—C9—C10—C12121.97 (15)
C1—C5—C6—C71.59 (18)N1—C9—C10—C1257.75 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1W0.833 (18)2.041 (17)2.8633 (16)169.1 (16)
N3—H1N3···Cl10.877 (18)2.213 (18)3.0870 (11)175.2 (16)
O1W—H1W1···Cl1i0.891 (19)2.219 (19)3.1091 (12)176.5 (18)
O1W—H2W1···Cl10.85 (2)2.61 (2)3.3960 (12)155.3 (16)
C7—H7A···O10.932.272.8298 (17)118
C11—H11A···O1ii0.962.543.3742 (18)145
C13—H13A···O1W0.962.603.4997 (18)157
Symmetry codes: (i) x+1, y, z+2; (ii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC14H18N3O+·Cl·H2O
Mr297.78
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)100
a, b, c (Å)19.0092 (5), 9.0077 (2), 17.7294 (5)
V3)3035.79 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.41 × 0.29 × 0.19
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.902, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
19927, 4489, 3470
Rint0.037
(sin θ/λ)max1)0.708
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.102, 1.07
No. of reflections4489
No. of parameters198
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.27

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005)', SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1W0.833 (18)2.041 (17)2.8633 (16)169.1 (16)
N3—H1N3···Cl10.877 (18)2.213 (18)3.0870 (11)175.2 (16)
O1W—H1W1···Cl1i0.891 (19)2.219 (19)3.1091 (12)176.5 (18)
O1W—H2W1···Cl10.85 (2)2.61 (2)3.3960 (12)155.3 (16)
C7—H7A···O10.93002.27002.8298 (17)118.00
C11—H11A···O1ii0.96002.54003.3742 (18)145.00
C13—H13A···O1W0.96002.60003.4997 (18)157.00
Symmetry codes: (i) x+1, y, z+2; (ii) x+1/2, y1/2, z.
 

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. We thank the DST [SR /S1/OC-13/2005], Government of India, for financial support. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarmen, A.-R., Garcia-Granda, S., Goswami, S., Mukherjee, R., Dey, S., Claramunt, R. M., Santa Maria, M. D., Rozas, I., Jagerovic, N., Alkorta, I. & Elguero, J. (2004). New J. Chem. 28, 700–705.  Google Scholar
First citationGoswami, S. & Mukherjee, R. (1997). Tetrahedron Lett. 38, 1619–1621.  CrossRef CAS Web of Science Google Scholar
First citationGoswami, S., Mukherjee, R., Mukherjee, S., Jana, S., Maity, A. C. & Adak, A. K. (2005). Molecules, 10, 929–934.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, M.-M., Li, Z.-X., Wei, L.-H., Wei, D.-H. & Tang, M.-S. (2008). Org. Lett. 10, 5115–5118.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds