metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1583-m1584

Di­bromido(di-2-pyridylamine-κ2N,N′)mercury(II)

aIslamic Azad University, Shahr-e-Rey Branch, Tehran, Iran, bIslamic Azad University, Izeh Branch, Khozestan, Iran, and cDepartment of Chemistry, Islamic Azad University, Kazeroon Branch, Fars, Iran
*Correspondence e-mail: v_amani2002@yahoo.com

(Received 13 November 2008; accepted 16 November 2008; online 20 November 2008)

In the mol­ecule of the title compound, [HgBr2(C10H9N3)], the HgII atom is four-coordinated in a distorted tetra­hedral configuration by two N atoms from the chelating di-2-pyridylamine ligand and by two Br atoms. In the crystal structure, inter­molecular N—H⋯Br hydrogen bonds link the mol­ecules into centrosymmetric dimers. There are ππ contacts between the pyridine rings [centroid–centroid distances = 3.9662 (5) and 3.9321 (4) Å]. There also exists a C—H⋯π contact between the pyridine CH group and a pyridine ring.

Related literature

For related literature, see: Ahmadi et al. (2008[Ahmadi, R., Ebadi, A., Kalateh, K., Norouzi, A. & Amani, V. (2008). Acta Cryst. E64, m1407.]); Kalateh et al. (2008[Kalateh, K., Ebadi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1397-m1398.]); Khavasi et al. (2008[Khavasi, H. R., Abedi, A., Amani, V., Notash, B. & Safari, N. (2008). Polyhedron, 27, 1848-1854.]); Tadayon Pour et al. (2008[Tadayon Pour, N., Ebadi, A., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1305.]); Yousefi, Rashidi Vahid et al. (2008[Yousefi, M., Rashidi Vahid, R., Amani, V., Arab Chamjangali, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m1339-m1340.]); Yousefi, Tadayon Pour et al. (2008[Yousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1259.]). For related structures, see: Xie et al. (2004[Xie, Y., Ni, J., Jiang, H. & Liu, Q. (2004). J. Mol. Struct. 687, 73-78.]); Hughes et al. (1985[Hughes, C. M., Favas, M. C., Skelton, B. W. & White, A. H. (1985). Aust. J. Chem. 38, 1521-1527.]).

[Scheme 1]

Experimental

Crystal data
  • [HgBr2(C10H9N3)]

  • Mr = 531.59

  • Triclinic, [P \overline 1]

  • a = 8.1284 (16) Å

  • b = 8.7645 (18) Å

  • c = 9.912 (2) Å

  • α = 113.45 (3)°

  • β = 98.41 (3)°

  • γ = 97.79 (3)°

  • V = 626.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 18.65 mm−1

  • T = 120 (2) K

  • 0.40 × 0.35 × 0.25 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: numerical (shape of crystal determined optically) (X-SHAPE and X-RED; Stoe & Cie, 2005[Stoe & Cie (2005). X-SHAPE and X-RED. Stoe & Cie, Darmstadt, Germany.])Tmin = 0.016, Tmax = 0.080

  • 7839 measured reflections

  • 3350 independent reflections

  • 3234 reflections with I > 2σ(I)

  • Rint = 0.087

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.140

  • S = 1.15

  • 3350 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 4.33 e Å−3

  • Δρmin = −6.54 e Å−3

Table 1
Selected geometric parameters (Å, °)

Br1—Hg1 2.5106 (11)
Br2—Hg1 2.5549 (11)
N1—Hg1 2.301 (7)
N3—Hg1 2.350 (7)
N1—Hg1—N3 81.1 (2)
N1—Hg1—Br1 109.13 (17)
N3—Hg1—Br1 117.16 (17)
N1—Hg1—Br2 125.41 (17)
N3—Hg1—Br2 96.23 (18)
Br1—Hg1—Br2 119.68 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Br2i 0.86 2.62 3.472 (3) 170
C2—H2⋯Cg3ii 0.93 3.20 3.587 (3) 107
Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x+2, -y, -z. Cg3 is the centroid of the N3/C6–C10 ring.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Recently, we reported the syntheses and crystal structures of [Hg(4,4'-dmbpy) I2], (II), (Yousefi, Tadayon Pour et al., 2008), [Hg(5,5'-dmbpy)I2], (III), (Tadayon Pour, et al., 2008), [Hg(dmphen)I2], (IV), (Yousefi, Rashidi Vahid et al., 2008), {[HgCl(dm4bt)]2(µ-Cl)2}, (V), (Khavasi et al., 2008), [Hg(6-mbpy)Cl2], (VI), (Ahmadi et al., 2008) and [{HgBr(4,4'-dmbpy)}2(µ-Br)2], (VII), (Kalateh et al., 2008) [where 4,4'-dmbpy is 4,4'-dimethyl-2,2'-bipyridine, 5,5'-dmbpy is 5,5'-dimethyl-2,2'- bipyridine, 6-mbpy is 6-methyl-2,2'-bipyridine, dmphen is 4,7-diphenyl-1,10- phenanthroline and dm4bt is 2,2'-dimethyl-4,4'-bithiazole]. There are two HgII complexes, with formula, [Hg(N—N)Br2], such as [Hg(TPA)Br2], (VIII), (Xie et al., 2004) and [Hg(TPD)Br2], (IX), (Hughes et al., 1985) [where TPA is tris(2-pyridyl)amine and TPD is N,N,N',N'-Tetramethyl-o-phenylenediamine] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).

In the title compound, (Fig. 1), the HgII atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from di-2-pyridylamine and two Br atoms. The Hg-Br and Hg-N bond lengths and angles (Table 1) are within normal ranges, as in (VIII).

In the crystal structure, intermolecular N-H···Br hydrogen bonds link the molecules into centrosymmetric dimers (Fig. 2), in which they may be effective in the stabilization of the structure. The π-π contacts between the pyridine rings Cg2···Cg2i and Cg2···Cg3ii [symmetry codes: (i) x, -y, 2 - z, (ii) 1 - x,- y, 2 - z, where Cg2 and Cg3 are centroids of the rings A (N1/C1-C5) and B (N3/C6-C10), respectively] may further stabilize the structure, with centroid-centroid distances of 3.9662 (5) %A and 3.9321 (4) %A, respectively. There also exists a C—H···π contact (Table 1) between the pyridine CH group and pyridine ring.

Related literature top

For related literature, see: Ahmadi et al. (2008); Kalateh et al. (2008); Khavasi et al. (2008); Tadayon Pour et al. (2008); Yousefi, Rashidi Vahid et al. (2008); Yousefi, Tadayon Pour et al. (2008). For related structures, see: Xie et al. (2004); Hughes et al. (1985).

Experimental top

For the preparation of the title compound, (I), a solution of di-2-pyridylamine (0.25 g, 1.43 mmol) in methanol (20 ml) was added to a solution of HgBr2 (0.51 g, 1.43 mmol) in acetonitrile (20 ml) and the resulting colorless solution was stirred for 20 min at 313 K. This solution was left to evaporate slowly at room temperature. After one week, colorless prismatic crystals of the title compound were isolated (yield; 0.55 g, 72.3%).

Refinement top

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93 Å for aromatic H and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N). The highest and lowest peaks are located 0.69 Å and 0.78 Å from Hg1 atom, respectively.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound.
Dibromido(di-2-pyridylamine-κ2N,N')mercury(II) top
Crystal data top
[HgBr2(C10H9N3)]Z = 2
Mr = 531.59F(000) = 480
Triclinic, P1Dx = 2.820 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1284 (16) ÅCell parameters from 1657 reflections
b = 8.7645 (18) Åθ = 2.3–29.2°
c = 9.912 (2) ŵ = 18.65 mm1
α = 113.45 (3)°T = 120 K
β = 98.41 (3)°Prism, colorless
γ = 97.79 (3)°0.40 × 0.35 × 0.25 mm
V = 626.1 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3350 independent reflections
Radiation source: fine-focus sealed tube3234 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
ϕ and ω scansθmax = 29.2°, θmin = 2.3°
Absorption correction: numerical
(shape of crystal determined optically)
h = 1111
Tmin = 0.016, Tmax = 0.080k = 1110
7839 measured reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0882P)2 + 2.3955P]
where P = (Fo2 + 2Fc2)/3
3350 reflections(Δ/σ)max = 0.059
145 parametersΔρmax = 4.33 e Å3
0 restraintsΔρmin = 6.54 e Å3
Crystal data top
[HgBr2(C10H9N3)]γ = 97.79 (3)°
Mr = 531.59V = 626.1 (3) Å3
Triclinic, P1Z = 2
a = 8.1284 (16) ÅMo Kα radiation
b = 8.7645 (18) ŵ = 18.65 mm1
c = 9.912 (2) ÅT = 120 K
α = 113.45 (3)°0.40 × 0.35 × 0.25 mm
β = 98.41 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3350 independent reflections
Absorption correction: numerical
(shape of crystal determined optically)
3234 reflections with I > 2σ(I)
Tmin = 0.016, Tmax = 0.080Rint = 0.087
7839 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.15Δρmax = 4.33 e Å3
3350 reflectionsΔρmin = 6.54 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.28140 (3)0.22806 (4)0.84793 (3)0.02226 (15)
Br10.03376 (10)0.29535 (11)0.71493 (10)0.0259 (2)
Br20.58403 (10)0.34148 (10)0.83842 (9)0.0219 (2)
N10.2053 (9)0.1755 (9)1.0425 (8)0.0195 (12)
N20.3018 (9)0.0818 (8)0.9915 (8)0.0190 (12)
H2A0.34260.13621.03950.023*
N30.3006 (9)0.0591 (8)0.7601 (8)0.0192 (12)
C10.1347 (11)0.2988 (10)1.1369 (11)0.0239 (15)
H10.10980.38451.10960.029*
C20.0991 (11)0.3023 (11)1.2678 (11)0.0248 (16)
H20.05160.38811.32880.030*
C30.1363 (11)0.1728 (11)1.3080 (10)0.0247 (15)
H30.11510.17271.39770.030*
C40.2037 (11)0.0462 (11)1.2157 (10)0.0225 (14)
H40.22790.04121.24070.027*
C50.2355 (9)0.0519 (10)1.0815 (9)0.0178 (13)
C60.3175 (9)0.1477 (10)0.8430 (9)0.0172 (13)
C70.3535 (10)0.3113 (10)0.7834 (10)0.0215 (14)
H70.36790.36930.84370.026*
C80.3671 (11)0.3850 (11)0.6355 (10)0.0249 (15)
H80.38860.49400.59440.030*
C90.3485 (12)0.2952 (11)0.5481 (10)0.0262 (16)
H90.35750.34140.44790.031*
C100.3158 (11)0.1340 (12)0.6165 (10)0.0248 (16)
H100.30340.07310.55870.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0242 (2)0.0212 (2)0.0290 (2)0.00845 (13)0.00573 (13)0.01720 (14)
Br10.0239 (4)0.0253 (4)0.0341 (4)0.0070 (3)0.0012 (3)0.0194 (3)
Br20.0237 (4)0.0208 (4)0.0267 (4)0.0057 (3)0.0061 (3)0.0151 (3)
N10.023 (3)0.016 (3)0.019 (3)0.006 (2)0.001 (2)0.008 (2)
N20.026 (3)0.015 (3)0.022 (3)0.007 (2)0.004 (2)0.013 (2)
N30.024 (3)0.016 (3)0.018 (3)0.005 (2)0.002 (2)0.009 (2)
C10.025 (4)0.015 (3)0.032 (4)0.005 (3)0.003 (3)0.011 (3)
C20.024 (3)0.020 (3)0.030 (4)0.007 (3)0.007 (3)0.009 (3)
C30.029 (4)0.024 (4)0.022 (3)0.006 (3)0.009 (3)0.010 (3)
C40.026 (3)0.021 (3)0.024 (4)0.005 (3)0.003 (3)0.012 (3)
C50.014 (3)0.017 (3)0.020 (3)0.001 (2)0.002 (2)0.007 (3)
C60.013 (3)0.016 (3)0.020 (3)0.002 (2)0.002 (2)0.009 (3)
C70.024 (3)0.017 (3)0.024 (4)0.004 (3)0.004 (3)0.010 (3)
C80.027 (4)0.022 (4)0.023 (4)0.005 (3)0.002 (3)0.008 (3)
C90.037 (4)0.021 (4)0.017 (3)0.005 (3)0.003 (3)0.006 (3)
C100.030 (4)0.029 (4)0.020 (3)0.008 (3)0.004 (3)0.015 (3)
Geometric parameters (Å, º) top
Br1—Hg12.5106 (11)C5—N11.327 (10)
Br2—Hg12.5549 (11)C5—N21.393 (10)
N1—Hg12.301 (7)C6—N31.342 (10)
N2—H2A0.8600C6—N21.384 (10)
N3—Hg12.350 (7)C6—C71.408 (11)
C1—C21.360 (13)C7—C81.376 (12)
C1—N11.376 (11)C7—H70.9300
C1—H10.9300C8—C91.389 (13)
C2—C31.398 (13)C8—H80.9300
C2—H20.9300C9—C101.385 (12)
C3—C41.368 (12)C9—H90.9300
C3—H30.9300C10—N31.342 (11)
C4—C51.410 (11)C10—H100.9300
C4—H40.9300
N1—Hg1—N381.1 (2)C2—C3—H3119.9
N1—Hg1—Br1109.13 (17)C3—C4—C5118.2 (8)
N3—Hg1—Br1117.16 (17)C3—C4—H4120.9
N1—Hg1—Br2125.41 (17)C5—C4—H4120.9
N3—Hg1—Br296.23 (18)N1—C5—N2121.7 (7)
Br1—Hg1—Br2119.68 (3)N1—C5—C4122.9 (7)
C1—N1—Hg1114.3 (5)N2—C5—C4115.4 (7)
C5—N1—Hg1128.2 (6)N3—C6—N2121.6 (7)
C5—N1—C1117.2 (7)N3—C6—C7121.6 (7)
C6—N2—C5135.0 (7)N2—C6—C7116.9 (7)
C6—N2—H2A112.5C8—C7—C6119.6 (8)
C5—N2—H2A112.5C8—C7—H7120.2
C6—N3—Hg1126.5 (5)C6—C7—H7120.2
C10—N3—Hg1115.6 (6)C7—C8—C9119.4 (8)
C10—N3—C6117.4 (7)C7—C8—H8120.3
C2—C1—N1123.6 (8)C9—C8—H8120.3
C2—C1—H1118.1C8—C9—C10117.2 (8)
N1—C1—H1118.3C8—C9—H9121.4
C1—C2—C3117.9 (8)C10—C9—H9121.4
C1—C2—H2121.0N3—C10—C9124.8 (8)
C3—C2—H2121.1N3—C10—H10117.5
C4—C3—C2120.2 (8)C9—C10—H10117.7
C4—C3—H3120.0
C1—N1—Hg1—N3166.6 (6)C6—C7—C8—C91.3 (12)
C5—N1—Hg1—N320.2 (6)C7—C8—C9—C100.3 (13)
C1—N1—Hg1—Br150.8 (6)C8—C9—C10—N30.1 (14)
C5—N1—Hg1—Br1136.0 (6)N2—C5—N1—C1178.0 (7)
C1—N1—Hg1—Br2102.0 (5)C4—C5—N1—C12.2 (11)
C5—N1—Hg1—Br271.1 (7)N2—C5—N1—Hg19.0 (10)
C10—N3—Hg1—N1168.0 (6)C4—C5—N1—Hg1170.8 (6)
C6—N3—Hg1—N120.2 (6)C2—C1—N1—C51.8 (12)
C6—N3—Hg1—Br1127.2 (6)C2—C1—N1—Hg1172.2 (7)
C10—N3—Hg1—Br161.0 (6)N3—C6—N2—C516.3 (13)
C6—N3—Hg1—Br2104.8 (6)C7—C6—N2—C5164.2 (8)
C10—N3—Hg1—Br267.0 (6)N1—C5—N2—C616.8 (13)
N1—C1—C2—C30.2 (13)C4—C5—N2—C6163.3 (8)
C1—C2—C3—C41.0 (13)C9—C10—N3—C60.4 (13)
C2—C3—C4—C50.6 (12)C9—C10—N3—Hg1172.2 (7)
C3—C4—C5—N11.0 (12)N2—C6—N3—C10179.2 (7)
C3—C4—C5—N2179.1 (7)C7—C6—N3—C101.4 (11)
N3—C6—C7—C81.8 (11)N2—C6—N3—Hg19.2 (10)
N2—C6—C7—C8178.7 (7)C7—C6—N3—Hg1170.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Br2i0.862.623.472 (3)170
C2—H2···Cg3ii0.933.203.587 (3)107
Symmetry codes: (i) x+1, y, z+2; (ii) x+2, y, z.

Experimental details

Crystal data
Chemical formula[HgBr2(C10H9N3)]
Mr531.59
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)8.1284 (16), 8.7645 (18), 9.912 (2)
α, β, γ (°)113.45 (3), 98.41 (3), 97.79 (3)
V3)626.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)18.65
Crystal size (mm)0.40 × 0.35 × 0.25
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionNumerical
(shape of crystal determined optically)
Tmin, Tmax0.016, 0.080
No. of measured, independent and
observed [I > 2σ(I)] reflections
7839, 3350, 3234
Rint0.087
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.140, 1.15
No. of reflections3350
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)4.33, 6.54

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Br1—Hg12.5106 (11)N1—Hg12.301 (7)
Br2—Hg12.5549 (11)N3—Hg12.350 (7)
N1—Hg1—N381.1 (2)N1—Hg1—Br2125.41 (17)
N1—Hg1—Br1109.13 (17)N3—Hg1—Br296.23 (18)
N3—Hg1—Br1117.16 (17)Br1—Hg1—Br2119.68 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Br2i0.862.6203.472 (3)170
C2—H2···Cg3ii0.933.1973.587 (3)107
Symmetry codes: (i) x+1, y, z+2; (ii) x+2, y, z.
 

Acknowledgements

We are grateful to the Islamic Azad University, Shahr-e-Rey Branch, for financial support.

References

First citationAhmadi, R., Ebadi, A., Kalateh, K., Norouzi, A. & Amani, V. (2008). Acta Cryst. E64, m1407.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHughes, C. M., Favas, M. C., Skelton, B. W. & White, A. H. (1985). Aust. J. Chem. 38, 1521–1527.  CSD CrossRef CAS Google Scholar
First citationKalateh, K., Ebadi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1397–m1398.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhavasi, H. R., Abedi, A., Amani, V., Notash, B. & Safari, N. (2008). Polyhedron, 27, 1848–1854.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-SHAPE and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTadayon Pour, N., Ebadi, A., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1305.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXie, Y., Ni, J., Jiang, H. & Liu, Q. (2004). J. Mol. Struct. 687, 73–78.  Web of Science CSD CrossRef CAS Google Scholar
First citationYousefi, M., Rashidi Vahid, R., Amani, V., Arab Chamjangali, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m1339–m1340.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1259.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1583-m1584
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds