inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of the distorted perovskite Nd0.53Sr0.47MnO3

aGraduate School of Materials Science & Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Japan, bPhoton Factory, IMSS, High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan, and cMaterials Structure Physics Group, Department of Physics, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
*Correspondence e-mail: 14515020@stn.nitech.ac.jp

(Received 18 September 2008; accepted 20 October 2008; online 22 October 2008)

Neodymium strontium manganese oxide with ideal composition Nd0.5Sr0.5MnO3 was reported to have two different structure models. In one model, the x coordinate of an O atom is at x > 1/2, while in the other model the x-coordinate of this atom is at x < 1/2. Difference-density maps around this O atom obtained from the current redetermination clearly show that the structure with the O atom at x < 1/2 result in a more satisfactory model than that with x > 1/2. The title compound with a refined composition of Nd0.53 (5)Sr0.47 (5)MnO3 is a distorted perovskite-type structure with site symmetries 2mm for the statistically occupied (Nd, Sr) site and for the above-mentioned O atom, .2/m. for the Mn atom and ..2 for a second O-atom site. In contrast to previous studies, the displacement factors for all atoms were refined anisotropically.

Related literature

For details of the synthesis, see: Nakamura et al. (1999[Nakamura, K., Arima, T., Nakazawa, A., Wakabayashi, Y. & Murakami, Y. (1999). Phys. Rev. B60, 2425-2428.]). For previous refinements of compounds with composition Nd0.5Sr0.5MnO3 from powder and single-crystal data, see: Woodward et al. (1998[Woodward, P. M., Vogt, T., Cox, D. E., Arulraj, A., Rao, C. N. R., Karen, P. & Cheetham, A. K. (1998). Chem. Mater. 10, 3652-3665.]), Caignaert et al. (1998[Caignaert, V., Millange, F., Hervieu, M., Suard, E. & Raveau, B. (1998). Solid State Commun. 99, 173-177.]) and Kajimoto et al. (1999[Kajimoto, R., Yoshizawa, H., Kawano, H., Kuwahara, H., Tokura, Y., Ohoyama, K. & Ohashi, M. (1999). Phys. Rev. B, 60, 9506-9517.]), Angappane et al. (2004[Angappane, S., Pattabiraman, M., Rangarajan, G., Sethupathi, K. & Sastry, V. S. (2004). Phys. Rev. B69, 094437-0-094437-8.]), respectively. For general background, see: Becker & Coppens (1975[Becker, P. J. & Coppens, P. (1975). Acta Cryst. A31, 417-425.]); Dawson et al. (1967[Dawson, B., Hurley, A. C. & Maslen, V. W. (1967). Proc. R. Soc. London Ser. A, 298, 289-306.]); Libermann et al. (1971[Libermann, D. A., Cromer, D. T. & Waber, J. T. (1971). C. Phys. Commun. 2, 107-113.]); Mann (1968[Mann, J. B. (1968). Los Alamos Scientific Report LA3691, Los Alamos, USA.]), Tanaka & Marumo (1983[Tanaka, K. & Marumo, F. (1983). Acta Cryst. A39, 631-641.]).

Experimental

Crystal data
  • Nd0.53Sr0.47MnO3

  • Mr = 218.81

  • Orthorhombic, I b m m

  • a = 5.4785 (3) Å

  • b = 5.4310 (3) Å

  • c = 7.6006 (5) Å

  • V = 226.14 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 28.37 mm−1

  • T = 241 (1) K

  • 0.07 × 0.05 × 0.04 mm

Data collection
  • MAC Science M06XHF22 four-circle diffractometer

  • Absorption correction: numerical (CCDABS; Zhurov & Tanaka, 2003[Zhurov, V. V. & Tanaka, K. (2003). Proceedings of the 28th ISTC Japan Workshop on Frontiers of X-ray Diffraction Technologies in Russia/CIS, pp. 169-178.]) Tmin = 0.358, Tmax = 0.521

  • 1255 measured reflections

  • 966 independent reflections

  • 679 reflections with F > 3σ(F)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.066

  • S = 1.19

  • 927 reflections

  • 65 parameters

  • 14 restraints

  • Δρmax = 2.17 e Å−3

  • Δρmin = −3.38 e Å−3

Table 1
Selected bond lengths (Å)

Mn—O1 1.9199 (6)
Mn—O2 1.9400 (4)
Ndi—O1i 2.501 (4)
Ndii—O2 2.545 (2)
Ndi—O1 2.7332 (5)
Ndii—O1 2.978 (4)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) x+1, y, z.

Data collection: MXCSYS (MAC Science, 1995[MAC Science (1995). MXCSYS. Bruker AXS Inc., Tsukuba, Ibaraki, Japan.]) and IUANGLE (Tanaka et al., 1994[Tanaka, K., Kumazawa, S., Tsubokawa, M., Maruno, S. & Shirotani, I. (1994). Acta Cryst. A50, 246-252.]).; cell refinement: RSLC-3 UNICS system (Sakurai & Kobayashi, 1979[Sakurai, T. & Kobayashi, K. (1979). Rikagaku Kenkyusho Hokoku, 55, 69-77.]); data reduction: RDEDIT (Tanaka, 2008[Tanaka, K. (2008). RDEDIT. Unpublished.]); program(s) used to solve structure: QNTAO (Tanaka & Ōnuki, 2002[Tanaka, K. & Ōnuki, Y. (2002). Acta Cryst. B58, 423-436.]; Tanaka et al., 2008[Tanaka, K., Makita, R., Funahashi, S., Komori, T. & Zaw Win (2008). Acta Cryst. A64, 437-449.]); program(s) used to refine structure: QNTAO; molecular graphics: ATOMS for Windows (Dowty, 2000[Dowty, E. (2000). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.]); software used to prepare material for publication: RDEDIT.

Supporting information


Comment top

Woodward et al. (1998) and Caignaert et al. (1998) determined the structure of Nd0.5Sr0.5MnO3 on the basis of powder X-ray diffraction data, whereas Kajimoto (1999) and Angappane et al. (2004) used single-crystal X-ray diffraction data for structure refinements. Except the model reported by Woodward et al. (1998), for all other structure models of Nd0.5Sr0.5MnO3 the x-coordinate of oxygen atom O1 was reported to be > 1/2. Since a new examination of the x-coordinate of O1 seemed desirable and anisotropic displacement factors were not reported in the previous studies, we decided to redetermine the structure of Nd0.45Sr0.55MnO3. The result of the structure analysis is presented in this communication.

The structure of the title compound derives from the perovskite-type (Fig. 1) and exhibits an orthorhombic distortion. The site symmetries are 2mm for the statistically occupied [(Nd,Sr)O12] polyhedron and for O1, .2/m. for the distorted [MnO6] octahedron and ..2 for O2.

Related literature top

For details of the synthesis, see: Nakamura et al. (1999). For previous refinements of compounds with composition Nd0.5Sr0.5MnO3 from powder and single-crystal data, see: Woodward et al. (1998), Caignaert et al. (1998) and Kajimoto et al. (1999), Angappane et al. (2004), respectively. For general background, see: Becker & Coppens (1975); Dawson et al. (1967); Libermann et al. (1971); Mann (1968), Tanaka & Marumo (1983).

Experimental top

A large single crystal was grown using a floating zone method (Nakamura et al., 1999). The bulk sample was put on a piece of filter paper and was etched by diluted nitric acid under a microscope. Finally, the sample was shaped into a 0.040 mm × 0.053 mm × 0.065 mm block. Nd0.45Sr0.55MnO3 exhibits a first order phase transition at TN = 225K. The present diffraction study was carried out at 241 (1) K close to the phase transition temperature.

Refinement top

The structure of Nd1 -xSrxMnO3 changes with the hole-concentration x. In the region x > 0.55 the structure has tetragonal symmetry. However, at x = 0.60 a phase with monoclinic symmetry was reported at low temperature (Kajimoto et al. , 1999). Below x = 0.55 it changes to orthorhombic symmetry. Since crystals with monoclinic, orthorhombic and tetragonal symmetries were found in preliminary experiments for crystal with approximate compositions of Nd0.45Sr0.55MnO3 (which is expected from the composition of the starting materials), the hole-concentration x (i.e. site occupation factors) were also refined besides the atomic coordinates and the temperature factors. The previous studies (Woodward et al. (1998); Caignaert et al. (1998); Angappane et al. (2004)) have used the standard setting of space group No. 74 in Imma. We decided to refine the structure with the setting in Ibmm, because in the orthorhombic phase the crystal axis is taken along the same direction as that of the tetragonal phase which is also adopted by many other physicists to make clear the relationships between the two phases. Furthermore, Nd0.45Sr0.55MnO3 is well known as having dx2-y2- type orbital-ordering of Mn and the physical and chemical properties are discussed based on the Ibmm setting.

When the coordinates by Caignaert et al. (1998) were used as starting parameters for refinement, the x-coordinate of O1 converged to 0.518 (1) with a R-factor of 0.0381. Fig. 2 (a) shows the difference density map onto (010) after this refinement in the range 0< z < 1/2 and 0 < x < 1 with the vertical and horizontal lengths of 3.80 Å × 5.48 Å. The cores of Nd/Sr, Mn and O1 are at (0, 1/4), (1/2, 1/2) and (0.52, 1/4). Since there are two high peaks at x = 0.45 and 0.55 in Fig 2 (a), O1 was split into O1(1) at x=0.45 and O1(2) at x=0.55. The site occupation factors of O1(1) and O1(2) became 0.96 (6) and 0.04 (6) after the refinement. Hence O1 was concluded to be located only at x=0.45. After the subsequent refinement the R-factor converged at 0.0289 and the difference density map became likewise more satisfactory (Fig. 2(b)).

Although the temperature factor U33 of O1 is 0.001 (1) Å2 and almost insignificant, it becomes 0.0015 (2) Å2 after the refinement of anharmonic vibration parameters (Dawson et al., 1967; Tanaka & Marumo, 1983) as well as the harmonic ones. Finally, refinement of the site occupation factors revealed a hole-concentration x of 0.47 (5) thus leading to a composition of Nd0.53Sr0.47MnO3.

Computing details top

Data collection: MXCSYS (MAC Science, 1995) and IUANGLE (Tanaka et al., 1994).; cell refinement: RSLC-3 UNICS system (Sakurai & Kobayashi, 1979); data reduction: RDEDIT (Tanaka, 2008); program(s) used to solve structure: QNTAO (Tanaka & Onuki, 2002; Tanaka et al., 2008); program(s) used to refine structure: QNTAO (Tanaka & Onuki, 2002; Tanaka et al., 2008); molecular graphics: ATOMS for Windows (Dowty, 2000); software used to prepare material for publication: RDEDIT (Tanaka, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the distorted perovskite Nd0.53Sr0.47MnO3 with displacement ellipsoids drawn at the 90% probability level.
[Figure 2] Fig. 2. The difference density map projected onto (010) plane with a range 0 < x < 1 and 0< z < 1/2. (a): The x-coordinate of O1 is > 1/2. (b): The x-coordinate of O1 is < 1/2. Contours are given at intervals of 0.5 e Å-3. Zero contours are drawn as thick lines, positive contours are drawn as thin lines, and negative contours are drawn as broken line.
Neodymium strontium manganese oxide top
Crystal data top
Nd0.53Sr0.47MnO3F(000) = 394.64
Mr = 218.81Dx = 6.479 Mg m3
Orthorhombic, IbmmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -I 2c 2cCell parameters from 30 reflections
a = 5.4785 (3) Åθ = 35.6–37.8°
b = 5.4310 (3) ŵ = 28.37 mm1
c = 7.6006 (5) ÅT = 241 K
V = 226.14 (2) Å3Block, black
Z = 40.07 × 0.05 × 0.04 mm
Data collection top
MAC Science M06XHF22 four-circle
diffractometer
966 independent reflections
Radiation source: fine-focus rotating anode679 reflections with F > 3σ(F)
Graphite monochromatorRint = 0.022
Detector resolution: 1.25x1.25° pixels mm-1θmax = 74.7°, θmin = 5.3°
integrated intensities data fom ω/2θ scansh = 1214
Absorption correction: numerical
(CCDABS; Zhurov & Tanaka, 2003)
k = 1214
Tmin = 0.358, Tmax = 0.521l = 1818
1255 measured reflections
Refinement top
Refinement on F14 restraints
Least-squares matrix: fullWeighting scheme based on measured s.u.'s
R[F2 > 2σ(F2)] = 0.028(Δ/σ)max = 0.00024
wR(F2) = 0.066Δρmax = 2.17 e Å3
S = 1.19Δρmin = 3.38 e Å3
927 reflectionsExtinction correction: B–C type 1 Gaussian anisotropic (Becker & Coppens, 1975)
65 parametersExtinction coefficient: 0.029E04 (1)
Crystal data top
Nd0.53Sr0.47MnO3V = 226.14 (2) Å3
Mr = 218.81Z = 4
Orthorhombic, IbmmMo Kα radiation
a = 5.4785 (3) ŵ = 28.37 mm1
b = 5.4310 (3) ÅT = 241 K
c = 7.6006 (5) Å0.07 × 0.05 × 0.04 mm
Data collection top
MAC Science M06XHF22 four-circle
diffractometer
966 independent reflections
Absorption correction: numerical
(CCDABS; Zhurov & Tanaka, 2003)
679 reflections with F > 3σ(F)
Tmin = 0.358, Tmax = 0.521Rint = 0.022
1255 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02865 parameters
wR(F2) = 0.06614 restraints
S = 1.19Δρmax = 2.17 e Å3
927 reflectionsΔρmin = 3.38 e Å3
Special details top

Experimental. Multiple diffraction was avoided by ψ-scan. Intensities was measured at equi-temperature region of combinaion of angles ω and χ of four-circle diffractometer

Refinement. B—C anisotropic type1 extinction parameters (× 10 4s) are as follows 4087 (526) 6631 (1159) 3088 (391) -790 (416) -1835 (361) 3716 (625)

Dawson et al. (1967) proposed the treatment of temperature factors including anharmonic thermal vibration (AHV) effect for high-symmetry crystals by means of series expansion of an one-particle-potential. Tanaka and Marumo (1983) generalized the treatment and anharmonic third and fourth order parameters were refined in the least-square program. AHV parameters were restricted by the site symmetry of Nd/Sr(2 mm), Mn(.2/m.), O1(2 mm) and O2(..2). The anharmonic potentials (V) are represented by the following equation:

VNd,Sr,O1=c111u13+c123u1u22+c133u1u32+q1111u14 +q1122u12u22+q1133u12u32+q2222u24 +q2233u22u32+q3333u34 ···(1)

VMn=q1111u14+q1122u12u22+q1133u12u32 +q2222u24+q2233u22u32+q3333u34+q1131u13u3 +q2231u22u1u3+q3331u33u1 ···(2)

VO2=c211u12u2+c222u23+c233u32u2+c123u1u2u3 +q1111u14+q1122u12u22+q1133u12u32 +q2222u24+q2233u22u32+q3333u34+q1131u13u3 +q2231u22u1u3+q3331u33u1 ···(3)

where (u1,u2,u3) is a displacement vector from equilibrium position of each atom. The displacement vector of Nd, Sr, O1 was defined on the coordinate system with axes parallel to the crystal axes, a, b and c. That of Mn and O2 was defined by equation (4) and (5) in terms of the lattice vectors a, b and c in the present study.

u1= -0.18253a, u2= 0.18413b, u3= -0.13157c ···(4)

u1= -0.11080a-0.14633b, u2= 0.13157c, u3= -0.14506a + 0.11177b ···(5)

Since there is strong correlation between harmonic temperature factors and AHV parameters, the AHV parameters and the harmonic temperature factors were refined alternately. The significant AHV parameters cijk (× 10-19-3) and qiijk (× 10-19-3) are as follows:

Nd and Sr; c111= -5.9 (49), c122= -3.8 (14),

Mn; q2231= -1832 (1560),

O1: q2222= -9.5 (39), q2233= 569.9 (2279),

O2: c211= 3.7 (33), c233= 0.8 (7), c123= -5.5 (23), q2233= 9.1 (79),

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Nd0.00656 (9)00.250.00637 (4)0.53 (5)
Sr0.00656 (9)00.250.00637 (4)0.47 (5)
Mn0.5000.00305 (7)
O10.4499 (8)00.250.0112 (6)
O20.750.250.0276 (4)0.0139 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd0.00653 (6)0.00685 (7)0.00574 (8)000
Sr0.00663 (6)0.00685 (7)0.00574 (8)000
Mn0.0035 (1)0.0030 (1)0.0027 (1)000
O10.015 (1)0.017 (1)0.0015 (2)000
O20.0148 (7)0.0116 (7)0.015 (1)0.0058 (6)00
Geometric parameters (Å, º) top
Mn—O11.9199 (6)Ndii—O22.545 (2)
Mn—O21.9400 (4)O1—O22.721 (3)
Ndi—Ndii3.8064 (5)Ndi—Mn3.3043 (4)
Ndii—O1ii2.501 (4)O1iii—O2ii2.738 (3)
Ndi—O22.545 (2)O1—O1ii3.489 (4)
Ndii—O12.7332 (5)O2—O2iii3.8799 (5)
Ndi—O12.978 (4)
Ndii—Ndi—Mn55.020 (8)Ndi—O1—Mn81.8 (1)
Mn—Ndi—O135.10 (8)Ndii—O1—Mn89.07 (3)
Ndi—Ndii—Mn54.769 (6)Mn—O1—O1ii95.15 (9)
Ndi—Ndii—O241.61 (5)Ndii—O1ii—O151.11 (8)
Mn—Ndii—O1ii89.4 (1)Ndi—O2—Ndii96.8 (1)
O1—Ndii—O1ii83.5 (1)Ndi—O2—O2iii144.59 (7)
O1ii—Ndii—O2121.6 (1)Ndii—O2—O2iii47.83 (1)
Ndi—Mn—Ndii70.212 (7)Ndii—Ndi—O241.61 (5)
Ndii—Mn—O155.54 (2)O1—Ndi—O258.4 (1)
Ndi—O1—Ndii83.48 (9)Ndi—Ndii—O1ii134.5 (1)
Ndi—O1—O252.83 (8)Mn—Ndii—O135.39 (1)
Ndii—O1—O255.64 (6)Mn—Ndii—O2iii87.76 (5)
O1ii—O1—O289.48 (6)O1—Ndii—O2iii114.44 (5)
O1—O1ii—O2iii97.8 (1)O2—Ndii—O2iii91.19 (7)
Ndi—O2—O168.77 (9)Ndi—Mn—O250.22 (1)
Ndii—O2—O162.42 (8)Ndi—O1—O1ii128.89 (6)
Ndii—Ndi—O145.51 (8)Ndii—O1—O1ii45.41 (5)
Mn—Ndi—O235.85 (5)Mn—O1—O245.48 (6)
Ndi—Ndii—O151.01 (1)Ndii—O1ii—O2iii66.4 (1)
Ndi—Ndii—O2iii132.79 (5)Ndi—O2—Mn93.92 (6)
Mn—Ndii—O235.71 (5)Ndii—O2—Mn94.32 (6)
O1—Ndii—O261.94 (5)Mn—O2—O2iii88.84 (2)
O1ii—Ndii—O2iii60.7 (1)O1—O2—O2iii89.42 (6)
Ndi—Mn—O163.12 (2)O1ii—O2iii—O281.49 (5)
Ndii—Mn—O249.98 (1)Ndii—O2iii—O1ii52.84 (6)
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z; (iii) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaNd0.53Sr0.47MnO3
Mr218.81
Crystal system, space groupOrthorhombic, Ibmm
Temperature (K)241
a, b, c (Å)5.4785 (3), 5.4310 (3), 7.6006 (5)
V3)226.14 (2)
Z4
Radiation typeMo Kα
µ (mm1)28.37
Crystal size (mm)0.07 × 0.05 × 0.04
Data collection
DiffractometerMAC Science M06XHF22 four-circle
diffractometer
Absorption correctionNumerical
(CCDABS; Zhurov & Tanaka, 2003)
Tmin, Tmax0.358, 0.521
No. of measured, independent and
observed [F > 3σ(F)] reflections
1255, 966, 679
Rint0.022
(sin θ/λ)max1)1.357
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.066, 1.19
No. of reflections927
No. of parameters65
No. of restraints14
Δρmax, Δρmin (e Å3)2.17, 3.38

Computer programs: MXCSYS (MAC Science, 1995) and IUANGLE (Tanaka et al., 1994)., RSLC-3 UNICS system (Sakurai & Kobayashi, 1979), RDEDIT (Tanaka, 2008), QNTAO (Tanaka & Onuki, 2002; Tanaka et al., 2008), ATOMS for Windows (Dowty, 2000).

Selected bond lengths (Å) top
Mn—O11.9199 (6)Ndii—O22.545 (2)
Mn—O21.9400 (4)Ndi—O12.7332 (5)
Ndi—O1i2.501 (4)Ndii—O12.978 (4)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y, z.
 

References

First citationAngappane, S., Pattabiraman, M., Rangarajan, G., Sethupathi, K. & Sastry, V. S. (2004). Phys. Rev. B69, 094437-0–094437-8.  Google Scholar
First citationBecker, P. J. & Coppens, P. (1975). Acta Cryst. A31, 417–425.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCaignaert, V., Millange, F., Hervieu, M., Suard, E. & Raveau, B. (1998). Solid State Commun. 99, 173–177.  CrossRef Web of Science Google Scholar
First citationDawson, B., Hurley, A. C. & Maslen, V. W. (1967). Proc. R. Soc. London Ser. A, 298, 289–306.  CrossRef CAS Google Scholar
First citationDowty, E. (2000). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationKajimoto, R., Yoshizawa, H., Kawano, H., Kuwahara, H., Tokura, Y., Ohoyama, K. & Ohashi, M. (1999). Phys. Rev. B, 60, 9506–9517.  Web of Science CrossRef CAS Google Scholar
First citationLibermann, D. A., Cromer, D. T. & Waber, J. T. (1971). C. Phys. Commun. 2, 107–113.  CrossRef Web of Science Google Scholar
First citationMAC Science (1995). MXCSYS. Bruker AXS Inc., Tsukuba, Ibaraki, Japan.  Google Scholar
First citationMann, J. B. (1968). Los Alamos Scientific Report LA3691, Los Alamos, USA.  Google Scholar
First citationNakamura, K., Arima, T., Nakazawa, A., Wakabayashi, Y. & Murakami, Y. (1999). Phys. Rev. B60, 2425–2428.  CrossRef Google Scholar
First citationSakurai, T. & Kobayashi, K. (1979). Rikagaku Kenkyusho Hokoku, 55, 69–77.  Google Scholar
First citationTanaka, K. (2008). RDEDIT. Unpublished.  Google Scholar
First citationTanaka, K., Kumazawa, S., Tsubokawa, M., Maruno, S. & Shirotani, I. (1994). Acta Cryst. A50, 246–252.  CrossRef CAS IUCr Journals Google Scholar
First citationTanaka, K., Makita, R., Funahashi, S., Komori, T. & Zaw Win (2008). Acta Cryst. A64, 437–449.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTanaka, K. & Marumo, F. (1983). Acta Cryst. A39, 631–641.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationTanaka, K. & Ōnuki, Y. (2002). Acta Cryst. B58, 423–436.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWoodward, P. M., Vogt, T., Cox, D. E., Arulraj, A., Rao, C. N. R., Karen, P. & Cheetham, A. K. (1998). Chem. Mater. 10, 3652–3665.  Web of Science CrossRef CAS Google Scholar
First citationZhurov, V. V. & Tanaka, K. (2003). Proceedings of the 28th ISTC Japan Workshop on Frontiers of X-ray Diffraction Technologies in Russia/CIS, pp. 169–178.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds