organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-1,2-Di­methyl-1,1,2-tri­phenyl-2-(4-piperidiniometh­yl)disilane chloride

aAnorganische Chemie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
*Correspondence e-mail: mail@carsten-strohmann.de

(Received 18 August 2008; accepted 8 September 2008; online 17 September 2008)

The title compound, C26H34NSi2+·Cl, shows chirality at silicon. Because of its highly selective synthesis with an e.r. of >99:1 by means of a racemic resolution with mandelic acid, the free disilane is of great importance to the chemistry of highly enanti­omerically enriched lithio­silanes and their trapping products. N—H⋯Cl hydrogen bonding is present between the protonated nitro­gen atom of the piperidino group and the chloride counter-anion. The silicon–silicon distance as well as silicon–carbon and carbon–nitro­gen bond lengths are in the same ranges as in other quaternary, functionalized di- and tetra­silanes.

Related literature

For details of lithio­silanes, see: Lickiss & Smith (1995[Lickiss, P. D. & Smith, C. M. (1995). Coord. Chem. Rev. 145, 75-124.]); Sekiguchi et al. (2000[Sekiguchi, A., Lee, V. Y. & Nanjo, M. (2000). Coord. Chem. Rev. 210, 11-45.]); Strohmann et al. (2001[Strohmann, C., Ulbrich, O. & Auer, D. (2001). Eur. J. Inorg. Chem. pp. 1013-1018.], 2006[Strohmann, C., Däschlein, C. & Auer, D. (2006). J. Am. Chem. Soc. 128, 704-705.]); Strohmann & Däschlein (2008a[Strohmann, C. & Däschlein, C. (2008a). Chem. Commun. pp. 2791-2793.],b[Strohmann, C. & Däschlein, C. (2008b). Organometallics, 27, 2499-2504.]); Tamao & Kawachi (1995[Tamao, K. & Kawachi, A. (1995). Adv. Organomet. Chem. 38, 1-58.]). For enanti­o­merically enriched lithio­silanes, see: Colomer & Corriu (1976[Colomer, E. & Corriu, R. J. P. (1976). J. Chem. Soc. Chem Commun. 5, 176-177.]); Oestreich et al. (2005[Oestreich, M., Auer, G. & Keller, M. (2005). Eur. J. Inorg. Chem. 1, 184-195.]); Omote et al. (2000[Omote, M., Tokita, T., Shimizu, Y., Imae, I., Shirakawa, E. & Kawakami, Y. (2000). J. Organomet. Chem. 611, 20-25.]); Sommer & Mason (1965[Sommer, L. H. & Mason, R. J. (1965). J. Am. Chem. Soc. 87, 1619-1620.]); Strohmann et al. (2007[Strohmann, C., Däschlein, C., Kellert, M. & Auer, D. (2007). Angew. Chem. Int. Ed. 46, 4780-4782.]). For the determination of the absolute configuration of the disilane as the mandelic acid adduct, see: Strohmann et al. (2002[Strohmann, C., Hörnig, J. & Auer, D. (2002). Chem. Commun. pp. 766-767.]). For related literature on hydro­chlorides of amines, see: Farrugia et al. (2001[Farrugia, L. J., Cross, R. J. & Barley, H. R. L. (2001). Acta Cryst. E57, o992-o993.]).

[Scheme 1]

Experimental

Crystal data
  • C26H34NSi2+·Cl

  • Mr = 452.19

  • Orthorhombic, P 21 21 21

  • a = 10.120 (2) Å

  • b = 13.289 (3) Å

  • c = 18.598 (4) Å

  • V = 2501.3 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 173 (2) K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.926, Tmax = 0.950

  • 45451 measured reflections

  • 4911 independent reflections

  • 4808 reflections with I > 2σ(I)

  • Rint = 0.077

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.149

  • S = 1.05

  • 4911 reflections

  • 277 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.34 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2128 Friedel pairs

  • Flack parameter: 0.08 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H100⋯Cl 1.00 (5) 2.05 (5) 3.031 (3) 166 (4)

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Functionalized lithiosilanes (Strohmann et al., 2001; Strohmann et al., 2006; Strohmann & Däschlein, 2008a,b) are versatile reagents in organic and organometallic chemistry, e.g. for the nucleophilic introduction of protecting groups, the synthesis of silyl-substituted transition metal complexes or for silicon-based polymers (Lickiss & Smith, 1995; Sekiguchi et al., 2000; Tamao & Kawachi, 1995). Especially highly enantiomerically enriched lithiosilanes are of great interest due to the increased stability of configuration at the stereogenic silicon center compared to the labile alkyllithium compounds. Yet, as the synthetic pathways to functionalized lithiosilanes are extremly limited, only six highly enantiomerically enriched systems are known until today (Colomer & Corriu, 1976; Oestreich et al., 2005; Omote et al., 2000; Sommer & Mason, 1965; Strohmann et al., 2002; Strohmann et al., 2007). Thereby the Si-Si bond cleavage of aryl substituted disilanes with lithium proved to be a potential method for the preperation of these useful compounds.

(S)-1,2-Dimethyl-1,1,2-triphenyl-1-(piperidinomethyl)disilane, (I), is an excellent starting system for the praparation of highly enantiomerically enriched lithiosilanes as it can be synthesised in an e.r. of > 99:1 by means of a racemic resolution with mandelic acid (Strohmann et al., 2002). The reaction with lithium metal results in the selective Si-Si bond cleavage and thus offers a synthetic pathway to highly enantiomerically enriched silicon-chiral di-, tri- and tetrasilanes (Strohmann et al., 2007) and -germanes (Strohmann & Däschlein, 2008b).

Treatment of (I) with HCl yields the title compound, (II), (S)-1,2-Dimethyl-1,1,2-triphenyl-1-(piperidiniummethyl)disilane chloride, as a crystalline solid. The determination of the absolute configuration of the stereogenic silicon center gave the same absolute configuration as the mandelic acid adduct published previously (Strohmann et al., 2002).

The asymmetric unit of (II) contains one molecule of the silicon-chiral disilane. Furthermore, hydrogen bonding between the hydrogen atom of the protonated nitrogen of the piperidino group and the chloride counteranion can be found (Fig. 1). The H···Cl distance (2.05 Å) and the N-H-Cl angle (166.1 °) are in the typical ranges of such hydrogen bonds (Farrugia et al., 2001). With a value of 2.3672 (13) Å, the Si-Si bond length is comparable to other known systems and is slightly larger than the sum of the covalent radii of two silicon atoms (2.33 Å). The silicon-carbon and carbon-nitrogen distances, respectively, are also in the same ranges as in previously published systems. Thereby, the longest silicon-carbon distance can be found between Si1 and C1. Due to the positive charge at the nitrogen in beta-position to Si1, the bond length to C1 is increased to 1.910 (3) Å. The other five Si-C(X) bonds (X = 7, 8, 14, 15, 21) have values between 1.873 (4) and 1.884 (4) Å (average: 1.881 Å) and thus are significantly smaller than the Si1-C1 distance but in very good agreement with the sum of the covalent radii of silicon and carbon (1.88 Å). Considering the Si1-Si2-axis, it is noteworthy to mention that the substituents at the silicon atoms do possess an almost ecliptical arrangement and therefore do not adopt the sterically less hindered staggered conformation.

Related literature top

For related literature on lithiosilanes, see: Lickiss & Smith (1995); Sekiguchi et al. (2000); Strohmann et al. (2001, 2006); Strohmann & Däschlein (2008a,b); Tamao & Kawachi (1995). For related literature on enantiomerically enriched lithiosilanes, see: Colomer & Corriu (1976); Oestreich et al. (2005); Omote et al. (2000); Sommer & Mason (1965); Strohmann et al. (2007). For the determination of the absolute configuration of the disilane as the mandelic acid adduct, see: Strohmann et al. (2002). For related literature on hydrochlorides of amines, see: Farrugia et al. (2001).

Experimental top

To the enantiomerically pure (S)-1,2-Dimethyl-1,2,2-triphenyldisilan-1-(piperidinomethyl)disilane, (I), dissolved in Et2O, one equivalent of etherical HCl solution was added and stored at room temperature for 24 h. After removal of the solvent, a colourless crystalline solid of (II) remained, suitable for single crystal x-ray studies.

1H-NMR (500.1 MHz, CDCl3): δ = -4.92 (s, 3H; NCSiSiCH3), -4.80 (s, 3H; NCSiCH3), 0.95–1.05, 1.55–1.60 (m, 1H each; NCCCH2), 1.40–1.50 (m, 2H; NCCH2), 1.95–2.05, 2.05–2.15 (m, 1H each; NCCH2), 2.22–2.28, 2.30–2.37 (m, 1H each; NCH2C), 2.70–2.75, 2.80–2.85 (m, 1H each; SiCH2), 3.03–3.07, 3.12–3.18 (m, 1H each; NCH2C),7.15–7.35 (m, 15H; aromat. H).

{1H}13C-NMR (125.8 MHz, CDCl3): δ = -4.9 (1 C) (NCSiCH3), -4.8 (1 C) (NCSiSiCH3), 21.3 (1 C) (NCCCH2), 22.5, 22.6 (1 C each) (NCCH2), 49.4 (1 C) (SiCH2), 55.2, 57.4 (1 C each) (NCH2C), 128.06, 128.17, 128.37 (2 C each) (all C-m), 129.36, 129.50,129.78 (1 C each) (all C-p), 134.06, 134.64,134.77 (2 C each) (all C-o), 133.74, 133.99,134.46 (1 C each) (all C-i).

{1H}29Si-NMR (99.4 MHz, CDCl3): δ = -25.3 (1Si) (NCSi), -23.5 (1Si) (NCSiSi).

Refinement top

The H atoms were refined in their ideal geometric positions using the riding model approximation with Uiso(H) = 1.5Ueq(C) for methyl H atoms and of Uiso(H) = 1.2Ueq(C) for all other H atoms except atom H100 (bonded to the N atom of the piperidino group) which was refined freely.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP plot of the asymmetric unit of (I) with displacement ellipsoids drawn at the 50% probability level. The dashed line indicates the hydrogen bond.
(S)-1,2-Dimethyl-1,1,2-triphenyl-2-(4-piperidiniomethyl)disilane chloride top
Crystal data top
C26H34NSi2+·ClF(000) = 968
Mr = 452.19Dx = 1.201 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 999 reflections
a = 10.120 (2) Åθ = 1.9–26.0°
b = 13.289 (3) ŵ = 0.26 mm1
c = 18.598 (4) ÅT = 173 K
V = 2501.3 (9) Å3Block, colourless
Z = 40.30 × 0.30 × 0.20 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
4911 independent reflections
Radiation source: fine-focus sealed tube4808 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
ω–scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1212
Tmin = 0.926, Tmax = 0.950k = 1616
45451 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.0402P)2 + 1.4067P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4911 reflectionsΔρmax = 0.41 e Å3
277 parametersΔρmin = 0.34 e Å3
0 restraintsAbsolute structure: Flack (1983), 2128 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (10)
Crystal data top
C26H34NSi2+·ClV = 2501.3 (9) Å3
Mr = 452.19Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.120 (2) ŵ = 0.26 mm1
b = 13.289 (3) ÅT = 173 K
c = 18.598 (4) Å0.30 × 0.30 × 0.20 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
4911 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
4808 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 0.950Rint = 0.077
45451 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.149Δρmax = 0.41 e Å3
S = 1.05Δρmin = 0.34 e Å3
4911 reflectionsAbsolute structure: Flack (1983), 2128 Friedel pairs
277 parametersAbsolute structure parameter: 0.08 (10)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.09614 (10)0.04149 (6)0.25243 (5)0.0361 (2)
Si10.28622 (9)0.21087 (7)0.20801 (5)0.0249 (2)
Si20.40619 (9)0.23973 (7)0.10071 (5)0.0276 (2)
N10.0148 (3)0.2532 (2)0.25691 (15)0.0246 (5)
C30.2128 (4)0.2953 (3)0.2978 (2)0.0346 (8)
H3B0.24110.22410.29610.042*
H3A0.29090.33780.28760.042*
C170.4393 (5)0.0299 (3)0.0646 (2)0.0433 (10)
H170.50600.00750.09680.052*
C80.3754 (3)0.2680 (3)0.28642 (17)0.0271 (7)
C20.1098 (3)0.3132 (3)0.24077 (19)0.0309 (7)
H2A0.08810.38580.23870.037*
H2B0.14520.29300.19330.037*
C160.4683 (4)0.1011 (3)0.0121 (2)0.0374 (9)
H160.55590.12620.00820.045*
C60.0655 (3)0.2780 (3)0.32978 (17)0.0297 (7)
H6A0.09220.34960.33120.036*
H6B0.14460.23660.34000.036*
C10.1159 (3)0.2715 (2)0.19928 (16)0.0273 (7)
H1A0.12900.34520.19560.033*
H1B0.07730.24890.15310.033*
C110.4933 (4)0.3529 (4)0.4090 (2)0.0456 (10)
H110.53150.38120.45100.055*
C180.3126 (5)0.0077 (3)0.0696 (2)0.0435 (10)
H180.29260.05650.10540.052*
C190.2150 (5)0.0243 (3)0.0237 (2)0.0466 (10)
H190.12820.00250.02730.056*
C100.4387 (4)0.4145 (3)0.3574 (2)0.0386 (9)
H100.44160.48550.36300.046*
C210.3634 (3)0.3622 (3)0.05534 (19)0.0302 (7)
C240.3080 (4)0.5453 (3)0.0126 (2)0.0411 (9)
H240.28990.60770.03550.049*
C260.3724 (4)0.3723 (3)0.0189 (2)0.0366 (8)
H260.39780.31570.04690.044*
C230.2970 (4)0.5373 (3)0.0615 (2)0.0420 (9)
H230.27080.59380.08940.050*
C90.3793 (4)0.3723 (3)0.29742 (19)0.0314 (7)
H90.34000.41540.26270.038*
C140.5853 (4)0.2419 (3)0.1259 (2)0.0397 (8)
H14C0.63920.24820.08230.060*
H14B0.60810.17940.15090.060*
H14A0.60240.29940.15760.060*
C70.2688 (4)0.0726 (3)0.2230 (2)0.0357 (8)
H7B0.35670.04200.22660.054*
H7C0.22090.04260.18250.054*
H7A0.21980.06070.26760.054*
C40.1613 (4)0.3193 (3)0.3725 (2)0.0394 (9)
H4A0.14160.39200.37620.047*
H4B0.22930.30240.40880.047*
C220.3244 (4)0.4466 (3)0.0945 (2)0.0363 (8)
H220.31660.44150.14520.044*
C120.4926 (4)0.2503 (4)0.3995 (2)0.0435 (9)
H120.53150.20800.43480.052*
C50.0374 (4)0.2590 (3)0.38669 (18)0.0334 (8)
H5A0.00120.27740.43440.040*
H5B0.05950.18640.38760.040*
C200.2446 (4)0.0968 (3)0.0282 (2)0.0368 (9)
H200.17700.11960.05960.044*
C150.3720 (4)0.1364 (3)0.03482 (18)0.0314 (8)
C130.4352 (4)0.2081 (3)0.33837 (18)0.0338 (8)
H130.43690.13720.33210.041*
C250.3450 (4)0.4636 (3)0.0533 (2)0.0434 (9)
H250.35180.46900.10410.052*
H1000.007 (5)0.180 (4)0.254 (3)0.050 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0441 (5)0.0229 (4)0.0413 (5)0.0063 (4)0.0004 (4)0.0006 (3)
Si10.0270 (5)0.0232 (4)0.0246 (4)0.0006 (4)0.0003 (4)0.0014 (3)
Si20.0272 (5)0.0288 (4)0.0269 (4)0.0008 (4)0.0010 (4)0.0027 (4)
N10.0219 (13)0.0218 (13)0.0300 (13)0.0003 (11)0.0012 (11)0.0007 (11)
C30.0275 (17)0.0338 (18)0.0425 (19)0.0043 (15)0.0010 (16)0.0033 (16)
C170.059 (3)0.040 (2)0.0312 (18)0.018 (2)0.0047 (17)0.0007 (16)
C80.0232 (16)0.0319 (18)0.0263 (14)0.0005 (13)0.0004 (13)0.0045 (13)
C20.0268 (17)0.0288 (16)0.0370 (17)0.0046 (14)0.0029 (15)0.0047 (14)
C160.044 (2)0.0319 (19)0.036 (2)0.0022 (16)0.0021 (17)0.0010 (15)
C60.0299 (18)0.0297 (17)0.0296 (15)0.0014 (14)0.0039 (13)0.0027 (14)
C10.0310 (17)0.0254 (16)0.0254 (15)0.0010 (13)0.0006 (13)0.0002 (12)
C110.035 (2)0.067 (3)0.034 (2)0.003 (2)0.0007 (17)0.0203 (19)
C180.066 (3)0.037 (2)0.0277 (17)0.006 (2)0.0085 (19)0.0083 (15)
C190.046 (2)0.048 (2)0.046 (2)0.000 (2)0.0119 (19)0.0086 (18)
C100.030 (2)0.040 (2)0.046 (2)0.0015 (16)0.0077 (16)0.0142 (17)
C210.0263 (18)0.0330 (17)0.0314 (17)0.0021 (14)0.0021 (14)0.0005 (14)
C240.038 (2)0.035 (2)0.051 (2)0.0022 (17)0.0056 (17)0.0141 (18)
C260.036 (2)0.039 (2)0.0353 (19)0.0011 (16)0.0011 (16)0.0027 (16)
C230.044 (2)0.0252 (17)0.057 (2)0.0022 (17)0.0085 (19)0.0011 (17)
C90.0306 (19)0.0304 (17)0.0333 (17)0.0031 (14)0.0030 (15)0.0015 (15)
C140.0336 (19)0.047 (2)0.0386 (19)0.0019 (18)0.0008 (16)0.0016 (17)
C70.046 (2)0.0242 (16)0.0369 (18)0.0006 (16)0.0047 (16)0.0003 (14)
C40.035 (2)0.045 (2)0.0382 (19)0.0024 (17)0.0073 (16)0.0065 (17)
C220.036 (2)0.0367 (19)0.0360 (18)0.0055 (16)0.0053 (15)0.0010 (16)
C120.038 (2)0.061 (3)0.0323 (18)0.0150 (19)0.0073 (16)0.0049 (19)
C50.0322 (18)0.0378 (19)0.0302 (17)0.0004 (15)0.0056 (14)0.0009 (15)
C200.036 (2)0.039 (2)0.0353 (19)0.0032 (16)0.0016 (16)0.0080 (15)
C150.037 (2)0.0297 (17)0.0281 (17)0.0024 (15)0.0028 (14)0.0009 (13)
C130.034 (2)0.0348 (18)0.0325 (17)0.0053 (16)0.0001 (14)0.0002 (15)
C250.049 (2)0.044 (2)0.0368 (19)0.0060 (19)0.0076 (18)0.0085 (18)
Geometric parameters (Å, º) top
Cl—H1002.05 (5)C18—H180.9500
Si1—C71.867 (4)C19—C201.397 (6)
Si1—C81.876 (3)C19—H190.9500
Si1—C11.910 (3)C10—C91.386 (5)
Si1—Si22.3672 (13)C10—H100.9500
Si2—C141.873 (4)C21—C261.390 (5)
Si2—C151.873 (4)C21—C221.393 (5)
Si2—C211.884 (4)C24—C251.375 (6)
N1—C61.486 (4)C24—C231.388 (6)
N1—C11.502 (4)C24—H240.9500
N1—C21.521 (4)C26—C251.400 (6)
N1—H1001.00 (5)C26—H260.9500
C3—C21.506 (5)C23—C221.381 (6)
C3—C41.518 (5)C23—H230.9500
C3—H3B0.9900C9—H90.9500
C3—H3A0.9900C14—H14C0.9800
C17—C181.379 (7)C14—H14B0.9800
C17—C161.392 (6)C14—H14A0.9800
C17—H170.9500C7—H7B0.9800
C8—C131.391 (5)C7—H7C0.9800
C8—C91.402 (5)C7—H7A0.9800
C2—H2A0.9900C4—C51.511 (5)
C2—H2B0.9900C4—H4A0.9900
C16—C151.389 (5)C4—H4B0.9900
C16—H160.9500C22—H220.9500
C6—C51.506 (5)C12—C131.395 (5)
C6—H6A0.9900C12—H120.9500
C6—H6B0.9900C5—H5A0.9900
C1—H1A0.9900C5—H5B0.9900
C1—H1B0.9900C20—C151.398 (5)
C11—C121.374 (7)C20—H200.9500
C11—C101.377 (6)C13—H130.9500
C11—H110.9500C25—H250.9500
C18—C191.374 (6)N1—Cl3.031 (3)
C7—Si1—C8109.16 (17)C11—C10—H10120.2
C7—Si1—C1110.05 (17)C9—C10—H10120.2
C8—Si1—C1109.24 (14)C26—C21—C22117.4 (3)
C7—Si1—Si2109.48 (13)C26—C21—Si2120.9 (3)
C8—Si1—Si2110.06 (11)C22—C21—Si2121.7 (3)
C1—Si1—Si2108.84 (10)C25—C24—C23120.5 (4)
C14—Si2—C15110.72 (17)C25—C24—H24119.7
C14—Si2—C21108.73 (17)C23—C24—H24119.7
C15—Si2—C21107.34 (15)C21—C26—C25121.6 (4)
C14—Si2—Si1106.77 (13)C21—C26—H26119.2
C15—Si2—Si1109.76 (12)C25—C26—H26119.2
C21—Si2—Si1113.55 (12)C22—C23—C24119.4 (4)
C6—N1—C1112.3 (2)C22—C23—H23120.3
C6—N1—C2110.5 (3)C24—C23—H23120.3
C1—N1—C2109.8 (2)C10—C9—C8122.0 (3)
C6—N1—H100110 (3)C10—C9—H9119.0
C1—N1—H100105 (3)C8—C9—H9119.0
C2—N1—H100109 (3)Si2—C14—H14C109.5
C2—C3—C4112.0 (3)Si2—C14—H14B109.5
C2—C3—H3B109.2H14C—C14—H14B109.5
C4—C3—H3B109.2Si2—C14—H14A109.5
C2—C3—H3A109.2H14C—C14—H14A109.5
C4—C3—H3A109.2H14B—C14—H14A109.5
H3B—C3—H3A107.9Si1—C7—H7B109.5
C18—C17—C16119.4 (4)Si1—C7—H7C109.5
C18—C17—H17120.3H7B—C7—H7C109.5
C16—C17—H17120.3Si1—C7—H7A109.5
C13—C8—C9116.9 (3)H7B—C7—H7A109.5
C13—C8—Si1121.2 (3)H7C—C7—H7A109.5
C9—C8—Si1121.8 (3)C5—C4—C3109.5 (3)
C3—C2—N1110.6 (3)C5—C4—H4A109.8
C3—C2—H2A109.5C3—C4—H4A109.8
N1—C2—H2A109.5C5—C4—H4B109.8
C3—C2—H2B109.5C3—C4—H4B109.8
N1—C2—H2B109.5H4A—C4—H4B108.2
H2A—C2—H2B108.1C23—C22—C21121.9 (4)
C15—C16—C17121.5 (4)C23—C22—H22119.1
C15—C16—H16119.3C21—C22—H22119.1
C17—C16—H16119.3C11—C12—C13120.4 (4)
N1—C6—C5111.4 (3)C11—C12—H12119.8
N1—C6—H6A109.3C13—C12—H12119.8
C5—C6—H6A109.3C6—C5—C4111.2 (3)
N1—C6—H6B109.3C6—C5—H5A109.4
C5—C6—H6B109.3C4—C5—H5A109.4
H6A—C6—H6B108.0C6—C5—H5B109.4
N1—C1—Si1119.1 (2)C4—C5—H5B109.4
N1—C1—H1A107.5H5A—C5—H5B108.0
Si1—C1—H1A107.5C19—C20—C15121.2 (4)
N1—C1—H1B107.5C19—C20—H20119.4
Si1—C1—H1B107.5C15—C20—H20119.4
H1A—C1—H1B107.0C16—C15—C20117.7 (3)
C12—C11—C10119.9 (4)C16—C15—Si2121.9 (3)
C12—C11—H11120.1C20—C15—Si2120.3 (3)
C10—C11—H11120.1C8—C13—C12121.1 (4)
C19—C18—C17121.0 (4)C8—C13—H13119.4
C19—C18—H18119.5C12—C13—H13119.4
C17—C18—H18119.5C24—C25—C26119.1 (4)
C18—C19—C20119.3 (4)C24—C25—H25120.4
C18—C19—H19120.4C26—C25—H25120.4
C20—C19—H19120.4N1—H100—Cl166 (4)
C11—C10—C9119.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H100···Cl1.00 (5)2.05 (5)3.031 (3)166 (4)

Experimental details

Crystal data
Chemical formulaC26H34NSi2+·Cl
Mr452.19
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)10.120 (2), 13.289 (3), 18.598 (4)
V3)2501.3 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.926, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
45451, 4911, 4808
Rint0.077
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.149, 1.05
No. of reflections4911
No. of parameters277
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.34
Absolute structureFlack (1983), 2128 Friedel pairs
Absolute structure parameter0.08 (10)

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Selected geometric parameters (Å, º) top
Cl—H1002.05 (5)N1—H1001.00 (5)
Si1—Si22.3672 (13)N1—Cl3.031 (3)
N1—H100—Cl166 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H100···Cl1.00 (5)2.05 (5)3.031 (3)166 (4)
 

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft. CS and VHG also acknowledge the Fonds der Chemischen Industrie and CD thanks the Studienstiftung des Deutschen Volkes for a doctoral scholarship.

References

First citationBruker (1999). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationColomer, E. & Corriu, R. J. P. (1976). J. Chem. Soc. Chem Commun. 5, 176–177.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J., Cross, R. J. & Barley, H. R. L. (2001). Acta Cryst. E57, o992–o993.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLickiss, P. D. & Smith, C. M. (1995). Coord. Chem. Rev. 145, 75–124.  CrossRef CAS Google Scholar
First citationOestreich, M., Auer, G. & Keller, M. (2005). Eur. J. Inorg. Chem. 1, 184–195.  Web of Science CSD CrossRef Google Scholar
First citationOmote, M., Tokita, T., Shimizu, Y., Imae, I., Shirakawa, E. & Kawakami, Y. (2000). J. Organomet. Chem. 611, 20–25.  Web of Science CrossRef CAS Google Scholar
First citationSekiguchi, A., Lee, V. Y. & Nanjo, M. (2000). Coord. Chem. Rev. 210, 11–45.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSommer, L. H. & Mason, R. J. (1965). J. Am. Chem. Soc. 87, 1619–1620.  CrossRef CAS Web of Science Google Scholar
First citationStrohmann, C. & Däschlein, C. (2008a). Chem. Commun. pp. 2791–2793.  Web of Science CSD CrossRef Google Scholar
First citationStrohmann, C. & Däschlein, C. (2008b). Organometallics, 27, 2499–2504.  Web of Science CSD CrossRef CAS Google Scholar
First citationStrohmann, C., Däschlein, C. & Auer, D. (2006). J. Am. Chem. Soc. 128, 704–705.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationStrohmann, C., Däschlein, C., Kellert, M. & Auer, D. (2007). Angew. Chem. Int. Ed. 46, 4780–4782.  Web of Science CSD CrossRef CAS Google Scholar
First citationStrohmann, C., Hörnig, J. & Auer, D. (2002). Chem. Commun. pp. 766–767.  Web of Science CSD CrossRef Google Scholar
First citationStrohmann, C., Ulbrich, O. & Auer, D. (2001). Eur. J. Inorg. Chem. pp. 1013–1018.  CrossRef Google Scholar
First citationTamao, K. & Kawachi, A. (1995). Adv. Organomet. Chem. 38, 1–58.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds