organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Meth­oxy­phen­yl)-1-(2-pyrrol­yl)prop-2-en-1-one

aDepartment of Chemistry and Biology, Yulin Normal University, Guangxi 537000, People's Republic of China
*Correspondence e-mail: ldq00000@126.com

(Received 18 July 2008; accepted 7 September 2008; online 13 September 2008)

The title mol­ecule, C14H13NO2, is almost flat with a dihedral angle of 8.0 (1)° between the pyrrole and benzene rings. The central C3O ketone unit has an s-cis conformation and is also coplanar with a torsion angle of −0.6 (3) °. An intra­molecular C—H⋯O hydrogen bond generates an S(5) ring motif. In addition, the meth­oxy group is coplanar with the attached benzene ring. In the crystal structure, neighboring mol­ecules are paired through N—H⋯O hydrogen bonds into centrosymmetric dimers with an R22(10) motif.

Related literature

For the pharmaceutical and biological properties of chalcones, see: Lin et al. (2002[Lin, Y. M., Zhou, Y., Flavin, M. T., Zhou, L. M., Nie, W. & Chen, F. C. (2002). Bioorg. Med. Chem. 10, 2795-2802.]); Modzelewska et al. (2006[Modzelewska, A., Catherine Petit, C., Achanta, G., Davidson, N. E., Huang, P. & Khan, S. R. (2006). Bioorg. Med. Chem. 14, 3491-3495.]); Opletalova (2000[Opletalova, V. (2000). Ceska Slov. Farm. 49, 278-284.]); Opletalova & Sedivy (1999[Opletalova, V. & Sedivy, D. (1999). Ceska Slov. Farm. 48, 252-255.]); Sogawa et al. (1994[Sogawa, S., Nihro, Y., Ueda, H., Miki, T., Matsumoto, H. & Satoh, T. (1994). Biol. Pharm. Bull. 17, 251-256.]). For chalcones as non-linear optical materials, see: Agrinskaya et al. (1999[Agrinskaya, N. V., Lukoshkin, V. A., Kudryavtsev, V. V., Nosova, G. I., Solovskaya, N. A. & Yakimanski, A. V. (1999). Phys. Solid State, 41, 1914-1917.]); Indira et al. (2002[Indira, J., Prakash Karat, P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209-214.]). For related structures, see: Bukhari et al. (2008[Bukhari, M. H., Siddiqui, H. L., Tahir, M. N., Chaudhary, M. A. & Iqbal, A. (2008). Acta Cryst. E64, o867-o868.]); Fun et al. (2008[Fun, H.-K., Chantrapromma, S., Patil, P. S., Karthikeyan, M. S. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o956-o957.]); Gong, et al. (2008[Gong, Z.-Q., Liu, G.-S. & Xia, H.-Y. (2008). Acta Cryst. E64, o151.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13NO2

  • Mr = 227.25

  • Monoclinic, P 21 /c

  • a = 5.0815 (7) Å

  • b = 17.172 (3) Å

  • c = 13.973 (2) Å

  • β = 97.878 (3)°

  • V = 1207.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.40 × 0.24 × 0.20 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.967, Tmax = 0.988

  • 5842 measured reflections

  • 2369 independent reflections

  • 1809 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.124

  • S = 1.05

  • 2369 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1 0.93 2.52 2.838 (2) 100
N1—H1⋯O1i 0.86 2.03 2.8314 (17) 155
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Chalcone derivatives have recently attracted extensive interest due to possessing a wide variety of pharmaceutical (Lin et al., 2002; Modzelewska et al., 2006; Sogawa et al., 1994) and biological properties (Opletalova, 2000; Opletalova & Sedivy, 1999). Some substituted chalcones also exhibit the potential applications as non-linear optical materials (Agrinskaya et al., 1999; Indira et al., 2002). Considering the importance of these types of compounds, a new chalcone compound was synthesized and its crystal structure is reported here.

The molecular structure of the title molecule (Fig. 1) is almost planar as indicated by a dihedral angle of 8.0 (1) ° between the pyrrole and benzene rings. The central O1/C5/C6/C7 ketone motif exhibits an s-cis conformation as usual in other related chalcone derivatives (Bukhari et al., 2008; Fun et al., 2008; Gong, et al., 2008;) and also coplanar with a torsion angle of -0.6 (3) °, meanwhile, O1 atom acts as an acceptor and is involved in an intramolecular C—H···O hydrogen bond (Table 1) to generate an S(5) ring motif. In the crystal packing, the compound can be stabilized by intermolecular N—H···O hydrogen bonds with –NH groups as donors to form centrosymmetric dimers with an R22(10) motif as shown in Fig. 2.

Related literature top

For the pharmaceutical and biological properties of chalcones, see: Lin et al. (2002); Modzelewska et al. (2006); Opletalova (2000); Opletalova & Sedivy (1999); Sogawa et al. (1994). For chalcones as non-linear optical materials, see: Agrinskaya et al. (1999); Indira et al. (2002). For other related literature, see: (Bukhari et al. (2008); Fun et al. (2008); Gong, et al. (2008).

Experimental top

The title compound was synthesized by the condensation of 2-acetylpyrrole (1.09 g, 10.0 mmol) and 4-methoxybenzaldehyde (1.06 g, 5.0 mmol) in methanol (30 ml) and ammonia (25%, 25 ml) in the presence of sodium hydroxide (0.56 g, 10 mmol). After refluxed at 358 K for 8 h, the contents of the flask were cooled to give a yellow crude precipitate which was separated by filtration, washed with water and iced ethanol. Recrystallization from ethanol afforded yellow prism-like crystals. Yield: 0.85 g (74.8%).

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic and ethylene; 0.96 Å, Uiso= 1.5Ueq (C) for CH3 atoms, and d(N—H) = 0.86 Å, Uiso=1.2Ueq (N) for pyrrole nitrogen atom.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level and H atoms as spheres of arbitrary radius.
[Figure 2] Fig. 2. Packing diagram of the title structure showing the N—H···.O hydrogen bonding interactions.
3-(4-Methoxyphenyl)-1-(2-pyrrolyl)prop-2-en-1-one top
Crystal data top
C14H13NO2F(000) = 480
Mr = 227.25Dx = 1.250 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1716 reflections
a = 5.0815 (7) Åθ = 2.4–25.8°
b = 17.172 (3) ŵ = 0.08 mm1
c = 13.973 (2) ÅT = 293 K
β = 97.878 (3)°Prism, yellow
V = 1207.8 (3) Å30.40 × 0.24 × 0.20 mm
Z = 4
Data collection top
Bruker APEX area-detector
diffractometer
2369 independent reflections
Radiation source: fine-focus sealed tube1809 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 65
Tmin = 0.967, Tmax = 0.988k = 2021
5842 measured reflectionsl = 1417
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0557P)2 + 0.1497P]
where P = (Fo2 + 2Fc2)/3
2369 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C14H13NO2V = 1207.8 (3) Å3
Mr = 227.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.0815 (7) ŵ = 0.08 mm1
b = 17.172 (3) ÅT = 293 K
c = 13.973 (2) Å0.40 × 0.24 × 0.20 mm
β = 97.878 (3)°
Data collection top
Bruker APEX area-detector
diffractometer
2369 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1809 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.988Rint = 0.020
5842 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.05Δρmax = 0.13 e Å3
2369 reflectionsΔρmin = 0.13 e Å3
155 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2188 (3)0.56328 (8)0.38761 (9)0.0567 (4)
H10.19760.54370.44480.068*
O10.1957 (3)0.45435 (7)0.40994 (8)0.0707 (4)
O20.9171 (3)0.29580 (8)0.06480 (9)0.0769 (4)
C10.0745 (3)0.54326 (9)0.31541 (10)0.0520 (4)
C20.1690 (4)0.58892 (10)0.23690 (12)0.0634 (5)
H20.10820.58850.17710.076*
C30.3705 (4)0.63554 (11)0.26280 (13)0.0707 (5)
H30.46880.67210.22380.085*
C40.3978 (3)0.61792 (11)0.35599 (12)0.0634 (5)
H40.52020.64010.39160.076*
C50.1294 (3)0.48406 (9)0.32984 (11)0.0535 (4)
C60.2491 (3)0.45958 (10)0.24510 (11)0.0570 (4)
H60.19130.48340.18620.068*
C70.4347 (3)0.40549 (10)0.24796 (11)0.0556 (4)
H70.49090.38350.30810.067*
C80.5616 (3)0.37631 (9)0.16757 (11)0.0517 (4)
C90.7403 (3)0.31532 (10)0.17995 (11)0.0578 (4)
H90.77890.29300.24090.069*
C100.8645 (3)0.28594 (10)0.10527 (12)0.0586 (4)
H100.98270.24450.11600.070*
C110.8105 (3)0.31894 (10)0.01503 (11)0.0563 (4)
C120.6337 (4)0.38052 (11)0.00062 (12)0.0714 (5)
H120.59780.40330.06020.086*
C130.5110 (4)0.40830 (11)0.07518 (12)0.0669 (5)
H130.39150.44940.06390.080*
C141.0982 (4)0.23244 (12)0.05485 (15)0.0873 (6)
H14A1.24450.24450.00600.131*
H14B1.16310.22350.11530.131*
H14C1.00940.18660.03650.131*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0611 (8)0.0626 (9)0.0479 (7)0.0046 (7)0.0129 (6)0.0043 (6)
O10.0880 (9)0.0760 (8)0.0520 (7)0.0121 (7)0.0233 (6)0.0115 (6)
O20.0977 (9)0.0780 (9)0.0577 (7)0.0310 (7)0.0207 (7)0.0018 (6)
C10.0533 (9)0.0579 (10)0.0459 (8)0.0089 (7)0.0107 (7)0.0036 (7)
C20.0698 (11)0.0717 (12)0.0499 (9)0.0006 (9)0.0120 (8)0.0007 (8)
C30.0771 (12)0.0731 (12)0.0605 (11)0.0098 (10)0.0042 (9)0.0001 (9)
C40.0606 (10)0.0670 (11)0.0630 (10)0.0017 (9)0.0098 (8)0.0132 (9)
C50.0581 (9)0.0570 (10)0.0468 (8)0.0110 (8)0.0120 (7)0.0004 (7)
C60.0610 (10)0.0631 (10)0.0480 (8)0.0034 (8)0.0112 (7)0.0020 (7)
C70.0607 (10)0.0594 (10)0.0473 (8)0.0088 (8)0.0097 (7)0.0029 (7)
C80.0562 (9)0.0501 (9)0.0492 (8)0.0053 (7)0.0084 (7)0.0006 (7)
C90.0609 (10)0.0617 (11)0.0499 (9)0.0015 (8)0.0049 (8)0.0112 (7)
C100.0583 (10)0.0567 (10)0.0604 (10)0.0089 (8)0.0062 (8)0.0056 (8)
C110.0636 (10)0.0549 (10)0.0507 (9)0.0046 (8)0.0096 (8)0.0014 (7)
C120.0972 (14)0.0701 (12)0.0473 (9)0.0254 (11)0.0115 (9)0.0082 (8)
C130.0855 (13)0.0608 (11)0.0553 (10)0.0232 (9)0.0137 (9)0.0050 (8)
C140.1013 (15)0.0851 (14)0.0779 (13)0.0345 (13)0.0212 (11)0.0047 (11)
Geometric parameters (Å, º) top
N1—C41.339 (2)C7—C81.459 (2)
N1—C11.3699 (19)C7—H70.9300
N1—H10.8600C8—C91.382 (2)
O1—C51.2342 (18)C8—C131.394 (2)
O2—C111.3644 (19)C9—C101.386 (2)
O2—C141.419 (2)C9—H90.9300
C1—C21.380 (2)C10—C111.375 (2)
C1—C51.446 (2)C10—H100.9300
C2—C31.386 (2)C11—C121.384 (2)
C2—H20.9300C12—C131.371 (2)
C3—C41.362 (2)C12—H120.9300
C3—H30.9300C13—H130.9300
C4—H40.9300C14—H14A0.9600
C5—C61.465 (2)C14—H14B0.9600
C6—C71.320 (2)C14—H14C0.9600
C6—H60.9300
C4—N1—C1109.93 (14)C9—C8—C13116.70 (15)
C4—N1—H1125.0C9—C8—C7121.10 (14)
C1—N1—H1125.0C13—C8—C7122.20 (15)
C11—O2—C14117.91 (14)C8—C9—C10122.74 (15)
N1—C1—C2106.24 (15)C8—C9—H9118.6
N1—C1—C5121.30 (14)C10—C9—H9118.6
C2—C1—C5132.46 (15)C11—C10—C9119.07 (15)
C1—C2—C3108.04 (15)C11—C10—H10120.5
C1—C2—H2126.0C9—C10—H10120.5
C3—C2—H2126.0O2—C11—C10125.29 (15)
C4—C3—C2107.26 (17)O2—C11—C12115.23 (14)
C4—C3—H3126.4C10—C11—C12119.48 (15)
C2—C3—H3126.4C13—C12—C11120.59 (16)
N1—C4—C3108.52 (15)C13—C12—H12119.7
N1—C4—H4125.7C11—C12—H12119.7
C3—C4—H4125.7C12—C13—C8121.42 (16)
O1—C5—C1121.24 (14)C12—C13—H13119.3
O1—C5—C6121.48 (16)C8—C13—H13119.3
C1—C5—C6117.27 (14)O2—C14—H14A109.5
C7—C6—C5123.47 (15)O2—C14—H14B109.5
C7—C6—H6118.3H14A—C14—H14B109.5
C5—C6—H6118.3O2—C14—H14C109.5
C6—C7—C8127.43 (15)H14A—C14—H14C109.5
C6—C7—H7116.3H14B—C14—H14C109.5
C8—C7—H7116.3
C4—N1—C1—C20.86 (18)C6—C7—C8—C9175.31 (17)
C4—N1—C1—C5178.71 (14)C6—C7—C8—C135.0 (3)
N1—C1—C2—C30.38 (19)C13—C8—C9—C100.4 (3)
C5—C1—C2—C3179.11 (17)C7—C8—C9—C10179.89 (15)
C1—C2—C3—C40.2 (2)C8—C9—C10—C110.6 (3)
C1—N1—C4—C31.01 (19)C14—O2—C11—C100.2 (3)
C2—C3—C4—N10.7 (2)C14—O2—C11—C12179.46 (18)
N1—C1—C5—O16.2 (2)C9—C10—C11—O2179.72 (16)
C2—C1—C5—O1174.32 (17)C9—C10—C11—C120.1 (3)
N1—C1—C5—C6172.35 (14)O2—C11—C12—C13179.16 (17)
C2—C1—C5—C67.1 (3)C10—C11—C12—C130.5 (3)
O1—C5—C6—C70.6 (3)C11—C12—C13—C80.6 (3)
C1—C5—C6—C7179.16 (15)C9—C8—C13—C120.2 (3)
C5—C6—C7—C8178.75 (15)C7—C8—C13—C12179.49 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O10.932.522.838 (2)100
N1—H1···O1i0.862.032.8314 (17)155
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H13NO2
Mr227.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)5.0815 (7), 17.172 (3), 13.973 (2)
β (°) 97.878 (3)
V3)1207.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.24 × 0.20
Data collection
DiffractometerBruker APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.967, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
5842, 2369, 1809
Rint0.020
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.124, 1.05
No. of reflections2369
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.13

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O10.932.522.838 (2)100.4
N1—H1···O1i0.862.032.8314 (17)154.9
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

The authors thank Yulin Normal University for supporting this study.

References

First citationAgrinskaya, N. V., Lukoshkin, V. A., Kudryavtsev, V. V., Nosova, G. I., Solovskaya, N. A. & Yakimanski, A. V. (1999). Phys. Solid State, 41, 1914–1917.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBukhari, M. H., Siddiqui, H. L., Tahir, M. N., Chaudhary, M. A. & Iqbal, A. (2008). Acta Cryst. E64, o867–o868.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Chantrapromma, S., Patil, P. S., Karthikeyan, M. S. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o956–o957.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGong, Z.-Q., Liu, G.-S. & Xia, H.-Y. (2008). Acta Cryst. E64, o151.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIndira, J., Prakash Karat, P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209–214.  Web of Science CrossRef CAS Google Scholar
First citationLin, Y. M., Zhou, Y., Flavin, M. T., Zhou, L. M., Nie, W. & Chen, F. C. (2002). Bioorg. Med. Chem. 10, 2795–2802.  Web of Science CrossRef PubMed CAS Google Scholar
First citationModzelewska, A., Catherine Petit, C., Achanta, G., Davidson, N. E., Huang, P. & Khan, S. R. (2006). Bioorg. Med. Chem. 14, 3491–3495.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOpletalova, V. (2000). Ceska Slov. Farm. 49, 278–284.  PubMed CAS Google Scholar
First citationOpletalova, V. & Sedivy, D. (1999). Ceska Slov. Farm. 48, 252–255.  PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSogawa, S., Nihro, Y., Ueda, H., Miki, T., Matsumoto, H. & Satoh, T. (1994). Biol. Pharm. Bull. 17, 251–256.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds