organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[2-Oxo-1′-phenyl-2′,3′,5′,6′,7′,7a'-hexa­hydroindoline-3-spiro-3′-1′H-pyrrolizin-2′-yl]-3-phenyl­prop-2-en-1-one

aDepartment of Physics, Easwari Engineering College, Ramapuram, Chennai 600 089, India, bDepartment of Analytical Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and cDepartment of Physics, SRM University, Ramapuram Campus, Chennai 600 089, India
*Correspondence e-mail: sudharose18@gmail.com

(Received 24 July 2008; accepted 1 August 2008; online 23 August 2008)

In the title compound, C29H26N2O2, one of the pyrrolidine rings in the pyrrolizine system is disordered, with site occupancies of ca 0.55 and 0.45. Both components of the disordered pyrrolidine ring adopt envelope conformations, whereas the other pyrrolidine ring adopts a twist conformation. The mol­ecules are linked into centrosymmetric dimers by N—H⋯O hydrogen bonds and the dimers are connected via C—H⋯π inter­actions.

Related literature

For related literature, see: Araki et al. (2002[Araki, K., Suenaga, K., Sengoka, T. & Uemura, D. (2002). Tetrahedron, 58, 1983-1996.]); Caine (1993[Caine, B. (1993). Science, 260, 1814.]); Gore et al. (1991[Gore, V. G., Chordia, M. D. & Narasimhan, N. S. (1991). Tetrahedron, 46, 2483-2494.]); Harris & Uhle (1960[Harris, L. S. & Uhle, F. C. (1960). J. Pharmacol. Exp. Ther. 128, 353-363.]); Ho et al. (1986[Ho, C. Y., Haegman, W. E. & Perisco, F. (1986). J. Med. Chem. 29, 118-121.]); James et al. (1991[James, D., Kunze, H. B. & Faulker, D. (1991). J. Nat. Prod. 54, 1137-1140.]); Kobayashi et al. (1991[Kobayashi, J., Tsuda, M., Agemi, K. & Vacelet, J. (1991). Tetrahedron, 47, 6617-6622.]); Ramesh et al. (2007[Ramesh, P., Murugavel, S., SubbiahPandi, A., Murugan, R. & Narayanan, S. S. (2007). Acta Cryst. E63, o4106-o4107.]); Stevenson et al. (2000[Stevenson, G. I., Smith, A. L., Lewis, S., Michie, S. G., Neduvelil, J. G., Patel, S., Marwood, R., Patel, S. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697-2704.]); Tietze et al. (1988[Tietze, L.-F., Schneider, G., Woelfling, J., Nobel, T. & Wulff, C. (1988). Angew. Chem. Int. Ed. 37, 2469-2470.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C29H26N2O2

  • Mr = 434.52

  • Triclinic, [P \overline 1]

  • a = 8.4210 (2) Å

  • b = 11.8895 (3) Å

  • c = 12.5121 (3) Å

  • α = 95.662 (1)°

  • β = 105.071 (1)°

  • γ = 105.815 (1)°

  • V = 1144.31 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.30 × 0.20 × 0.16 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.977, Tmax = 0.987

  • 30483 measured reflections

  • 7422 independent reflections

  • 4682 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.200

  • S = 1.04

  • 7422 reflections

  • 308 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.86 2.02 2.854 (2) 162
C28—H28⋯Cg1ii 0.93 2.89 3.815 (3) 172
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) x-1, y, z-1. Cg1 is the centroid of the C8–C13 ring.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Spiro-compounds are a particular class of naturally occurring substances characterized by highly pronounced biological properties (Kobayashi et al., 1991; James et al., 1991). The spiro-pyrrolidine ring system is also found in phermones, antibiotics (Gore et al., 1991) and antitumour agents (Tietze et al., 1988; Araki et al., 2002). Indole compounds can be used as bioactive drugs (Stevenson et al., 2000). Indole derivatives exhibit anti-allergic, central nervous system depressant and muscle relaxant properties (Harris & Uhle, 1960; Ho et al., 1986). In view of this biological importance, the crystal structure of the title compound has been determined and the results are presented here.

A displacement ellipsoid plot of the title compound is shown in Fig. 1. The pyrrolizine ring system is folded about the bridging N1—C1 bond, as observed in related structures (Ramesh et al., 2007). The sum of angles at N1 (339.7°) is in accordance with sp3 hybridization. The indole ring system (N2/C5/C14–C20) forms dihedral angles of 57.4 (6)° and 33.4 (5)°, respectively, with the C24—C29 and C8—C13 phenyl rings. The dihedral angle between the two phenyl rings is 82.9 (7)°. In the pyrrolizine ring system, the pyrrolidine ring (N1/C1/C5/C6/C7) adopts a twist conformation with Cremer & Pople (1975) puckering parameters q2 and ϕ of 0.419 (1) Å and 120.7 (2)°, respectively. Both major and minor conformers of the disordered pyrrolidine ring adopt envelope conformations; the puckering parameters q2 and ϕ are 0.267 (4) Å and -68.4 (8)°, respectively, for the major conformer (N1/C1-C4), and 0.254 (8) Å and 108.3 (8)°, respectively, for the minor conformer (N1/C1/C2/C3A/C4). Atom C3/C3A deviates by 0.411 (2)/0.389 Å from the N1/C1/C2/C4 plane.

The crystal structure is stabilized by intermolecular N—H···O hydrogen bonds and C—H···π interactions involving the C8-C13 phenyl ring (Table 1). The N—H···O hydrogen bonds link the molecules into centrosymmetric dimers (Fig. 2).

Related literature top

For related literature, see: Araki et al. (2002); Caine (1993); Gore et al. (1991); Harris & Uhle (1960); Ho et al. (1986); James et al. (1991); Kobayashi et al. (1991); Ramesh et al. (2007); Stevenson et al. (2000); Tietze et al. (1988). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

A solution of (1E,6E)-4-benzylidene-1,7-diphenylhepta-1,6-diene-3,5-dione (1 mmol), isatin (1 mmol) and L-proline (1 mmol) in aqueous methanol (20 ml) was refluxed until the disappearance of starting materials as evidenced by TLC. The solvent was removed under reduced pressure and the crude product was purified by column chromatography using petroleum ether-ethyl acetate (5:1) as eluent. The final product was recrystallized from ethanol-chloroform (2:8 v/v) solution.

Refinement top

Atom C3 of one of the pyrrolidine rings is disordered over two positions (C3 and C3A) with site occupancies of 0.546 (12) and 0.454 (12). All H atoms were placed in idealized positions and allowed to ride on their parent atoms, with N-H = 0.86 Å, C-H = 0.93-0.98 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004) and SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004) and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids. Only the major disorder component is shown.
[Figure 2] Fig. 2. The packing of the molecules viewed along the a axis. Dashed lines indicate hydrogen bonds. H atoms not involed in hydrogen bonds have been omitted. Only the major disorder component is shown.
1-[2-Oxo-1'-phenyl-2',3',5',6',7',7a'-hexahydroindoline-3-spiro- 3'-1'H-pyrrolizin-2'-yl]-3-phenylprop-2-en-1-one top
Crystal data top
C29H26N2O2Z = 2
Mr = 434.52F(000) = 460
Triclinic, P1Dx = 1.261 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4210 (2) ÅCell parameters from 9449 reflections
b = 11.8895 (3) Åθ = 2.3–30.1°
c = 12.5121 (3) ŵ = 0.08 mm1
α = 95.662 (1)°T = 293 K
β = 105.071 (1)°Prism, yellow
γ = 105.815 (1)°0.30 × 0.20 × 0.16 mm
V = 1144.31 (5) Å3
Data collection top
Bruker Kappa APEXII
diffractometer
7422 independent reflections
Radiation source: fine-focus sealed tube4682 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 31.3°, θmin = 1.7°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1211
Tmin = 0.977, Tmax = 0.987k = 1717
30483 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.200H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1054P)2 + 0.1777P]
where P = (Fo2 + 2Fc2)/3
7422 reflections(Δ/σ)max = 0.001
308 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C29H26N2O2γ = 105.815 (1)°
Mr = 434.52V = 1144.31 (5) Å3
Triclinic, P1Z = 2
a = 8.4210 (2) ÅMo Kα radiation
b = 11.8895 (3) ŵ = 0.08 mm1
c = 12.5121 (3) ÅT = 293 K
α = 95.662 (1)°0.30 × 0.20 × 0.16 mm
β = 105.071 (1)°
Data collection top
Bruker Kappa APEXII
diffractometer
7422 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
4682 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.987Rint = 0.024
30483 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.200H-atom parameters constrained
S = 1.04Δρmax = 0.43 e Å3
7422 reflectionsΔρmin = 0.23 e Å3
308 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O11.13350 (16)0.65165 (11)0.20138 (10)0.0592 (3)
O20.94660 (16)0.99242 (9)0.34629 (9)0.0487 (3)
N10.69132 (15)0.79708 (12)0.16496 (10)0.0446 (3)
N20.89750 (18)0.84222 (11)0.44618 (10)0.0450 (3)
H20.92400.88440.51190.054*
C10.71391 (18)0.77545 (15)0.05236 (11)0.0428 (3)
H10.74370.85110.02590.051*
C20.5380 (2)0.6955 (2)0.02380 (15)0.0623 (5)
H2A0.47780.74120.06950.075*0.546 (12)
H2B0.55160.63300.07330.075*0.546 (12)
H2C0.53820.61480.03910.075*0.454 (12)
H2D0.50620.72250.09370.075*0.454 (12)
C30.4432 (6)0.6455 (5)0.0502 (4)0.0542 (13)0.546 (12)
H3A0.46000.56980.06300.065*0.546 (12)
H3B0.32050.63290.01750.065*0.546 (12)
C3A0.4171 (6)0.7056 (11)0.0445 (4)0.067 (2)0.454 (12)
H3C0.36580.76740.02450.080*0.454 (12)
H3D0.32480.63100.02940.080*0.454 (12)
C40.5126 (2)0.7336 (2)0.15888 (16)0.0635 (5)
H4A0.44540.78820.15860.076*0.546 (12)
H4B0.50950.69320.22240.076*0.546 (12)
H4C0.46730.78260.20060.076*0.454 (12)
H4D0.50760.66220.18950.076*0.454 (12)
C50.83562 (17)0.78291 (12)0.25117 (11)0.0367 (3)
C60.97540 (17)0.78955 (12)0.18877 (10)0.0342 (3)
H61.02840.87320.18630.041*
C70.86634 (17)0.72579 (13)0.06945 (10)0.0364 (3)
H70.82320.64070.07050.044*
C80.95589 (18)0.74035 (13)0.02018 (11)0.0372 (3)
C90.9407 (2)0.64170 (14)0.09576 (12)0.0463 (4)
H90.87880.56640.08890.056*
C101.0168 (3)0.65438 (17)0.18139 (14)0.0571 (4)
H101.00550.58750.23150.069*
C111.1081 (2)0.76386 (18)0.19285 (14)0.0575 (4)
H111.15960.77150.25020.069*
C121.1240 (2)0.86314 (17)0.11947 (14)0.0547 (4)
H121.18530.93810.12750.066*
C131.0487 (2)0.85126 (14)0.03375 (12)0.0459 (3)
H131.06030.91870.01580.055*
C140.89955 (18)0.88773 (13)0.35190 (11)0.0381 (3)
C150.8470 (2)0.71800 (14)0.42408 (12)0.0434 (3)
C160.8408 (3)0.64255 (18)0.50050 (15)0.0600 (5)
H160.87170.67170.57720.072*
C170.7871 (3)0.52212 (19)0.45907 (19)0.0714 (6)
H170.78170.46910.50890.086*
C180.7413 (3)0.47874 (17)0.34547 (18)0.0669 (5)
H180.70370.39710.31930.080*
C190.7512 (2)0.55614 (15)0.27045 (15)0.0539 (4)
H190.72210.52680.19390.065*
C200.80430 (19)0.67704 (13)0.30936 (12)0.0410 (3)
C211.11658 (18)0.74122 (14)0.24512 (12)0.0415 (3)
C221.2274 (2)0.80951 (16)0.35781 (13)0.0486 (4)
H221.22040.88450.38030.058*
C231.3353 (2)0.76867 (17)0.42759 (14)0.0516 (4)
H231.35210.69860.40000.062*
C241.4307 (2)0.82413 (18)0.54447 (14)0.0542 (4)
C251.3864 (3)0.9102 (2)0.60403 (15)0.0654 (5)
H251.29710.93760.56760.078*
C261.4737 (3)0.9552 (2)0.71647 (17)0.0810 (7)
H261.44181.01140.75610.097*
C271.6073 (3)0.9165 (3)0.7691 (2)0.0931 (9)
H271.66770.94770.84450.112*
C281.6530 (3)0.8331 (3)0.7128 (3)0.1039 (10)
H281.74440.80780.74970.125*
C291.5644 (3)0.7853 (3)0.6008 (2)0.0830 (7)
H291.59490.72680.56320.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0650 (8)0.0620 (8)0.0555 (7)0.0293 (6)0.0181 (6)0.0059 (6)
O20.0677 (7)0.0387 (6)0.0321 (5)0.0100 (5)0.0121 (5)0.0012 (4)
N10.0375 (6)0.0593 (8)0.0301 (6)0.0104 (5)0.0082 (5)0.0051 (5)
N20.0613 (8)0.0429 (7)0.0250 (5)0.0086 (6)0.0145 (5)0.0029 (5)
C10.0404 (7)0.0532 (9)0.0283 (7)0.0103 (6)0.0067 (5)0.0011 (6)
C20.0431 (8)0.0851 (14)0.0402 (9)0.0100 (8)0.0006 (7)0.0092 (9)
C30.0394 (18)0.051 (2)0.055 (2)0.0010 (15)0.0039 (14)0.0054 (17)
C3A0.039 (2)0.102 (6)0.050 (2)0.018 (2)0.0014 (16)0.011 (3)
C40.0388 (8)0.0880 (14)0.0545 (10)0.0097 (8)0.0153 (7)0.0037 (9)
C50.0395 (6)0.0390 (7)0.0254 (6)0.0050 (5)0.0105 (5)0.0041 (5)
C60.0375 (6)0.0365 (7)0.0237 (6)0.0056 (5)0.0092 (5)0.0005 (5)
C70.0411 (6)0.0379 (7)0.0237 (6)0.0049 (5)0.0091 (5)0.0015 (5)
C80.0425 (7)0.0419 (8)0.0240 (6)0.0110 (6)0.0090 (5)0.0009 (5)
C90.0608 (9)0.0423 (8)0.0345 (7)0.0121 (7)0.0185 (7)0.0004 (6)
C100.0781 (12)0.0610 (11)0.0378 (8)0.0248 (9)0.0267 (8)0.0002 (7)
C110.0687 (11)0.0753 (12)0.0351 (8)0.0228 (9)0.0258 (8)0.0106 (8)
C120.0635 (10)0.0562 (10)0.0428 (9)0.0092 (8)0.0215 (8)0.0129 (7)
C130.0559 (8)0.0451 (8)0.0334 (7)0.0109 (7)0.0154 (6)0.0009 (6)
C140.0426 (7)0.0405 (8)0.0265 (6)0.0086 (6)0.0100 (5)0.0028 (5)
C150.0510 (8)0.0436 (8)0.0335 (7)0.0086 (6)0.0175 (6)0.0022 (6)
C160.0809 (12)0.0603 (11)0.0423 (9)0.0185 (9)0.0265 (9)0.0127 (8)
C170.1015 (16)0.0559 (12)0.0669 (13)0.0207 (11)0.0407 (12)0.0247 (10)
C180.0915 (14)0.0417 (10)0.0708 (13)0.0098 (9)0.0420 (11)0.0086 (9)
C190.0658 (10)0.0420 (9)0.0478 (9)0.0030 (7)0.0252 (8)0.0028 (7)
C200.0454 (7)0.0407 (8)0.0329 (7)0.0050 (6)0.0166 (6)0.0009 (6)
C210.0410 (7)0.0495 (9)0.0340 (7)0.0113 (6)0.0142 (6)0.0075 (6)
C220.0454 (8)0.0581 (10)0.0400 (8)0.0157 (7)0.0098 (6)0.0084 (7)
C230.0487 (8)0.0655 (11)0.0449 (9)0.0204 (7)0.0163 (7)0.0158 (8)
C240.0418 (8)0.0762 (12)0.0399 (8)0.0111 (7)0.0089 (6)0.0195 (8)
C250.0636 (11)0.0808 (14)0.0420 (9)0.0191 (10)0.0031 (8)0.0104 (9)
C260.0912 (16)0.0830 (16)0.0447 (11)0.0016 (12)0.0090 (10)0.0056 (10)
C270.0738 (14)0.113 (2)0.0494 (12)0.0149 (14)0.0117 (11)0.0253 (13)
C280.0616 (13)0.159 (3)0.0767 (17)0.0308 (16)0.0095 (12)0.0473 (19)
C290.0599 (11)0.121 (2)0.0753 (15)0.0402 (12)0.0142 (11)0.0323 (14)
Geometric parameters (Å, º) top
O1—C211.2092 (19)C8—C131.389 (2)
O2—C141.2141 (18)C9—C101.385 (2)
N1—C51.4610 (19)C9—H90.93
N1—C41.467 (2)C10—C111.362 (3)
N1—C11.4772 (18)C10—H100.93
N2—C141.3477 (19)C11—C121.375 (3)
N2—C151.398 (2)C11—H110.93
N2—H20.86C12—C131.381 (2)
C1—C21.525 (2)C12—H120.93
C1—C71.529 (2)C13—H130.93
C1—H10.98C15—C161.375 (2)
C2—C31.443 (5)C15—C201.387 (2)
C2—C3A1.511 (6)C16—C171.379 (3)
C2—H2A0.97C16—H160.93
C2—H2B0.97C17—C181.377 (3)
C2—H2C0.96C17—H170.93
C2—H2D0.96C18—C191.380 (3)
C3—C41.503 (4)C18—H180.93
C3—H3A0.97C19—C201.379 (2)
C3—H3B0.97C19—H190.93
C3A—C41.402 (5)C21—C221.481 (2)
C3A—H3C0.97C22—C231.318 (2)
C3A—H3D0.97C22—H220.93
C4—H4A0.97C23—C241.459 (2)
C4—H4B0.97C23—H230.93
C4—H4C0.96C24—C291.383 (3)
C4—H4D0.96C24—C251.394 (3)
C5—C201.511 (2)C25—C261.380 (3)
C5—C141.5502 (18)C25—H250.93
C5—C61.5623 (18)C26—C271.367 (4)
C6—C211.502 (2)C26—H260.93
C6—C71.5268 (18)C27—C281.356 (4)
C6—H60.98C27—H270.93
C7—C81.5044 (18)C28—C291.382 (4)
C7—H70.98C28—H280.93
C8—C91.387 (2)C29—H290.93
C5—N1—C4120.21 (14)C8—C7—C6116.26 (11)
C5—N1—C1110.50 (11)C8—C7—C1114.40 (12)
C4—N1—C1109.02 (12)C6—C7—C1101.23 (10)
C14—N2—C15111.72 (11)C8—C7—H7108.2
C14—N2—H2124.1C6—C7—H7108.2
C15—N2—H2124.1C1—C7—H7108.2
N1—C1—C2105.41 (12)C9—C8—C13117.87 (13)
N1—C1—C7105.36 (11)C9—C8—C7119.99 (13)
C2—C1—C7117.71 (14)C13—C8—C7122.08 (12)
N1—C1—H1109.3C10—C9—C8120.57 (15)
C2—C1—H1109.3C10—C9—H9119.7
C7—C1—H1109.3C8—C9—H9119.7
C3—C2—C1106.1 (2)C11—C10—C9120.64 (15)
C3A—C2—C1103.4 (3)C11—C10—H10119.7
C3—C2—H2A110.5C9—C10—H10119.7
C3A—C2—H2A82.8C10—C11—C12119.90 (15)
C1—C2—H2A110.5C10—C11—H11120.0
C3—C2—H2B110.5C12—C11—H11120.0
C3A—C2—H2B136.6C11—C12—C13119.82 (16)
C1—C2—H2B110.5C11—C12—H12120.1
H2A—C2—H2B108.7C13—C12—H12120.1
C3—C2—H2C80.9C12—C13—C8121.20 (14)
C3A—C2—H2C110.8C12—C13—H13119.4
C1—C2—H2C111.0C8—C13—H13119.4
H2A—C2—H2C131.3O2—C14—N2126.33 (12)
C3—C2—H2D133.8O2—C14—C5125.50 (12)
C3A—C2—H2D111.3N2—C14—C5108.16 (12)
C1—C2—H2D111.2C16—C15—C20122.42 (15)
H2B—C2—H2D80.9C16—C15—N2127.65 (14)
H2C—C2—H2D109.1C20—C15—N2109.92 (13)
C2—C3—C4106.6 (3)C15—C16—C17117.51 (17)
C2—C3—H3A110.4C15—C16—H16121.2
C4—C3—H3A110.4C17—C16—H16121.2
C2—C3—H3B110.4C18—C17—C16121.39 (18)
C4—C3—H3B110.4C18—C17—H17119.3
H3A—C3—H3B108.6C16—C17—H17119.3
C4—C3A—C2108.3 (3)C17—C18—C19120.12 (17)
C4—C3A—H3C110.0C17—C18—H18119.9
C2—C3A—H3C110.0C19—C18—H18119.9
C4—C3A—H3D110.0C20—C19—C18119.81 (16)
C2—C3A—H3D110.0C20—C19—H19120.1
H3C—C3A—H3D108.4C18—C19—H19120.1
C3A—C4—N1106.5 (3)C19—C20—C15118.74 (15)
N1—C4—C3105.00 (19)C19—C20—C5132.59 (13)
C3A—C4—H4A80.9C15—C20—C5108.62 (12)
N1—C4—H4A110.7O1—C21—C22123.61 (15)
C3—C4—H4A110.7O1—C21—C6121.49 (13)
C3A—C4—H4B134.2C22—C21—C6114.88 (13)
N1—C4—H4B110.7C23—C22—C21122.89 (16)
C3—C4—H4B110.7C23—C22—H22118.6
H4A—C4—H4B108.8C21—C22—H22118.6
C3A—C4—H4C110.6C22—C23—C24125.45 (17)
N1—C4—H4C110.6C22—C23—H23117.3
C3—C4—H4C135.9C24—C23—H23117.3
H4B—C4—H4C80.1C29—C24—C25118.35 (18)
C3A—C4—H4D110.2C29—C24—C23118.88 (19)
N1—C4—H4D110.3C25—C24—C23122.67 (16)
C3—C4—H4D81.4C26—C25—C24120.8 (2)
H4A—C4—H4D131.8C26—C25—H25119.6
H4C—C4—H4D108.7C24—C25—H25119.6
N1—C5—C20119.04 (12)C27—C26—C25119.4 (3)
N1—C5—C14109.47 (12)C27—C26—H26120.3
C20—C5—C14101.51 (11)C25—C26—H26120.3
N1—C5—C6102.60 (10)C28—C27—C26120.9 (2)
C20—C5—C6113.67 (12)C28—C27—H27119.6
C14—C5—C6110.64 (11)C26—C27—H27119.6
C21—C6—C7116.10 (12)C27—C28—C29120.4 (2)
C21—C6—C5113.56 (11)C27—C28—H28119.8
C7—C6—C5102.38 (10)C29—C28—H28119.8
C21—C6—H6108.1C28—C29—C24120.2 (3)
C7—C6—H6108.1C28—C29—H29119.9
C5—C6—H6108.1C24—C29—H29119.9
C5—N1—C1—C2134.55 (15)C10—C11—C12—C130.6 (3)
C4—N1—C1—C20.4 (2)C11—C12—C13—C80.3 (3)
C5—N1—C1—C79.38 (16)C9—C8—C13—C120.2 (2)
C4—N1—C1—C7124.81 (15)C7—C8—C13—C12177.30 (14)
N1—C1—C2—C317.5 (4)C15—N2—C14—O2175.92 (15)
C7—C1—C2—C399.5 (3)C15—N2—C14—C52.62 (17)
N1—C1—C2—C3A15.1 (5)N1—C5—C14—O255.88 (18)
C7—C1—C2—C3A132.1 (5)C20—C5—C14—O2177.44 (14)
C3A—C2—C3—C461.7 (4)C6—C5—C14—O256.48 (19)
C1—C2—C3—C427.8 (5)N1—C5—C14—N2125.56 (13)
C3—C2—C3A—C472.5 (5)C20—C5—C14—N21.11 (15)
C1—C2—C3A—C426.5 (8)C6—C5—C14—N2122.08 (13)
C2—C3A—C4—N127.2 (8)C14—N2—C15—C16175.59 (17)
C2—C3A—C4—C364.8 (6)C14—N2—C15—C203.20 (18)
C5—N1—C4—C3A146.1 (5)C20—C15—C16—C171.1 (3)
C1—N1—C4—C3A17.1 (6)N2—C15—C16—C17179.71 (18)
C5—N1—C4—C3112.8 (3)C15—C16—C17—C180.0 (3)
C1—N1—C4—C316.2 (4)C16—C17—C18—C191.0 (4)
C2—C3—C4—C3A69.8 (6)C17—C18—C19—C201.1 (3)
C2—C3—C4—N127.4 (5)C18—C19—C20—C150.1 (3)
C4—N1—C5—C2018.66 (19)C18—C19—C20—C5176.93 (17)
C1—N1—C5—C20109.67 (14)C16—C15—C20—C191.0 (2)
C4—N1—C5—C1497.34 (16)N2—C15—C20—C19179.89 (14)
C1—N1—C5—C14134.34 (12)C16—C15—C20—C5176.54 (15)
C4—N1—C5—C6145.14 (14)N2—C15—C20—C52.32 (17)
C1—N1—C5—C616.82 (15)N1—C5—C20—C1962.0 (2)
N1—C5—C6—C21162.45 (12)C14—C5—C20—C19177.84 (17)
C20—C5—C6—C2132.59 (16)C6—C5—C20—C1959.0 (2)
C14—C5—C6—C2180.86 (15)N1—C5—C20—C15120.88 (13)
N1—C5—C6—C736.51 (13)C14—C5—C20—C150.74 (15)
C20—C5—C6—C793.36 (13)C6—C5—C20—C15118.07 (13)
C14—C5—C6—C7153.20 (12)C7—C6—C21—O15.4 (2)
C21—C6—C7—C869.38 (16)C5—C6—C21—O1112.87 (15)
C5—C6—C7—C8166.35 (12)C7—C6—C21—C22176.22 (12)
C21—C6—C7—C1166.04 (12)C5—C6—C21—C2265.48 (16)
C5—C6—C7—C141.76 (13)O1—C21—C22—C2311.3 (3)
N1—C1—C7—C8157.82 (12)C6—C21—C22—C23167.04 (15)
C2—C1—C7—C885.07 (17)C21—C22—C23—C24171.52 (15)
N1—C1—C7—C631.99 (14)C22—C23—C24—C29167.19 (19)
C2—C1—C7—C6149.10 (14)C22—C23—C24—C2516.6 (3)
C6—C7—C8—C9132.52 (15)C29—C24—C25—C260.2 (3)
C1—C7—C8—C9109.94 (16)C23—C24—C25—C26176.07 (19)
C6—C7—C8—C1350.44 (19)C24—C25—C26—C271.4 (3)
C1—C7—C8—C1367.09 (18)C25—C26—C27—C281.2 (4)
C13—C8—C9—C100.3 (2)C26—C27—C28—C290.2 (4)
C7—C8—C9—C10177.46 (15)C27—C28—C29—C241.4 (4)
C8—C9—C10—C110.1 (3)C25—C24—C29—C281.2 (3)
C9—C10—C11—C120.5 (3)C23—C24—C29—C28177.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.862.022.854 (2)162
C28—H28···Cg1ii0.932.893.815 (3)172
Symmetry codes: (i) x+2, y+2, z+1; (ii) x1, y, z1.

Experimental details

Crystal data
Chemical formulaC29H26N2O2
Mr434.52
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.4210 (2), 11.8895 (3), 12.5121 (3)
α, β, γ (°)95.662 (1), 105.071 (1), 105.815 (1)
V3)1144.31 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.16
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.977, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
30483, 7422, 4682
Rint0.024
(sin θ/λ)max1)0.731
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.200, 1.04
No. of reflections7422
No. of parameters308
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.23

Computer programs: , APEX2 (Bruker, 2004) and SAINT (Bruker, 2004), SAINT (Bruker, 2004) and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.862.022.854 (2)162
C28—H28···Cg1ii0.932.893.815 (3)172
Symmetry codes: (i) x+2, y+2, z+1; (ii) x1, y, z1.
 

Acknowledgements

SN thanks Professor M. N. Ponnuswamy, Department of Crystallography and Biophysics, University of Madras, India, for his guidance and valuable suggestions. SN also thanks the management of SRM, India, for their support.

References

First citationAraki, K., Suenaga, K., Sengoka, T. & Uemura, D. (2002). Tetrahedron, 58, 1983–1996.  Web of Science CrossRef CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaine, B. (1993). Science, 260, 1814.  CrossRef PubMed Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGore, V. G., Chordia, M. D. & Narasimhan, N. S. (1991). Tetrahedron, 46, 2483–2494.  Google Scholar
First citationHarris, L. S. & Uhle, F. C. (1960). J. Pharmacol. Exp. Ther. 128, 353–363.  Google Scholar
First citationHo, C. Y., Haegman, W. E. & Perisco, F. (1986). J. Med. Chem. 29, 118–121.  Google Scholar
First citationJames, D., Kunze, H. B. & Faulker, D. (1991). J. Nat. Prod. 54, 1137–1140.  CrossRef PubMed CAS Web of Science Google Scholar
First citationKobayashi, J., Tsuda, M., Agemi, K. & Vacelet, J. (1991). Tetrahedron, 47, 6617–6622.  CrossRef CAS Web of Science Google Scholar
First citationRamesh, P., Murugavel, S., SubbiahPandi, A., Murugan, R. & Narayanan, S. S. (2007). Acta Cryst. E63, o4106–o4107.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStevenson, G. I., Smith, A. L., Lewis, S., Michie, S. G., Neduvelil, J. G., Patel, S., Marwood, R., Patel, S. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697–2704.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTietze, L.-F., Schneider, G., Woelfling, J., Nobel, T. & Wulff, C. (1988). Angew. Chem. Int. Ed. 37, 2469–2470.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds