organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(Fluoren-9-ylmeth­oxy­carbon­yl)-L-isoleucine

aNational Institute for Materials Science, 3-13 Sakura, Tsukuba 305-0003, Japan, and bAdvanced Technology Support Division, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
*Correspondence e-mail: yamada.kazuhiko@nims.go.jp

(Received 9 July 2008; accepted 14 July 2008; online 19 July 2008)

In the crystal structure of the title compound [systematic name fluoren-9-ylmethyl N-(1-carb­oxy-2-methyl­butyl)carbamate], C21H23NO4, the mol­ecular plane of the O=C—NH—Cα unit is slightly pyramidalized. The N atom deviates from the basal plane by 0.2086 (12) Å. The O=C—N—Cα torsion angle is −17.2 (2)°, and the C—N and O=C bond lengths are 1.3675 (17) and 1.2122 (17) Å, respectively. Apparently the character of the sp2 hybrids of the mol­ecular plane is, to some extent, reduced. The crystal structure exhibits two inter­molecular hydrogen bonds (O—H⋯O and N—H⋯O), in which the hydr­oxy O atom acts as a donor to the carbonyl group and an acceptor of the amide group, respectively.

Related literature

For related literature on the crystal structures of N-α-fluoren-9-ylmethoxy­carbonyl-protected amino acids, see: Valle et al. (1984[Valle, G., Bonora, G. M. & Toniolo, C. (1984). Can. J. Chem. 62, 2661-2666.]); Yamada, Hashizume & Shimizu (2008[Yamada, K., Hashizume, D. & Shimizu, T. (2008). Acta Cryst. E64, o1112.]); Yamada, Hashizume, Shimizu et al. (2008[Yamada, K., Hashizume, D., Shimizu, T., Ohiki, S. & Yokoyama, S. (2008). J. Mol. Struct. In the press.]).

[Scheme 1]

Experimental

Crystal data
  • C21H23NO4

  • Mr = 353.40

  • Orthorhombic, P 21 21 21

  • a = 5.3337 (2) Å

  • b = 13.6965 (4) Å

  • c = 25.2514 (9) Å

  • V = 1844.70 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 90 K

  • 0.77 × 0.06 × 0.04 mm

Data collection
  • Rigaku AFC-8 diffractometer with Saturn70 CCD

  • Absorption correction: none

  • 19825 measured reflections

  • 3351 independent reflections

  • 2993 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.084

  • S = 1.03

  • 3351 reflections

  • 327 parameters

  • All H-atom parameters refined

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1H⋯O2i 0.88 (2) 1.77 (2) 2.6511 (14) 176 (2)
N1—H1N⋯O1ii 0.88 (2) 2.18 (2) 3.0433 (16) 167.6 (17)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) x+1, y, z.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: HKL-2000 (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL-2000; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The fluoren-9-ylmethoxycarbonyl (Fmoc) group is commonly used for protecting the terminal amine of the peptide for the current solid-phase peptide synthesis protocol. This is because cleavage of the Fmoc protecting group is easily achieved by mild basis conditions, e.g., piperidine, but it is very stable under acidic conditions. The crystal structures of N-α-Fmoc-protected-L-alanine monohydrate (Valle et al., 1984), -O-t-butyl-L-serine (Yamada, Hashizume, Shimizu, Ohiki & Yokoyama, 2008) and –L-leucine (Yamada, Hashizume & Shimizu, 2008) have been studied. In this communication, we will report the structure of N-α-Fmoc-L-isoleucine, (I) (Fig. 1).

It is interesting to compare the present structure with that of the analog of the title compound, i.e., N-α-Fmoc-protected-L-leucine, (II). A large fraction of the bond distances and angles, and torsion angles of (I) are consistent with those of (II) except for the following points. First, the orientation of the carboxyl group around the C1—C6 bond is found to be opposite. The torsion angle of O2—C6—C1—N1 for (I) is -6.3 (2)°, while the corresponding angle of (II) is 159.29 (17)°. Second, the angle between the fluorine ring and the NC(=O)O plane is quite different. For example, the torsion angle of C7—O4—C8—C9 and O4—C8—C9—C10 are 121.17 (13) and -73.17 (14)°, respectively, for (I). The corresponding torsion angles of (II), on the other hand, are 93.78 (16) and 60.54 (17)°, respectively. Third, it can be seen that the O3—C7—N1—C1 plane of (I) is slightly pyramided. The N1 atom deviates from the basal plane (C1, C7, H1N) by 0.2086 (12) Å. Moreover, the distances of the N1—C7 and O3—C7 bonds are 1.3675 (17) and 1.2122 (17) Å, respectively, which are approximately 0.026 longer and 0.010 Å shorter than the corresponding bond lengths of (II), respectively. Apparently, the sp2 character of the N1 atom is, to some extent, reduced.

In addition, hydrogen-bond environments are slightly different between the two Fmoc-protected L-amino acids. The crystal of (I) contains two intermolecular hydrogen bonds (Table 1), while that of (II) has three hydrogen bonds. For (I), atom O1 forms two hydrogen bonds with O2 and N1, as shown in Figure 2. The molecules, which related by translation along the a axis are assembled via the N1—H1N···O1 hydrogen bonds to form a one dimensional tape structure. The tapes around the 21 axis, which is parallel to the a axis, are joined together, then the column structure is formed.

Related literature top

For related literature on the crystal structures of N-α-fluoren-9-ylmethoxycarbonyl-protected amino acids, see: Valle et al. (1984); Yamada, Hashizume & Shimizu (2008); Yamada, Hashizume, Shimizu et al. (2008).

Experimental top

A powdered sample of the title compound (I) was purchased from Wako Pure Chemical Industries, Ltd. (Osaka, Japan) and was used for the sample preparation without further purifications. Colorless needle like crystals of (I) were obtained from a saturated dichloromethane solution.

Refinement top

All H atoms were found on a difference map and were refined applying isotropic temperature factors.

The refined C—H, N—H or O—H dimensions are in the normal range: 0.975 (19)–1.015 (19) Å and 104.8 (10)–113.8 (11)° for C—H and C/N—C—H, respectively, for methyne; 0.942 (17)–1.01 (2) Å, 106.6 (13)–111.4 (12)° and 107.1 (18)–108.6 (14)° for C—H, C/O—C—H and H—C—H for methylene; 0.98 (3)–1.03 (3) Å, 109.5 (11)–112.8 (13)° and 104 (2)–111 (2)° for C—H, C—C—H and H—C—H, respectively, for methyl; 0.96 (2)–1.005 (19) Å and 117.7 (11)–123.1 (11)° for C—H and C—C—H, respectively, for aromatic; 0.88 (2) Å and 115.3 (12)–116.5 (12)° for N—H and C—N—H, respectively, for amide; 0.88 (2) Å and 108.7 (15)° for O—H and C—O—H, respectively, for hydroxyl. The range of the Uiso values of the H atoms are 0.016 (4)–0.067 (8) Å2.

In the absence of significant anomalous scattering effects, Friedel pairs have been merged.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: HKL-2000 (Otwinowski & Minor, 1997); data reduction: HKL-2000 (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), showing the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). The hydrogen atoms were omitted for clarity, except for those forming the hydrogen bonds. The hydrogen bonds are shown as blue and green broken lines for N—H···O and O—H···O bonds, respectively.
fluoren-9-ylmethyl N-(1-carboxy-2-methylbutyl)carbamate top
Crystal data top
C21H23NO4F(000) = 752
Mr = 353.40Dx = 1.272 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 19896 reflections
a = 5.3337 (2) Åθ = 1.6–31.0°
b = 13.6965 (4) ŵ = 0.09 mm1
c = 25.2514 (9) ÅT = 90 K
V = 1844.70 (11) Å3Needle, colourless
Z = 40.77 × 0.06 × 0.04 mm
Data collection top
Rigaku AFC-8 with Saturn70 CCD
diffractometer
2993 reflections with I > 2σ(I)
Radiation source: fine-focus rotating anodeRint = 0.043
Confocal monochromatorθmax = 31.0°, θmin = 1.6°
Detector resolution: 28.5714 pixels mm-1h = 77
ω scansk = 1319
19825 measured reflectionsl = 3636
3351 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: difference Fourier map
wR(F2) = 0.084All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0427P)2 + 0.2178P]
where P = (Fo2 + 2Fc2)/3
3351 reflections(Δ/σ)max < 0.001
327 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C21H23NO4V = 1844.70 (11) Å3
Mr = 353.40Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.3337 (2) ŵ = 0.09 mm1
b = 13.6965 (4) ÅT = 90 K
c = 25.2514 (9) Å0.77 × 0.06 × 0.04 mm
Data collection top
Rigaku AFC-8 with Saturn70 CCD
diffractometer
2993 reflections with I > 2σ(I)
19825 measured reflectionsRint = 0.043
3351 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.084All H-atom parameters refined
S = 1.03Δρmax = 0.23 e Å3
3351 reflectionsΔρmin = 0.18 e Å3
327 parameters
Special details top

Experimental. All Friedel pairs were merged, and all f''s of containing atoms were set to zero.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0029 (2)0.12876 (8)0.48657 (4)0.0236 (2)
H1H0.038 (4)0.1865 (16)0.5004 (8)0.040 (6)*
O20.3719 (2)0.19896 (8)0.47355 (4)0.0287 (2)
O30.4252 (2)0.06814 (8)0.34059 (4)0.0254 (2)
O40.83023 (19)0.09577 (8)0.36430 (4)0.0219 (2)
N10.5644 (2)0.03926 (9)0.42480 (4)0.0201 (2)
H1N0.683 (4)0.0588 (14)0.4465 (7)0.028 (5)*
C10.3145 (3)0.03122 (10)0.44681 (5)0.0198 (3)
H10.201 (4)0.0187 (13)0.4152 (7)0.029 (5)*
C20.2942 (3)0.05077 (10)0.48868 (5)0.0221 (3)
H20.124 (4)0.0497 (14)0.5026 (7)0.025 (5)*
C30.4615 (4)0.03098 (13)0.53677 (6)0.0322 (4)
H3A0.641 (5)0.0353 (16)0.5239 (9)0.045 (6)*
H3B0.433 (4)0.0382 (16)0.5491 (8)0.043 (6)*
C40.4141 (5)0.10079 (16)0.58280 (7)0.0429 (5)
H4A0.524 (5)0.0821 (19)0.6146 (10)0.063 (7)*
H4B0.449 (5)0.1707 (17)0.5734 (9)0.050 (6)*
H4C0.237 (6)0.1000 (19)0.5925 (10)0.067 (8)*
C50.3466 (4)0.14964 (12)0.46325 (7)0.0321 (4)
H5A0.235 (4)0.1587 (15)0.4308 (9)0.043 (6)*
H5B0.302 (4)0.2030 (14)0.4887 (8)0.034 (5)*
H5C0.526 (5)0.1554 (16)0.4525 (8)0.040 (6)*
C60.2335 (3)0.12921 (10)0.47018 (5)0.0209 (3)
C70.5913 (3)0.06860 (10)0.37335 (5)0.0195 (3)
C80.8909 (3)0.12808 (11)0.31097 (5)0.0214 (3)
H8A1.018 (4)0.0822 (13)0.2966 (7)0.023 (4)*
H8B0.746 (3)0.1242 (12)0.2898 (6)0.016 (4)*
C90.9917 (3)0.23248 (10)0.31308 (5)0.0218 (3)
H91.136 (4)0.2340 (14)0.3393 (7)0.033 (5)*
C100.7894 (3)0.30772 (10)0.32413 (5)0.0227 (3)
C110.6461 (3)0.32177 (11)0.36923 (6)0.0273 (3)
H110.678 (4)0.2802 (14)0.4013 (7)0.032 (5)*
C120.4624 (3)0.39449 (12)0.36893 (6)0.0307 (3)
H120.365 (4)0.4056 (14)0.4011 (8)0.037 (5)*
C130.4225 (3)0.45181 (12)0.32390 (7)0.0307 (3)
H130.289 (4)0.5019 (16)0.3241 (8)0.038 (5)*
C140.5681 (3)0.43873 (11)0.27881 (6)0.0272 (3)
H140.540 (4)0.4779 (14)0.2461 (8)0.033 (5)*
C150.7524 (3)0.36682 (10)0.27912 (5)0.0222 (3)
C160.9326 (3)0.33767 (10)0.23824 (5)0.0218 (3)
C170.9758 (3)0.37521 (11)0.18767 (5)0.0251 (3)
H170.877 (4)0.4283 (15)0.1741 (7)0.033 (5)*
C181.1730 (3)0.33647 (11)0.15819 (6)0.0271 (3)
H181.201 (4)0.3628 (13)0.1225 (7)0.027 (4)*
C191.3197 (3)0.26081 (11)0.17784 (6)0.0270 (3)
H191.452 (4)0.2330 (14)0.1573 (7)0.030 (5)*
C201.2715 (3)0.22127 (11)0.22789 (6)0.0248 (3)
H201.374 (4)0.1663 (14)0.2398 (7)0.029 (5)*
C211.0792 (3)0.26106 (10)0.25795 (5)0.0219 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0187 (5)0.0237 (5)0.0284 (5)0.0005 (4)0.0011 (4)0.0042 (4)
O20.0264 (6)0.0232 (5)0.0365 (5)0.0060 (5)0.0050 (5)0.0056 (4)
O30.0191 (5)0.0341 (5)0.0231 (4)0.0028 (5)0.0025 (4)0.0014 (4)
O40.0169 (5)0.0277 (5)0.0210 (4)0.0022 (4)0.0003 (4)0.0047 (4)
N10.0162 (5)0.0243 (5)0.0199 (5)0.0010 (5)0.0006 (4)0.0006 (4)
C10.0166 (6)0.0209 (6)0.0219 (6)0.0012 (5)0.0009 (5)0.0011 (5)
C20.0196 (6)0.0214 (6)0.0254 (6)0.0013 (5)0.0031 (5)0.0008 (5)
C30.0373 (10)0.0340 (8)0.0253 (7)0.0043 (7)0.0023 (6)0.0050 (6)
C40.0577 (13)0.0424 (10)0.0287 (8)0.0021 (10)0.0003 (8)0.0117 (7)
C50.0400 (10)0.0229 (7)0.0334 (7)0.0015 (7)0.0038 (7)0.0012 (6)
C60.0197 (7)0.0229 (6)0.0203 (5)0.0006 (6)0.0005 (5)0.0009 (5)
C70.0177 (6)0.0186 (6)0.0222 (6)0.0001 (5)0.0011 (5)0.0005 (4)
C80.0203 (7)0.0250 (6)0.0189 (5)0.0008 (6)0.0003 (5)0.0040 (5)
C90.0197 (6)0.0244 (6)0.0214 (6)0.0024 (5)0.0004 (5)0.0024 (5)
C100.0221 (7)0.0228 (6)0.0233 (6)0.0024 (6)0.0008 (5)0.0009 (5)
C110.0298 (8)0.0280 (7)0.0239 (6)0.0033 (6)0.0026 (6)0.0008 (5)
C120.0306 (8)0.0310 (8)0.0306 (7)0.0015 (7)0.0065 (6)0.0053 (6)
C130.0287 (8)0.0268 (7)0.0367 (7)0.0032 (7)0.0011 (6)0.0055 (6)
C140.0292 (8)0.0239 (7)0.0287 (7)0.0014 (6)0.0022 (6)0.0001 (5)
C150.0217 (7)0.0215 (6)0.0234 (6)0.0035 (6)0.0012 (5)0.0013 (5)
C160.0206 (7)0.0215 (6)0.0234 (6)0.0034 (5)0.0004 (5)0.0001 (5)
C170.0295 (8)0.0228 (6)0.0230 (6)0.0015 (6)0.0005 (6)0.0018 (5)
C180.0322 (9)0.0267 (7)0.0224 (6)0.0064 (6)0.0031 (6)0.0012 (5)
C190.0245 (8)0.0290 (7)0.0274 (6)0.0037 (6)0.0040 (6)0.0027 (5)
C200.0209 (7)0.0257 (7)0.0277 (6)0.0028 (6)0.0008 (6)0.0007 (5)
C210.0192 (7)0.0233 (6)0.0230 (6)0.0039 (6)0.0005 (5)0.0012 (5)
Geometric parameters (Å, º) top
O1—C61.3270 (18)C8—H8B0.942 (17)
O1—H1H0.88 (2)C9—C101.518 (2)
O2—C61.2102 (18)C9—C211.5196 (18)
O3—C71.2122 (17)C9—H91.01 (2)
O4—C71.3471 (17)C10—C111.385 (2)
O4—C81.4541 (16)C10—C151.4092 (19)
N1—C71.3675 (17)C11—C121.397 (2)
N1—C11.4484 (18)C11—H111.005 (19)
N1—H1N0.88 (2)C12—C131.398 (2)
C1—C61.5284 (19)C12—H120.98 (2)
C1—C21.5462 (19)C13—C141.390 (2)
C1—H11.015 (19)C13—H130.99 (2)
C2—C51.525 (2)C14—C151.392 (2)
C2—C31.531 (2)C14—H141.00 (2)
C2—H20.975 (19)C15—C161.466 (2)
C3—C41.526 (2)C16—C171.3957 (19)
C3—H3A1.01 (2)C16—C211.400 (2)
C3—H3B1.01 (2)C17—C181.393 (2)
C4—H4A1.03 (3)C17—H170.96 (2)
C4—H4B1.00 (2)C18—C191.390 (2)
C4—H4C0.98 (3)C18—H180.983 (18)
C5—H5A1.02 (2)C19—C201.399 (2)
C5—H5B1.00 (2)C19—H190.96 (2)
C5—H5C1.00 (2)C20—C211.387 (2)
C8—C91.529 (2)C20—H200.98 (2)
C8—H8A0.993 (19)
C6—O1—H1H108.7 (15)C9—C8—H8B111.2 (10)
C7—O4—C8116.86 (11)H8A—C8—H8B108.6 (14)
C7—N1—C1118.91 (12)C10—C9—C21102.23 (11)
C7—N1—H1N115.3 (12)C10—C9—C8113.04 (12)
C1—N1—H1N116.5 (12)C21—C9—C8108.49 (11)
N1—C1—C6109.97 (11)C10—C9—H9113.8 (11)
N1—C1—C2112.46 (11)C21—C9—H9111.1 (11)
C6—C1—C2110.73 (11)C8—C9—H9108.0 (11)
N1—C1—H1105.0 (11)C11—C10—C15120.39 (14)
C6—C1—H1106.5 (10)C11—C10—C9129.63 (13)
C2—C1—H1111.9 (11)C15—C10—C9109.96 (12)
C5—C2—C3112.62 (14)C10—C11—C12118.80 (14)
C5—C2—C1110.13 (12)C10—C11—H11119.3 (11)
C3—C2—C1111.90 (12)C12—C11—H11121.9 (11)
C5—C2—H2109.7 (11)C11—C12—C13120.76 (15)
C3—C2—H2104.8 (10)C11—C12—H12118.6 (12)
C1—C2—H2107.5 (11)C13—C12—H12120.6 (12)
C4—C3—C2113.36 (15)C14—C13—C12120.59 (15)
C4—C3—H3A111.4 (12)C14—C13—H13119.7 (12)
C2—C3—H3A106.6 (13)C12—C13—H13119.7 (12)
C4—C3—H3B109.2 (12)C13—C14—C15118.76 (14)
C2—C3—H3B108.9 (12)C13—C14—H14121.6 (12)
H3A—C3—H3B107.1 (19)C15—C14—H14119.6 (12)
C3—C4—H4A110.2 (15)C14—C15—C10120.68 (13)
C3—C4—H4B112.8 (13)C14—C15—C16130.69 (13)
H4A—C4—H4B109 (2)C10—C15—C16108.64 (13)
C3—C4—H4C110.1 (16)C17—C16—C21120.60 (13)
H4A—C4—H4C111 (2)C17—C16—C15130.71 (14)
H4B—C4—H4C104 (2)C21—C16—C15108.66 (12)
C2—C5—H5A109.8 (12)C18—C17—C16118.24 (14)
C2—C5—H5B109.5 (11)C18—C17—H17120.8 (12)
H5A—C5—H5B106.7 (17)C16—C17—H17121.0 (12)
C2—C5—H5C111.2 (13)C19—C18—C17121.20 (14)
H5A—C5—H5C109.4 (17)C19—C18—H18121.0 (11)
H5B—C5—H5C110.2 (17)C17—C18—H18117.7 (11)
O2—C6—O1124.13 (13)C18—C19—C20120.52 (15)
O2—C6—C1123.22 (13)C18—C19—H19121.3 (11)
O1—C6—C1112.64 (12)C20—C19—H19118.1 (11)
O3—C7—O4125.25 (12)C21—C20—C19118.54 (14)
O3—C7—N1124.76 (13)C21—C20—H20123.1 (11)
O4—C7—N1109.97 (12)C19—C20—H20118.4 (11)
O4—C8—C9109.32 (11)C20—C21—C16120.86 (12)
O4—C8—H8A107.3 (10)C20—C21—C9128.82 (13)
C9—C8—H8A111.3 (10)C16—C21—C9110.31 (12)
O4—C8—H8B109.0 (10)
C7—N1—C1—C688.14 (15)C12—C13—C14—C150.7 (2)
C7—N1—C1—C2147.96 (12)C13—C14—C15—C100.6 (2)
N1—C1—C2—C562.96 (16)C13—C14—C15—C16179.33 (15)
C6—C1—C2—C5173.56 (13)C11—C10—C15—C141.4 (2)
N1—C1—C2—C363.11 (16)C9—C10—C15—C14177.23 (13)
C6—C1—C2—C360.37 (16)C11—C10—C15—C16178.54 (13)
C5—C2—C3—C465.0 (2)C9—C10—C15—C162.87 (16)
C1—C2—C3—C4170.27 (15)C14—C15—C16—C171.9 (3)
N1—C1—C6—O26.34 (19)C10—C15—C16—C17178.03 (15)
C2—C1—C6—O2118.56 (15)C14—C15—C16—C21179.97 (15)
N1—C1—C6—O1174.17 (11)C10—C15—C16—C210.08 (16)
C2—C1—C6—O160.94 (15)C21—C16—C17—C181.9 (2)
C8—O4—C7—O30.8 (2)C15—C16—C17—C18176.00 (14)
C8—O4—C7—N1179.33 (11)C16—C17—C18—C191.5 (2)
C1—N1—C7—O317.2 (2)C17—C18—C19—C200.3 (2)
C1—N1—C7—O4164.18 (11)C18—C19—C20—C211.8 (2)
C7—O4—C8—C9121.17 (13)C19—C20—C21—C161.4 (2)
O4—C8—C9—C1073.17 (14)C19—C20—C21—C9179.33 (14)
O4—C8—C9—C21174.19 (12)C17—C16—C21—C200.5 (2)
C21—C9—C10—C11177.33 (15)C15—C16—C21—C20177.88 (13)
C8—C9—C10—C1166.3 (2)C17—C16—C21—C9178.93 (13)
C21—C9—C10—C154.25 (15)C15—C16—C21—C92.74 (16)
C8—C9—C10—C15112.17 (13)C10—C9—C21—C20176.47 (14)
C15—C10—C11—C120.9 (2)C8—C9—C21—C2063.88 (19)
C9—C10—C11—C12177.41 (15)C10—C9—C21—C164.22 (15)
C10—C11—C12—C130.4 (2)C8—C9—C21—C16115.44 (13)
C11—C12—C13—C141.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1H···O2i0.88 (2)1.77 (2)2.6511 (14)176 (2)
N1—H1N···O1ii0.88 (2)2.18 (2)3.0433 (16)167.6 (17)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC21H23NO4
Mr353.40
Crystal system, space groupOrthorhombic, P212121
Temperature (K)90
a, b, c (Å)5.3337 (2), 13.6965 (4), 25.2514 (9)
V3)1844.70 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.77 × 0.06 × 0.04
Data collection
DiffractometerRigaku AFC-8 with Saturn70 CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
19825, 3351, 2993
Rint0.043
(sin θ/λ)max1)0.725
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.084, 1.03
No. of reflections3351
No. of parameters327
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.23, 0.18

Computer programs: CrystalClear (Rigaku/MSC, 2005), HKL-2000 (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1H···O2i0.88 (2)1.77 (2)2.6511 (14)176 (2)
N1—H1N···O1ii0.88 (2)2.18 (2)3.0433 (16)167.6 (17)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1, y, z.
 

Acknowledgements

KY thanks the Ministry of Education, Science, Sports, Culture and Technology (MEXT) of Japan for funding this work [Young Scientists (B), 20750022]. TS appreciates support from the World Premier International Research Center Initiative on Materials Nanoarchitronics at NIMS, from MEXT. KD acknowledges the Nanotechnology Support of MEXT.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationValle, G., Bonora, G. M. & Toniolo, C. (1984). Can. J. Chem. 62, 2661–2666.  CrossRef CAS Web of Science Google Scholar
First citationYamada, K., Hashizume, D. & Shimizu, T. (2008). Acta Cryst. E64, o1112.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYamada, K., Hashizume, D., Shimizu, T., Ohiki, S. & Yokoyama, S. (2008). J. Mol. Struct. In the press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds