organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Chloro­phen­yl)-2-methyl­benzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 12 June 2008; accepted 2 July 2008; online 5 July 2008)

In the structure of the title compound (N2CP2MBA), C14H12ClNO, the conformations of the N—H and C=O bonds are trans to each other. Furthermore, the conformation of the N—H bond is syn to the ortho-chloro group in the aniline ring and the C=O bond is syn to the ortho-methyl substituent in the benzoyl ring, similar to what is observed in 2-chloro-N-(2-chloro­phen­yl)benzamide and 2-methyl-N-phenyl­benzamide. The amide group makes almost the same dihedral angles of 41.2 (14) and 42.2 (13)° with the aniline and benzoyl rings, respectively, while the dihedral angle between the benzoyl and aniline rings is only 7.4 (3)°. The mol­ecules in N2CP2MBA are packed into chains through N—H⋯O hydrogen bonds.

Related literature

For related literature, see: Gowda et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.], 2008[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o383.]); Gowda, Foro et al. (2007[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2007). Acta Cryst. E63, o3789.]); Gowda, Sowmya et al. (2007[Gowda, B. T., Sowmya, B. P., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o2906.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12ClNO

  • Mr = 245.70

  • Monoclinic, P 21 /n

  • a = 4.8881 (4) Å

  • b = 24.318 (2) Å

  • c = 10.0562 (8) Å

  • β = 90.373 (6)°

  • V = 1195.34 (17) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.67 mm−1

  • T = 299 (2) K

  • 0.55 × 0.13 × 0.05 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.695, Tmax = 0.878

  • 2264 measured reflections

  • 2126 independent reflections

  • 1695 reflections with I > 2σ(I)

  • Rint = 0.050

  • 3 standard reflections frequency: 120 min intensity decay: 1.5%

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.333

  • S = 1.49

  • 2126 reflections

  • 158 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.88 (6) 2.03 (6) 2.886 (5) 163 (5)
Symmetry code: (i) x-1, y, z.

Data collection: CAD-4-PC Software (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC Software; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of the substituent effects on the solid state geometries of benzanilides,in the present work, the structure of 2-methyl-N-(2-chlorophenyl)-benzamide (N2CP2MBA) has been determined Gowda et al. (2003, 2008). Gowda, Foro et al. (2007); Gowda, Sowmya et al. (2007). In the structure of N2CP2MBA (Fig. 1), the conformations of the N—H and CO bonds are trans to each other. Further, the conformation of the N—H bond is syn to the ortho-chloro group in the aniline ring and that of the CO bond is syn to the ortho-methyl substituent in the benzoyl ring. These observations are similar to those observed in 2-chloro-N-(2-Chlorophenyl)-benzamide (N2CP2CBA) (Gowda et al., 2007a) and 2-methyl-N-(phenyl)-benzamide (NP2MBA) (Gowda et al., 2008). The bond parameters in N2CP2MBA are similar to those in N2CP2CBA, NP2MBA, N-(2-Chlorophenyl)-benzamide and other benzanilides Gowda et al. (2003, 2008). Gowda, Foro et al. (2007); Gowda, Sowmya et al. (2007). The amide group, –NHCO– makes almost the same dihedral angles of 41.2 (14)° and 42.2 (13)° with the aniline and benzoyl rings, respectively, while that between the benzoyl and aniline rings is only 7.4 (3)°. The packing diagram of N2CP2MBA molecules showing the hydrogen bonds N—H···O (Table 1) involved in the formation of molecular chains is shown in Fig. 2.

Related literature top

For related literature, see: Gowda et al. (2003, 2008). Gowda, Foro et al. (2007); Gowda, Sowmya et al. (2007).

Experimental top

The title compound was prepared according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement top

The NH atom was located in difference map and refined with a restrained N—H = 0.88 (6) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom). In spite of the refinement proceeding and converging smoothly, the R2 index did not decrese from a rather large value (0.33). This might be atributed to poor crystal quality in the available samples.

Computing details top

Data collection: CAD-4-PC Software (Enraf–Nonius, 1996); cell refinement: CAD-4-PC Software (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labeling. Displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines..
N-(2-Chlorophenyl)-2-methylbenzamide top
Crystal data top
C14H12ClNOF(000) = 512
Mr = 245.70Dx = 1.365 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 4.8881 (4) Åθ = 7.3–21.6°
b = 24.318 (2) ŵ = 2.67 mm1
c = 10.0562 (8) ÅT = 299 K
β = 90.373 (6)°Rod, colourless
V = 1195.34 (17) Å30.55 × 0.13 × 0.05 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1695 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.050
Graphite monochromatorθmax = 66.9°, θmin = 3.6°
ω/2θ scansh = 55
Absorption correction: ψ scan
(North et al., 1968)
k = 290
Tmin = 0.695, Tmax = 0.878l = 121
2264 measured reflections3 standard reflections every 120 min
2126 independent reflections intensity decay: 1.5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.333H atoms treated by a mixture of independent and constrained refinement
S = 1.49 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
2126 reflections(Δ/σ)max < 0.001
158 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
C14H12ClNOV = 1195.34 (17) Å3
Mr = 245.70Z = 4
Monoclinic, P21/nCu Kα radiation
a = 4.8881 (4) ŵ = 2.67 mm1
b = 24.318 (2) ÅT = 299 K
c = 10.0562 (8) Å0.55 × 0.13 × 0.05 mm
β = 90.373 (6)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1695 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.050
Tmin = 0.695, Tmax = 0.8783 standard reflections every 120 min
2264 measured reflections intensity decay: 1.5%
2126 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.333H atoms treated by a mixture of independent and constrained refinement
S = 1.49Δρmax = 0.59 e Å3
2126 reflectionsΔρmin = 0.64 e Å3
158 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5268 (8)0.58356 (18)0.9109 (4)0.0391 (10)
C20.3925 (9)0.59484 (18)0.7921 (5)0.0435 (10)
C30.4354 (12)0.5627 (2)0.6800 (5)0.0561 (13)
H30.34250.57070.60140.067*
C40.6138 (13)0.5193 (2)0.6847 (5)0.0623 (15)
H40.64380.49810.60920.075*
C50.7482 (11)0.5073 (2)0.8016 (5)0.0576 (13)
H50.86740.47760.80580.069*
C60.7067 (10)0.5393 (2)0.9124 (5)0.0514 (12)
H60.80140.53110.99040.062*
C70.6651 (8)0.63040 (19)1.1158 (4)0.0392 (10)
C80.5627 (8)0.66363 (17)1.2305 (4)0.0377 (10)
C90.6654 (10)0.65413 (18)1.3586 (5)0.0443 (11)
C100.5648 (11)0.6868 (2)1.4611 (5)0.0554 (13)
H100.62930.68121.54730.067*
C110.3720 (12)0.7272 (2)1.4380 (6)0.0632 (15)
H110.30620.74811.50830.076*
C120.2767 (11)0.7365 (2)1.3106 (6)0.0608 (14)
H120.14950.76421.29450.073*
C130.3710 (10)0.7046 (2)1.2075 (5)0.0493 (11)
H130.30540.71061.12160.059*
C140.8698 (11)0.6100 (2)1.3901 (5)0.0549 (13)
H14A1.03900.61791.34610.066*
H14B0.80100.57511.35990.066*
H14C0.90040.60861.48440.066*
N10.4730 (7)0.61465 (17)1.0252 (4)0.0439 (9)
H1N0.306 (13)0.623 (2)1.050 (5)0.053*
O10.9068 (6)0.61743 (16)1.1044 (3)0.0565 (10)
Cl10.1723 (3)0.65063 (6)0.78357 (13)0.0601 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.027 (2)0.052 (2)0.038 (2)0.0007 (16)0.0020 (16)0.0012 (17)
C20.037 (2)0.050 (2)0.043 (2)0.0006 (18)0.0003 (18)0.0006 (19)
C30.057 (3)0.067 (3)0.044 (2)0.005 (2)0.011 (2)0.004 (2)
C40.067 (3)0.070 (3)0.050 (3)0.011 (3)0.001 (2)0.019 (2)
C50.058 (3)0.058 (3)0.057 (3)0.016 (2)0.003 (2)0.005 (2)
C60.045 (3)0.065 (3)0.044 (2)0.005 (2)0.0031 (19)0.001 (2)
C70.025 (2)0.058 (3)0.035 (2)0.0011 (17)0.0025 (16)0.0022 (18)
C80.0257 (19)0.046 (2)0.041 (2)0.0081 (16)0.0057 (16)0.0031 (18)
C90.040 (2)0.053 (3)0.041 (2)0.0059 (18)0.0039 (19)0.0012 (18)
C100.058 (3)0.065 (3)0.044 (2)0.014 (2)0.004 (2)0.014 (2)
C110.058 (3)0.064 (3)0.067 (3)0.001 (2)0.014 (3)0.028 (3)
C120.048 (3)0.048 (3)0.086 (4)0.001 (2)0.005 (3)0.015 (2)
C130.039 (2)0.057 (3)0.052 (3)0.0017 (19)0.002 (2)0.001 (2)
C140.044 (3)0.072 (3)0.048 (3)0.006 (2)0.003 (2)0.007 (2)
N10.0276 (18)0.066 (2)0.0378 (19)0.0020 (16)0.0001 (15)0.0057 (17)
O10.0251 (16)0.092 (3)0.0523 (19)0.0015 (16)0.0009 (13)0.0153 (18)
Cl10.0564 (9)0.0687 (10)0.0551 (9)0.0175 (5)0.0062 (6)0.0061 (5)
Geometric parameters (Å, º) top
C1—C21.387 (6)C8—C131.386 (7)
C1—C61.390 (7)C8—C91.399 (6)
C1—N11.402 (5)C9—C101.394 (6)
C2—C31.388 (7)C9—C141.499 (7)
C2—Cl11.734 (5)C10—C111.380 (8)
C3—C41.369 (7)C10—H100.9300
C3—H30.9300C11—C121.379 (8)
C4—C51.375 (8)C11—H110.9300
C4—H40.9300C12—C131.377 (7)
C5—C61.374 (7)C12—H120.9300
C5—H50.9300C13—H130.9300
C6—H60.9300C14—H14A0.9600
C7—O11.229 (5)C14—H14B0.9600
C7—N11.359 (5)C14—H14C0.9600
C7—C81.497 (6)N1—H1N0.88 (6)
C2—C1—C6117.3 (4)C10—C9—C8117.4 (5)
C2—C1—N1120.6 (4)C10—C9—C14119.3 (4)
C6—C1—N1122.1 (4)C8—C9—C14123.2 (4)
C1—C2—C3121.0 (4)C11—C10—C9121.7 (5)
C1—C2—Cl1119.2 (3)C11—C10—H10119.2
C3—C2—Cl1119.8 (4)C9—C10—H10119.2
C4—C3—C2120.4 (5)C12—C11—C10120.0 (5)
C4—C3—H3119.8C12—C11—H11120.0
C2—C3—H3119.8C10—C11—H11120.0
C3—C4—C5119.6 (5)C13—C12—C11119.6 (5)
C3—C4—H4120.2C13—C12—H12120.2
C5—C4—H4120.2C11—C12—H12120.2
C6—C5—C4120.1 (5)C12—C13—C8120.6 (5)
C6—C5—H5120.0C12—C13—H13119.7
C4—C5—H5120.0C8—C13—H13119.7
C5—C6—C1121.7 (4)C9—C14—H14A109.5
C5—C6—H6119.1C9—C14—H14B109.5
C1—C6—H6119.1H14A—C14—H14B109.5
O1—C7—N1121.7 (4)C9—C14—H14C109.5
O1—C7—C8122.5 (4)H14A—C14—H14C109.5
N1—C7—C8115.8 (3)H14B—C14—H14C109.5
C13—C8—C9120.7 (4)C7—N1—C1124.7 (4)
C13—C8—C7119.2 (4)C7—N1—H1N113 (3)
C9—C8—C7120.0 (4)C1—N1—H1N122 (3)
C6—C1—C2—C30.5 (7)C13—C8—C9—C100.8 (6)
N1—C1—C2—C3177.1 (4)C7—C8—C9—C10179.2 (4)
C6—C1—C2—Cl1178.4 (3)C13—C8—C9—C14179.1 (4)
N1—C1—C2—Cl13.9 (6)C7—C8—C9—C142.5 (6)
C1—C2—C3—C40.5 (8)C8—C9—C10—C110.2 (7)
Cl1—C2—C3—C4178.5 (4)C14—C9—C10—C11178.6 (5)
C2—C3—C4—C50.7 (9)C9—C10—C11—C120.9 (8)
C3—C4—C5—C61.0 (9)C10—C11—C12—C131.3 (9)
C4—C5—C6—C11.1 (8)C11—C12—C13—C80.7 (8)
C2—C1—C6—C50.8 (7)C9—C8—C13—C120.4 (7)
N1—C1—C6—C5176.8 (5)C7—C8—C13—C12178.8 (4)
O1—C7—C8—C13139.0 (5)O1—C7—N1—C11.0 (7)
N1—C7—C8—C1341.8 (6)C8—C7—N1—C1179.8 (4)
O1—C7—C8—C939.4 (6)C2—C1—N1—C7141.4 (5)
N1—C7—C8—C9139.8 (4)C6—C1—N1—C741.1 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.88 (6)2.03 (6)2.886 (5)163 (5)
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC14H12ClNO
Mr245.70
Crystal system, space groupMonoclinic, P21/n
Temperature (K)299
a, b, c (Å)4.8881 (4), 24.318 (2), 10.0562 (8)
β (°) 90.373 (6)
V3)1195.34 (17)
Z4
Radiation typeCu Kα
µ (mm1)2.67
Crystal size (mm)0.55 × 0.13 × 0.05
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.695, 0.878
No. of measured, independent and
observed [I > 2σ(I)] reflections
2264, 2126, 1695
Rint0.050
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.333, 1.49
No. of reflections2126
No. of parameters158
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.59, 0.64

Computer programs: CAD-4-PC Software (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.88 (6)2.03 (6)2.886 (5)163 (5)
Symmetry code: (i) x1, y, z.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationEnraf–Nonius (1996). CAD-4-PC Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2007). Acta Cryst. E63, o3789.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o383.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.  CAS Google Scholar
First citationGowda, B. T., Sowmya, B. P., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o2906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds