organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4,5,6,7,8,9-Hexa­hydro-6a-aza­phenyl­en-2-ylmethyl­ene)indan-1,3-dione

aLatvian Institute of Organic Synthesis, Riga LV 1006, Latvia, and bDepartment of Materials Science and Applied Chemistry, Riga Technical University, LV 1046, Latvia
*Correspondence e-mail: serg@osi.lv

(Received 19 May 2008; accepted 29 May 2008; online 7 June 2008)

The title compound, C22H19NO2, has potential for use as a new nonlinear optical material. Mol­ecules are almost planar. One C atom of the heterocyclic ring system is disordered over two positions; the site occupancy factors are 0.6 and 0.4.

Related literature

For related literature, see: Honda et al. (1996[Honda, T., Fujii, I., Hirayama, N., Aoyama, N. & Miike, A. (1996). Acta Cryst. C52, 364-365.]); Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C22H19NO2

  • Mr = 329.38

  • Monoclinic, P 21 /n

  • a = 8.5125 (2) Å

  • b = 19.2973 (5) Å

  • c = 10.4969 (3) Å

  • β = 109.5301 (10)°

  • V = 1625.10 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.26 × 0.19 × 0.04 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 6190 measured reflections

  • 3685 independent reflections

  • 2852 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.155

  • S = 1.01

  • 3685 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: KappaCCD Server Software (Nonius, 1999[Nonius (1999). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.]); cell refinement: KappaCCD Server Software; data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: maXus (Mackay et al., 1999[Mackay, S., Gilmore, C. J., Edwards, C., Stewart, N. & Shankland, K. (1999). maXus. Bruker-Nonius, Delft, The Netherlands, MacScience, Yokohama, Japan, and The University of Glasgow, Scotland.]) and SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: maXus and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The molecular structure of the title compound, C22H19NO2, (I), with atomic numbering scheme and thermal ellipsoids is presented in Fig. 1. The indandione fragment geometry is usual. The aromatic C14-C15 and C23-C24 bonds are shorter than other aromatic bonds in yulolidine system, indicating the quinoid character. Thus, presenting schematically the structure of I as two mesomeric forms (A or B) one can infer that the specific weight of the ionic form of B is increased (see Fig. 2). Therefore, the deep coloration occurs for the crystals I. A search of the Cambridge Structural Database (CSD, Version 5.29, November 2007; Allen, 2002) indicates that there are only 26 entries containing yulolidine fragments. For the title compound there is the disorder of crystal structure analogously to the crystal structure of "Coumarin 106" (Honda et al., 1996). In the yulolidine system the C17 atom is disordered and the site occupancies were initially refined then fixed at 0.6 and 0.4 for C17 and C17', respectively, in the final refinement. Atoms C17 and C17' are located on the opposite sides of the least-squares plane of the molecule. The atoms C17, C17' and C21 deviate from the molecule plane on 0.597 (4), -0.288 (6) and -0.527 (2)Å, respectively.

The packing diagram of the molecules is given in Fig. 3. The moderate π-π-stacking interaction in the crystal structure of (I) is between paris of inversion-related indandione systems. The five-membered cycle overlaps with the benzene ring of indandione; the centroids of these rings are separated by 3.509 (3)Å, but the distance between planes of these indandione systems is 3.435 (3)Å.

Related literature top

For related literature, see: Honda et al. (1996); Allen (2002).

Experimental top

A mixture of indan-1,3-dione, (0.44 g, 3.0 mmole), yulolidine-9-carbaldehyde (0.62 g, 3.1 mmole) of and 30 ml of absolute ethanol was boiled for 15 minutes, cooled to room temperature and filtered. Deep red crystals of I with metallic sheen were obtained after recrystallyzation from ethanol. M.p. is 504 K (decomp.); Yield 83%. Analysis calculated for C22H19NO2: C 80.22, H 5.81, N 4.25%; found: C 80.07, H 5.43, N 4.30%.

Refinement top

The H atoms were place in geometrically idealized positions, with C–H distances of 0.93Å for aromatic H atoms and 0.96Å for other H-atoms. All H atoms were refined riding on their attached C atoms, with Uiso values equal to 1.2 times the Ueq values of the parent atoms.

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1999); cell refinement: KappaCCD Server Software (Nonius, 1999); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: maXus (Mackay et al., 1999) and SIR92 (Altomare et al., 1994); program(s) used to refine structure: maXus (Mackay et al., 1999) and SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom numbering scheme. The displacement ellipsoids are showed at 50% probability level. H atoms are represented by spheres of arbitrary radii. Only major fragnent are presented for clarity.
[Figure 2] Fig. 2. Two mesomeric forms for molecular structure of I.
[Figure 3] Fig. 3. Perspective view of the molecular packing for I, showing the stacking interactions betwee indandione systems.
2-(4,5,6,7,8,9-Hexahydro-6a-azaphenylen-2-ylmethylene)indan-1,3-dione top
Crystal data top
C22H19NO2F(000) = 696
Mr = 329.38Dx = 1.346 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6190 reflections
a = 8.5125 (2) Åθ = 2.1–27.5°
b = 19.2973 (5) ŵ = 0.09 mm1
c = 10.4969 (3) ÅT = 293 K
β = 109.5301 (10)°Plate, red
V = 1625.10 (7) Å30.26 × 0.19 × 0.04 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2852 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 27.5°, θmin = 2.1°
ϕ and ω scansh = 1111
6190 measured reflectionsk = 2423
3685 independent reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: Direct
Least-squares matrix: fullSecondary atom site location: Difmap
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: Geom
wR(F2) = 0.155H-atom parameters constrained
S = 1.01Calculated w = 1/[σ2(Fo2) + (0.0792P)2 + 0.4361P]
where P = (Fo2 + 2Fc2)/3
3685 reflections(Δ/σ)max = 0.008
255 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C22H19NO2V = 1625.10 (7) Å3
Mr = 329.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.5125 (2) ŵ = 0.09 mm1
b = 19.2973 (5) ÅT = 293 K
c = 10.4969 (3) Å0.26 × 0.19 × 0.04 mm
β = 109.5301 (10)°
Data collection top
Nonius KappaCCD
diffractometer
2852 reflections with I > 2σ(I)
6190 measured reflectionsRint = 0.021
3685 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.01Δρmax = 0.27 e Å3
3685 reflectionsΔρmin = 0.39 e Å3
255 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will beeven larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C11.0787 (2)0.02825 (8)0.26816 (16)0.0432 (4)
C20.9234 (2)0.00221 (8)0.27606 (15)0.0423 (4)
C30.8928 (2)0.06707 (8)0.19540 (17)0.0475 (4)
C41.0528 (2)0.12254 (9)0.04817 (18)0.0539 (4)
H40.98070.16000.01970.065*
C51.1874 (2)0.11410 (10)0.00365 (19)0.0579 (5)
H51.20540.14630.05600.069*
C61.2957 (2)0.05867 (10)0.04616 (19)0.0585 (5)
H61.38540.05420.01490.070*
C71.2720 (2)0.00962 (9)0.13495 (18)0.0526 (4)
H71.34470.02760.16400.063*
C81.1372 (2)0.01783 (8)0.17868 (15)0.0432 (4)
C91.0285 (2)0.07358 (8)0.13643 (16)0.0447 (4)
O101.15210 (15)0.08098 (6)0.32016 (13)0.0576 (4)
O110.77589 (18)0.10689 (7)0.17663 (15)0.0686 (4)
C120.8117 (2)0.01796 (8)0.33618 (15)0.0439 (4)
H120.72610.01400.32380.053*
C130.79509 (19)0.07662 (8)0.41372 (15)0.0411 (4)
C140.9044 (2)0.13387 (8)0.44714 (17)0.0462 (4)
H140.99490.13490.41630.055*
C150.8815 (2)0.18804 (8)0.52349 (18)0.0471 (4)
C160.9979 (3)0.24908 (11)0.5566 (3)0.0806 (7)
H16A1.10510.23520.55390.097*0.60
H16B0.95320.28500.49120.097*0.60
H16C1.10600.23470.61470.097*0.40
H16D1.00660.26760.47440.097*0.40
C171.0199 (4)0.27643 (19)0.6845 (4)0.0554 (7)0.60
H17A1.08230.24430.75240.067*0.60
H17B1.07980.31940.69490.067*0.60
C17'0.9495 (7)0.3072 (3)0.6257 (6)0.0557 (11)0.40
H17C1.04770.33090.68120.067*0.40
H17D0.88080.33880.55970.067*0.40
C180.8574 (2)0.29182 (10)0.7109 (2)0.0615 (5)
H18A0.81690.33570.67000.074*0.60
H18B0.88390.29520.80710.074*0.60
H18C0.80640.33400.72580.074*0.40
H18D0.93600.27610.79490.074*0.40
N190.72946 (17)0.23902 (7)0.65742 (14)0.0466 (3)
C200.5980 (2)0.23753 (10)0.71759 (18)0.0531 (4)
H20A0.56830.28420.73170.064*
H20B0.63920.21520.80420.064*
C210.4455 (2)0.19991 (10)0.6302 (2)0.0557 (5)
H21A0.39470.22580.54860.067*
H21B0.36630.19640.67710.067*
C220.4894 (2)0.12830 (9)0.59526 (18)0.0505 (4)
H22A0.51840.09960.67440.061*
H22B0.39410.10810.52830.061*
C230.63360 (19)0.13043 (8)0.54173 (15)0.0405 (3)
C240.65899 (19)0.07823 (8)0.46198 (16)0.0429 (4)
H240.58250.04200.43850.051*
C250.74777 (18)0.18666 (8)0.57636 (15)0.0386 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0486 (8)0.0375 (8)0.0416 (8)0.0002 (6)0.0127 (6)0.0002 (6)
C20.0505 (9)0.0344 (7)0.0408 (7)0.0031 (6)0.0134 (7)0.0001 (6)
C30.0559 (9)0.0382 (8)0.0465 (9)0.0039 (7)0.0148 (7)0.0019 (7)
C40.0628 (11)0.0430 (9)0.0532 (10)0.0064 (8)0.0158 (8)0.0053 (7)
C50.0709 (12)0.0508 (10)0.0529 (10)0.0159 (9)0.0218 (9)0.0032 (8)
C60.0605 (11)0.0585 (11)0.0620 (11)0.0167 (9)0.0278 (9)0.0065 (9)
C70.0525 (10)0.0480 (9)0.0580 (10)0.0035 (7)0.0194 (8)0.0029 (8)
C80.0482 (8)0.0375 (8)0.0405 (8)0.0063 (6)0.0104 (7)0.0032 (6)
C90.0530 (9)0.0365 (8)0.0400 (8)0.0052 (7)0.0093 (7)0.0008 (6)
O100.0591 (7)0.0499 (7)0.0697 (8)0.0157 (6)0.0291 (6)0.0182 (6)
O110.0757 (9)0.0525 (8)0.0845 (10)0.0240 (7)0.0358 (7)0.0233 (7)
C120.0513 (9)0.0370 (8)0.0427 (8)0.0083 (6)0.0146 (7)0.0002 (6)
C130.0462 (8)0.0368 (7)0.0406 (8)0.0024 (6)0.0148 (6)0.0013 (6)
C140.0438 (8)0.0418 (8)0.0577 (10)0.0031 (7)0.0235 (7)0.0059 (7)
C150.0416 (8)0.0404 (8)0.0630 (10)0.0048 (6)0.0225 (7)0.0073 (7)
C160.0712 (13)0.0601 (12)0.135 (2)0.0293 (10)0.0664 (14)0.0441 (13)
C170.0490 (16)0.0517 (18)0.0645 (19)0.0096 (14)0.0176 (15)0.0153 (16)
C17'0.058 (3)0.044 (3)0.068 (3)0.010 (2)0.025 (2)0.007 (2)
C180.0574 (10)0.0550 (11)0.0747 (12)0.0070 (8)0.0258 (9)0.0237 (9)
N190.0465 (7)0.0460 (8)0.0511 (8)0.0001 (6)0.0211 (6)0.0054 (6)
C200.0578 (10)0.0537 (10)0.0554 (10)0.0087 (8)0.0291 (8)0.0006 (8)
C210.0482 (9)0.0641 (11)0.0634 (11)0.0081 (8)0.0299 (8)0.0103 (9)
C220.0479 (9)0.0550 (10)0.0527 (9)0.0050 (7)0.0223 (7)0.0063 (8)
C230.0393 (7)0.0432 (8)0.0384 (7)0.0009 (6)0.0122 (6)0.0073 (6)
C240.0455 (8)0.0393 (8)0.0433 (8)0.0078 (6)0.0140 (7)0.0023 (6)
C250.0380 (7)0.0376 (7)0.0390 (7)0.0029 (6)0.0113 (6)0.0033 (6)
Geometric parameters (Å, º) top
C1—O101.2231 (19)C17—C181.528 (4)
C1—C21.474 (2)C17—H16C1.4431
C1—C81.494 (2)C17—H17A0.9600
C2—C121.362 (2)C17—H17B0.9600
C2—C31.485 (2)C17—H17C1.0804
C3—O111.220 (2)C17—H18D1.5509
C3—C91.487 (2)C17'—C181.405 (5)
C4—C51.384 (3)C17'—H16B1.4854
C4—C91.386 (2)C17'—H17B1.1288
C4—H40.9300C17'—H17C0.9599
C5—C61.385 (3)C17'—H17D0.9600
C5—H50.9300C17'—H18A1.4642
C6—C71.390 (3)C18—N191.460 (2)
C6—H60.9300C18—H18A0.9600
C7—C81.380 (2)C18—H18B0.9600
C7—H70.9300C18—H18C0.9600
C8—C91.391 (2)C18—H18D0.9600
C12—C131.429 (2)N19—C251.363 (2)
C12—H120.9300N19—C201.458 (2)
C13—C141.411 (2)C20—C211.503 (3)
C13—C241.412 (2)C20—H20A0.9600
C14—C151.370 (2)C20—H20B0.9600
C14—H140.9300C21—C221.509 (3)
C15—C251.423 (2)C21—H21A0.9600
C15—C161.503 (2)C21—H21B0.9600
C16—C171.396 (4)C22—C231.512 (2)
C16—C17'1.468 (5)C22—H22A0.9600
C16—H16A0.9600C22—H22B0.9600
C16—H16B0.9601C23—C241.372 (2)
C16—H16C0.9600C23—C251.420 (2)
C16—H16D0.9600C24—H240.9300
C17—C17'0.920 (6)
O10—C1—C2129.84 (15)H16C—C17—H18D144.7
O10—C1—C8123.21 (15)H17A—C17—H18D73.8
C2—C1—C8106.95 (13)H17B—C17—H18D106.2
C12—C2—C1133.65 (15)H17C—C17—H18D100.9
C12—C2—C3119.24 (14)C17—C17'—C1879.2 (4)
C1—C2—C3107.09 (14)C17—C17'—C1667.1 (4)
O11—C3—C9125.77 (15)C18—C17'—C16117.5 (4)
O11—C3—C2126.97 (17)C17—C17'—H16B103.6
C9—C3—C2107.21 (13)C18—C17'—H16B137.5
C5—C4—C9118.09 (17)C16—C17'—H16B37.9
C5—C4—H4121.0C17—C17'—H17B54.7
C9—C4—H4121.0C18—C17'—H17B105.8
C6—C5—C4121.28 (17)C16—C17'—H17B95.7
C6—C5—H5119.4H16B—C17'—H17B110.1
C4—C5—H5119.4C17—C17'—H17C70.1
C5—C6—C7120.78 (18)C18—C17'—H17C105.8
C5—C6—H6119.6C16—C17'—H17C109.4
C7—C6—H6119.6H16B—C17'—H17C115.0
C8—C7—C6117.91 (17)H17B—C17'—H17C16.5
C8—C7—H7121.0C17—C17'—H17D175.6
C6—C7—H7121.0C18—C17'—H17D105.0
C7—C8—C9121.41 (15)C16—C17'—H17D109.4
C7—C8—C1129.00 (15)H16B—C17'—H17D72.4
C9—C8—C1109.55 (14)H17B—C17'—H17D124.3
C8—C9—C4120.53 (17)H17C—C17'—H17D109.5
C8—C9—C3109.16 (14)C17—C17'—H18A115.3
C4—C9—C3130.25 (16)C18—C17'—H18A39.0
C2—C12—C13135.06 (15)C16—C17'—H18A144.8
C2—C12—H12112.5H16B—C17'—H18A132.4
C13—C12—H12112.5H17B—C17'—H18A114.4
C14—C13—C24116.46 (14)H17C—C17'—H18A103.7
C14—C13—C12125.41 (14)H17D—C17'—H18A69.1
C24—C13—C12118.14 (14)C17'—C18—N19114.0 (2)
C15—C14—C13122.13 (15)C17'—C18—C1736.3 (2)
C15—C14—H14118.9N19—C18—C17113.50 (17)
C13—C14—H14118.9C17'—C18—H18A73.8
C14—C15—C25120.17 (14)N19—C18—H18A109.5
C14—C15—C16121.40 (16)C17—C18—H18A107.6
C25—C15—C16118.42 (15)C17'—C18—H18B132.1
C17—C16—C17'37.4 (2)N19—C18—H18B109.5
C17—C16—C15112.6 (2)C17—C18—H18B107.2
C17'—C16—C15116.2 (2)H18A—C18—H18B109.5
C17—C16—H16A108.1C17'—C18—H18C107.7
C17'—C16—H16A130.8N19—C18—H18C109.5
C15—C16—H16A109.6C17—C18—H18C132.9
C17—C16—H16B107.9H18A—C18—H18C37.8
C17'—C16—H16B72.0H18B—C18—H18C74.4
C15—C16—H16B109.1C17'—C18—H18D106.6
H16A—C16—H16B109.5N19—C18—H18D109.5
C17—C16—H16C72.9C17—C18—H18D73.1
C17'—C16—H16C106.0H18A—C18—H18D136.5
C15—C16—H16C109.8H18B—C18—H18D37.8
H16A—C16—H16C38.7H18C—C18—H18D109.5
H16B—C16—H16C136.9C25—N19—C20121.36 (14)
C17—C16—H16D134.2C25—N19—C18122.09 (14)
C17'—C16—H16D106.1C20—N19—C18115.42 (14)
C15—C16—H16D109.2N19—C20—C21112.15 (14)
H16A—C16—H16D73.6N19—C20—H20A109.2
H16B—C16—H16D38.7C21—C20—H20A109.2
H16C—C16—H16D109.5N19—C20—H20B109.2
C17'—C17—C1675.6 (4)C21—C20—H20B109.2
C17'—C17—C1864.5 (4)H20A—C20—H20B107.9
C16—C17—C18114.2 (2)C20—C21—C22110.93 (14)
C17'—C17—H16C110.3C20—C21—H21A109.5
C16—C17—H16C39.5C22—C21—H21A109.5
C18—C17—H16C147.7C20—C21—H21B109.5
C17'—C17—H17A172.0C22—C21—H21B109.5
C16—C17—H17A109.5H21A—C21—H21B108.0
C18—C17—H17A107.5C23—C22—C21111.32 (14)
H16C—C17—H17A76.6C23—C22—H22A109.4
C17'—C17—H17B73.7C21—C22—H22A109.4
C16—C17—H17B109.3C23—C22—H22B109.4
C18—C17—H17B106.9C21—C22—H22B109.4
H16C—C17—H17B101.5H22A—C22—H22B108.0
H17A—C17—H17B109.5C24—C23—C25118.88 (14)
C17'—C17—H17C56.7C24—C23—C22121.31 (14)
C16—C17—H17C107.3C25—C23—C22119.79 (14)
C18—C17—H17C92.2C23—C24—C13123.41 (14)
H16C—C17—H17C111.9C23—C24—H24118.3
H17A—C17—H17C125.4C13—C24—H24118.3
H17B—C17—H17C18.2N19—C25—C15120.18 (14)
C17'—C17—H18D98.3N19—C25—C23120.98 (14)
C16—C17—H18D140.3C15—C25—C23118.83 (14)
C18—C17—H18D36.3

Experimental details

Crystal data
Chemical formulaC22H19NO2
Mr329.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.5125 (2), 19.2973 (5), 10.4969 (3)
β (°) 109.5301 (10)
V3)1625.10 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.26 × 0.19 × 0.04
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6190, 3685, 2852
Rint0.021
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.155, 1.01
No. of reflections3685
No. of parameters255
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.39

Computer programs: KappaCCD Server Software (Nonius, 1999), DENZO and SCALEPACK (Otwinowski & Minor, 1997), maXus (Mackay et al., 1999) and SIR92 (Altomare et al., 1994), maXus (Mackay et al., 1999) and SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008).

 

Acknowledgements

The authors acknowledge financial support from the Latvian Council of Science.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHonda, T., Fujii, I., Hirayama, N., Aoyama, N. & Miike, A. (1996). Acta Cryst. C52, 364–365.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMackay, S., Gilmore, C. J., Edwards, C., Stewart, N. & Shankland, K. (1999). maXus. Bruker–Nonius, Delft, The Netherlands, MacScience, Yokohama, Japan, and The University of Glasgow, Scotland.  Google Scholar
First citationNonius (1999). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds