organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 3| March 2008| Pages o623-o624

2-Hy­droxy­imino-1-phenyl­ethanone thio­semicarbazone monohydrate

aAdnan Menderes University, Department of Chemistry, 09010 Aydın, Turkey, bAtatürk University, Department of Chemistry, 22240 Erzurum, Turkey, and cHacettepe University, Department of Physics, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 14 February 2008; accepted 20 February 2008; online 22 February 2008)

In the title thio­semicarbazone derivative, C9H10N4OS·H2O, intra­molecular N—H⋯N hydrogen bonds result in the formation of two nearly coplanar five- and six-membered rings, which are also almost coplanar with the adjacent phenyl ring. The oxime group has an E configuration and is involved in inter­molecular O—H⋯O hydrogen bonding as a donor. In the crystal structure, intra­molecular O—H⋯S and N—H⋯N and inter­molecular O—H⋯O and N—H⋯S hydrogen bonds generate edge-fused R22(8) and R41(11) ring motifs. The hydrogen-bonded motifs are linked to each other to form a three-dimensional supra­molecular network.

Related literature

For general backgroud, see: Lukevics et al. (1995[Lukevics, E., Jansone, D., Rubina, K., Abele, E., Germane, S., Leite, L., Shymaska, M. & Popelis, J. (1995). Eur. J. Med. Chem. 30, 983-986.]); Liberta & West (1992[Liberta, A. E. & West, D. X. (1992). Biometals, 5, 121-125.]); Hagenbach & Gysin (1952[Hagenbach, R. E. & Gysin, H. (1952). Experientia, 8, 184-185.]); Jones et al. (1965[Jones, D. H., Slack, R., Squires, S. & Woolridge, K. R. H. (1965). J. Med. Chem. 8, 676-680.]); Brockman & Thomson (1956[Brockman, R. W. & Thomson, J. R. (1956). Cancer Res. 16, 167-170.]); Klayman et al. (1979[Klayman, D. L., Bartoserich, J. F., Griffin, T. S., Manson, C. J. & Scovill, J. P. (1979). J. Med. Chem. 22, 885-893.]); Petering & van Giesen (1966[Petering, H. G. & van Giesen, G. J. (1966). The Biochemistry of Copper, pp. 197-208. New York: Harriman.]); Sevagapandian et al. (2000[Sevagapandian, S., Rjagopal, G., Nehru, K. & Athappan, P. (2000). Transition Met. Chem. 25, 388-393.]); Forman (1964[Forman, S. E. (1964). J. Org. Chem. 29, 3323-3327.]); Holan et al. (1984[Holan, G., Johnson, W. M. P., Rihs, K. & Virgona, C. T. (1984). Pestic. Sci. 15, 361-368.]); Balsamo et al. (1990[Balsamo, A., Macchia, B., Martinelli, A., Orlandini, E., Rossello, A., Macchia, F., Bocelli, G. & Domiano, P. (1990). Eur. J. Med. Chem. 25, 227-233.]); Marsman et al. (1999[Marsman, A. W., Leussing, E. D., Zwikker, J. W. & Jenneskens, L. W. (1999). Chem. Mater. 11, 1484-1491.]); Karle et al. (1996[Karle, I. L., Ranganathan, D. & Haridas, V. (1996). J. Am. Chem. Soc. 118, 7128-7133.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Chertanova et al. (1994[Chertanova, L., Pascard, C. & Sheremetev, A. (1994). Acta Cryst. B50, 708-716.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Sarıkavaklı et al. (2007[Sarıkavaklı, N., Şahin, E. & Hökelek, T. (2007). Acta Cryst. E63, o3601.]); Özel Güven et al. (2007[Özel Güven, Ö., Erdoğan, T., Çaylak, N. & Hökelek, T. (2007). Acta Cryst. E63, o3463-o3464.]); Hökelek, Batı et al. (2001[Hökelek, T., Batı, H., Bekdemir, Y. & Kütük, H. (2001). Acta Cryst. E57, o663-o665.]); Hökelek, Zülfikaroğlu & Batı (2001[Hökelek, T., Zülfikaroğlu, A. & Batı, H. (2001). Acta Cryst. E57, o1247-o1249.]); Büyükgüngör et al. (2003[Büyükgüngör, O., Hökelek, T., Taş, M. & Batı, H. (2003). Acta Cryst. E59, o883-o885.]); Hökelek et al. (2004a[Hökelek, T., Büyükgüngör, O., Taş, M. & Batı, H. (2004a). Acta Cryst. E60, o109-o111.],b[Hökelek, T., Büyükgüngör, O., Taş, M. & Batı, H. (2004b). Acta Cryst. E60, o406-o408.]); Hökelek et al. (2004[Hökelek, T., Taş, M. & Batı, H. (2004). Cryst. Res. Technol. 39, 363-367.]). For the synthesis, see: El-Shazly et al. (2005[El-Shazly, R. M., Al-Hazmi, G. A. A., Ghazy, S. E., El-Shahawi, M. S. & El-Asmy, A. A. (2005). Spectrochim. Acta, A61, 243-252.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C9H10N4OS·H2O

  • Mr = 240.29

  • Monoclinic, C 2/c

  • a = 28.5615 (3) Å

  • b = 4.6805 (3) Å

  • c = 22.0977 (4) Å

  • β = 127.24 (2)°

  • V = 2351.8 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 294 (2) K

  • 0.30 × 0.20 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID-S diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.940, Tmax = 0.960

  • 31269 measured reflections

  • 3607 independent reflections

  • 2146 reflections with I > 2σ(I)

  • Rint = 0.090

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.154

  • S = 1.04

  • 3607 reflections

  • 193 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2i 0.90 (3) 1.83 (3) 2.728 (3) 174 (3)
O2—H21⋯S1 0.94 (3) 2.32 (3) 3.250 (3) 171 (3)
O2—H22⋯O2i 0.91 (3) 1.98 (3) 2.886 (3) 172 (4)
N3—H3A⋯N1 0.92 (3) 1.91 (2) 2.604 (3) 130 (2)
N4—H41⋯S1ii 0.92 (2) 2.53 (2) 3.434 (2) 169 (3)
N4—H42⋯N2 0.93 (3) 2.24 (3) 2.643 (3) 105 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x, -y+1, -z+1.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Thiosemicarbazones are derivatives of carbonyl compounds and they have a wide range of biological activities, depending on the parent aldehyde or ketone (Lukevics et al., 1995; Liberta & West, 1992). Some of the thiosemicarbazone derivatives have antitumour (Hagenbach & Gysin, 1952), antiviral (Jones et al., 1965), antileukaemic (Brockman & Thomson, 1956) and antimalarial (Klayman et al., 1979) activities. Thus, some of them have been used as drugs and have the ability to form complexes (Petering & van Giesen, 1966).

Oxime and dioxime derivatives are very important compounds in the chemical industry and medicine (Sevagapandian et al., 2000). They have a broad pharmacological activity spectrum, encompassing antibacterial, antidepressant and antifungal activities (Forman, 1964; Holan et al., 1984; Balsamo et al., 1990). The oxime (–C=N—OH) moiety is potentially ambidentate, with possibilities of coordination through nitrogen and/or oxygen atoms. It is a functional group that has not been extensively explored in crystal engineering. In the solid state, oximes are usually associated via O—H···N hydrogen bonds of length 2.8 Å.

Oxime groups possess stronger hydrogen-bonding capabilities than alcohols, phenols, and carboxylic acids (Marsman et al., 1999), in which intermolecular hydrogen bonding combines moderate strength and directionality (Karle et al., 1996) in linking molecules to form supramolecular structures; this has received considerable attention with respect to directional noncovalent intermolecular interactions (Etter et al., 1990).

The structures of some oxime and dioxime derivatives have been determined in our laboratory, including those of 2,3-dimethylquinoxaline-dimethyl-glyoxime (1/1), [(II) Hökelek, Batı et al., 2001], 1-(2,6-dimethylphenylamino)- propane-1,2-dione dioxime, [(III) (Hökelek, Zülfikaroğlu & Batı, 2001), N-hydroxy-2-oxo-2,N'-diphenylacetamidine, [(IV) (Büyükgüngör et al., 2003], N-(3,4-dichlorophenyl)-N'-hydroxy-2-oxo-2-phenylacetamidine, [(V) Hökelek et al., 2004], N-hydroxy-N'-(1-naphthyl)-2-phenylacetamidin-2-one [(VI) Hökelek et al., 2004a], N-(3-chloro-4-methylphenyl)-N'-hydroxy-2 -oxo-2-phenylacetamidine [(VII) Hökelek et al., 2004b], 2-(1H-benzimidazol -1-yl)-1-phenylethanone oxime [(VIII) Özel Güven et al., 2007] and (1Z,2E)-1-(3,5-dimethyl-1H-pyrazole-1-yl)ethane-1,2-dione dioxime [(IX) Sarıkavaklı et al., 2007]. The structure determination of the title compound, (I), a thiosemicarbazone derivative with one 2-hydroxyimino -1-phenyl-ethanone, one thiosemicarbazone moieties and one uncoordinated water molecule, was carried out in order to investigate the strength of the hydrogen bonding capability of the oxime and thiosemicarbazone groups and to compare the geometry of the oxime moiety with the previously reported ones.

In the molecule of the title compound, (I), (Fig. 1) the bond lengths (Allen et al., 1987) and angles are generally within normal ranges. Ring A (C1—C6) is, of course, planar. The intramolecular N—H···N hydrogen bonds (Table 1) result in the formation of two more planar five- and six-membered rings B (C9/N2—N4/H42) and C (C7/C8/N1—N3/H3A). The rings A, B and C are also nearly coplanar with dihedral angles of A/B = 3.47 (10)°, A/C = 2.84 (10) and B/C = 5.94 (10)°.

Some significant changes in the geometry of the oxime moiety are evident when the bond lengths and angles are compared with the corresponding values in compounds (II)-(VII) (Table 2). The oxime moiety has an E configuration [C7—C8—N1—O1 177.1 (2)°; Chertanova et al., 1994]. In this configuration, the oxime groups are involved as donors in O—H···O intermolecular hydrogen bondings (Table 1).

In the crystal structure, intramolecular O—H···S and N—H···N and intermolecular O—H···O and N—H···S hydrogen bonds (Table 1) generate edge-fused R22(8) and R41(11) ring motifs (Fig. 2) (Bernstein et al., 1995). The hydrogen bonded motifs are linked to each other to form a three dimensional network (Fig. 3). The intra- and intermolecular hydrogen bonds seem to be effective in the stabilization of the crystal structure.

Related literature top

For general backgroud, see: Lukevics et al. (1995); Liberta & West (1992); Hagenbach & Gysin (1952); Jones et al. (1965); Brockman & Thomson (1956); Klayman et al. (1979); Petering & van Giesen (1966); Sevagapandian et al. (2000); Forman (1964); Holan et al. (1984); Balsamo et al. (1990); Marsman et al. (1999); Karle et al. (1996); Etter et al. (1990); Chertanova et al. (1994); Bernstein et al. (1995). For related structures, see: Sarıkavaklı et al. (2007); Özel Güven et al. (2007); Hökelek, Batı et al. (2001); Hökelek, Zülfikaroğlu & Batı (2001); Büyükgüngör et al. (2003); Hökelek et al. (2004a,b); Hökelek et al. (2004). For the synthesis, see: El-Shazly et al. (2005). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared according to the literature method (El-Shazly et al., 2005). 2-Isonitrosoacetophenone (149 mg, 1 mmol) was reacted with thiosemicarbazide (91 mg, 1 mmol) in ethanol-water mixture (1:1) by refluxing for 24 h. Then, a few drops of glacial acetic acid were added. The formed precipitate was filtered and recrystallized from ethanol to obtain yellow crystals (yield: 155 mg, 70%).

Refinement top

H atoms were located in difference syntheses and refined isotropically [O—H = 0.903 (18)–0.940 (17) Å; Uiso(H) = 0.100 (10)–0.133 (14) Å2, N—H = 0.915 (17)–0.930 (17) Å; Uiso(H) = 0.077 (8)–0.084 (9) Å2 and C—H = 0.92 (3)–0.97 (3) Å; Uiso(H) = 0.071 (8)–0.092 (9) Å2]. The restrains on the O—H (for OH) and N—H (for NH and NH2) bonds and O—H bond lengths and H—O—H bond angle of water molecule were applied.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A part of the crystal structure of (I), showing the formation of R22(8) and R41(11) ring motifs. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. A partial packing diagram of (I). Hydrogen bonds are shown as dashed lines.
2-Hydroxyimino-1-phenylethanone thiosemicarbazone monohydrate top
Crystal data top
C9H10N4OS·H2OF(000) = 1008
Mr = 240.29Dx = 1.357 Mg m3
Monoclinic, C2/cMelting point: 443 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 28.5615 (3) ÅCell parameters from 2893 reflections
b = 4.6805 (3) Åθ = 2.3–30.5°
c = 22.0977 (4) ŵ = 0.27 mm1
β = 127.24 (2)°T = 294 K
V = 2351.8 (6) Å3Prism, yellow
Z = 80.30 × 0.20 × 0.15 mm
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
3607 independent reflections
Radiation source: fine-focus sealed tube2146 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.090
ω scansθmax = 30.5°, θmin = 2.3°
Absorption correction: multi-scan
(Blessing, 1995)
h = 4040
Tmin = 0.940, Tmax = 0.960k = 65
31269 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0474P)2 + 0.9027P]
where P = (Fo2 + 2Fc2)/3
3607 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.14 e Å3
8 restraintsΔρmin = 0.31 e Å3
Crystal data top
C9H10N4OS·H2OV = 2351.8 (6) Å3
Mr = 240.29Z = 8
Monoclinic, C2/cMo Kα radiation
a = 28.5615 (3) ŵ = 0.27 mm1
b = 4.6805 (3) ÅT = 294 K
c = 22.0977 (4) Å0.30 × 0.20 × 0.15 mm
β = 127.24 (2)°
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
3607 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
2146 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.960Rint = 0.090
31269 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0628 restraints
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.14 e Å3
3607 reflectionsΔρmin = 0.31 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.08587 (3)0.69943 (16)0.58554 (3)0.0693 (2)
O10.24428 (8)0.9359 (4)0.88734 (10)0.0740 (5)
H1A0.2527 (12)1.022 (6)0.8584 (15)0.100 (10)*
O20.22848 (8)0.6577 (4)0.70204 (11)0.0720 (5)
H210.1878 (8)0.692 (7)0.6673 (16)0.133 (14)*
H220.2445 (13)0.817 (5)0.7313 (16)0.113 (12)*
N10.19953 (8)0.7460 (4)0.83853 (10)0.0576 (5)
N20.09978 (8)0.3607 (4)0.75639 (10)0.0577 (5)
N30.10929 (9)0.5206 (5)0.71329 (10)0.0619 (5)
H3A0.1412 (9)0.641 (5)0.7347 (14)0.077 (8)*
N40.02448 (9)0.3422 (5)0.60650 (11)0.0654 (6)
H410.0011 (10)0.316 (5)0.5550 (10)0.076 (8)*
H420.0210 (12)0.238 (5)0.6394 (14)0.084 (9)*
C10.07415 (11)0.0295 (6)0.83508 (14)0.0644 (6)
H10.0517 (11)0.012 (5)0.7826 (15)0.074 (8)*
C20.06113 (12)0.1405 (6)0.87378 (17)0.0721 (7)
H20.0280 (11)0.257 (5)0.8455 (15)0.071 (8)*
C30.09577 (13)0.1362 (6)0.95201 (17)0.0724 (7)
H30.0859 (12)0.245 (6)0.9780 (16)0.083 (9)*
C40.14393 (14)0.0388 (6)0.99041 (16)0.0742 (7)
H40.1666 (12)0.036 (6)1.0426 (16)0.092 (9)*
C50.15737 (13)0.2112 (6)0.95211 (14)0.0639 (6)
H50.1913 (13)0.330 (6)0.9810 (17)0.089 (9)*
C60.12248 (9)0.2111 (5)0.87338 (12)0.0521 (5)
C70.13487 (9)0.3927 (5)0.82959 (11)0.0516 (5)
C80.18351 (10)0.5985 (5)0.87101 (13)0.0580 (6)
H80.2005 (11)0.621 (5)0.9241 (15)0.080 (8)*
C90.07134 (10)0.5057 (5)0.63645 (11)0.0556 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0632 (4)0.0943 (5)0.0452 (3)0.0096 (3)0.0301 (3)0.0036 (3)
O10.0703 (11)0.0827 (12)0.0573 (10)0.0268 (9)0.0324 (9)0.0116 (9)
O20.0630 (11)0.0814 (13)0.0698 (12)0.0040 (10)0.0393 (10)0.0022 (10)
N10.0518 (10)0.0649 (12)0.0491 (10)0.0074 (9)0.0269 (9)0.0074 (8)
N20.0588 (11)0.0704 (12)0.0439 (10)0.0070 (9)0.0311 (9)0.0025 (8)
N30.0611 (12)0.0780 (14)0.0419 (9)0.0147 (10)0.0287 (9)0.0037 (9)
N40.0628 (12)0.0832 (15)0.0449 (11)0.0118 (11)0.0299 (10)0.0060 (10)
C10.0567 (13)0.0777 (17)0.0544 (14)0.0031 (12)0.0313 (12)0.0037 (12)
C20.0633 (15)0.0771 (18)0.0776 (18)0.0037 (14)0.0436 (15)0.0078 (14)
C30.0841 (19)0.0761 (18)0.0785 (19)0.0119 (15)0.0603 (17)0.0164 (14)
C40.093 (2)0.0816 (18)0.0567 (15)0.0102 (16)0.0496 (15)0.0081 (14)
C50.0737 (16)0.0693 (15)0.0500 (13)0.0021 (13)0.0381 (12)0.0023 (11)
C60.0534 (12)0.0566 (12)0.0491 (11)0.0061 (10)0.0325 (10)0.0012 (9)
C70.0503 (11)0.0596 (13)0.0429 (11)0.0026 (10)0.0272 (9)0.0009 (9)
C80.0563 (13)0.0668 (14)0.0435 (11)0.0018 (11)0.0263 (10)0.0028 (10)
C90.0549 (12)0.0657 (14)0.0438 (11)0.0008 (11)0.0286 (10)0.0044 (10)
Geometric parameters (Å, º) top
S1—C91.681 (2)C2—H20.93 (3)
O1—H1A0.903 (18)C3—C21.378 (4)
O2—H210.940 (17)C3—C41.368 (4)
O2—H220.907 (18)C3—H30.93 (3)
N1—O11.385 (2)C4—H40.92 (3)
N1—C81.264 (3)C5—C41.381 (4)
N2—N31.362 (3)C5—H50.95 (3)
N2—C71.297 (3)C6—C11.389 (3)
N3—H3A0.923 (17)C6—C51.386 (3)
N4—C91.320 (3)C6—C71.483 (3)
N4—H410.915 (17)C7—C81.469 (3)
N4—H420.930 (17)C8—H80.97 (3)
C1—C21.374 (3)C9—N31.355 (3)
C1—H10.93 (2)
N1—O1—H1A104.6 (19)C3—C4—C5121.2 (3)
H21—O2—H22106 (3)C3—C4—H4116.6 (19)
C8—N1—O1112.88 (19)C5—C4—H4122.2 (19)
C7—N2—N3118.58 (19)C4—C5—C6120.9 (3)
C9—N3—N2120.1 (2)C4—C5—H5118.5 (18)
C9—N3—H3A117.9 (16)C6—C5—H5120.6 (18)
N2—N3—H3A122.0 (17)C1—C6—C7119.6 (2)
C9—N4—H41120.3 (17)C5—C6—C1117.3 (2)
C9—N4—H42117.9 (17)C5—C6—C7123.0 (2)
H41—N4—H42121 (2)N2—C7—C8125.4 (2)
C2—C1—C6121.2 (2)N2—C7—C6116.00 (19)
C2—C1—H1118.9 (16)C8—C7—C6118.60 (18)
C6—C1—H1119.7 (16)N1—C8—C7122.4 (2)
C1—C2—C3120.9 (3)N1—C8—H8122.8 (16)
C1—C2—H2118.0 (16)C7—C8—H8114.7 (16)
C3—C2—H2121.1 (16)N4—C9—N3117.2 (2)
C4—C3—C2118.4 (3)N4—C9—S1124.28 (17)
C4—C3—H3120.7 (18)N3—C9—S1118.46 (18)
C2—C3—H3120.8 (18)
O1—N1—C8—C7177.1 (2)C1—C6—C5—C40.6 (4)
C7—N2—N3—C9175.9 (2)C7—C6—C5—C4179.8 (2)
N3—N2—C7—C82.8 (3)C5—C6—C7—N2177.2 (2)
N3—N2—C7—C6179.56 (19)C1—C6—C7—N22.4 (3)
C6—C1—C2—C30.1 (4)C5—C6—C7—C85.0 (3)
C4—C3—C2—C10.8 (4)C1—C6—C7—C8175.4 (2)
C2—C3—C4—C51.0 (4)N2—C7—C8—N17.6 (4)
C6—C5—C4—C30.3 (4)C6—C7—C8—N1174.8 (2)
C5—C6—C1—C20.8 (4)S1—C9—N3—N2178.23 (16)
C7—C6—C1—C2179.6 (2)N4—C9—N3—N23.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.90 (3)1.83 (3)2.728 (3)174 (3)
O2—H21···S10.94 (3)2.32 (3)3.250 (3)171 (3)
O2—H22···O2i0.91 (3)1.98 (3)2.886 (3)172 (4)
N3—H3A···N10.92 (3)1.91 (2)2.604 (3)130 (2)
N4—H41···S1ii0.92 (2)2.53 (2)3.434 (2)169 (3)
N4—H42···N20.93 (3)2.24 (3)2.643 (3)105 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC9H10N4OS·H2O
Mr240.29
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)28.5615 (3), 4.6805 (3), 22.0977 (4)
β (°) 127.24 (2)
V3)2351.8 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID-S
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.940, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
31269, 3607, 2146
Rint0.090
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.154, 1.04
No. of reflections3607
No. of parameters193
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.31

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.90 (3)1.83 (3)2.728 (3)174 (3)
O2—H21···S10.94 (3)2.32 (3)3.250 (3)171 (3)
O2—H22···O2i0.91 (3)1.98 (3)2.886 (3)172 (4)
N3—H3A···N10.92 (3)1.91 (2)2.604 (3)130 (2)
N4—H41···S1ii0.92 (2)2.53 (2)3.434 (2)169 (3)
N4—H42···N20.93 (3)2.24 (3)2.643 (3)105 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x, y+1, z+1.
Table 2. Comparison of the bond lengths and angles (Å, °) in the oxime moieties of the title compound,(I), with the corresponding values in the related compounds (II)–(VII) top
Bond/Angle(I)(II)(III)(IV)(V)(VI)(VII)
N1-O11.385 (2)1.403 (2)1.423 (3)1.417 (1)1.429 (4)1.424 (2)1.416 (3)
1.396 (2)1.396 (3)1.397 (3)
N1-C81.264 (3)1.281 (2)1.290 (3)1.290 (1)1.241 (6)1.289 (2)1.282 (3)
1.281 (2)1.282 (3)1.289 (3)
C7-C81.469 (3)1.477 (3)1.489 (3)1.510 (1)1.551 (7)1.513 (2)1.501 (4)
1.473 (3)1.502 (4)
C7-C8-N1122.4 (2)115.2 (2)116.6 (2)114.3 (1)118.3 (5)113.2 (1)114.4 (2)
115.0 (2)115.0 (2)113.4 (2)
C8-N1-O1112.9 (2)112.4 (1)109.4 (2)110.7 (1)112.2 (4)110.6 (1)110.7 (2)
112.2 (1)111.5 (2)111.1 (2)
Notes: (II): 2,3-dimethylquinoxaline-dimethylglyoxime (1/1) (Hökelek, Batı et al., 2001), (III): 1-(2,6-dimethylphenylamino)propane-1,2-dione dioxime (Hökelek, Zülfikaroğlu & Batı, 2001), (IV): N-hydroxy-2-oxo-2,N'-diphenylacetamidine (Büyükgüngör et al., 2003), (V): N-(3,4-dichlorophenyl)-N'-hydroxy-2-oxo-2-phenylacetamidine (Hökelek et al., 2004), (VI): N-hydroxy-N'-(1-naphthyl)-2-phenylacetamidin-2-one (Hökelek et al., 2004a), (VII): N-(3-chloro-4-methylphenyl)-N'-hydroxy-2-oxo-2-phenylacetamidine-2,3- dimethylquinoxaline-dimethyl-glyoxime (1/1) (Hökelek et al., 2004b).
 

Acknowledgements

The authors are indebted to the Department of Chemistry, Atatürk University, Erzurum, Turkey, for the use of the X-ray diffractometer purchased under grant No. 2003/219 of the University Research Fund.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBalsamo, A., Macchia, B., Martinelli, A., Orlandini, E., Rossello, A., Macchia, F., Bocelli, G. & Domiano, P. (1990). Eur. J. Med. Chem. 25, 227–233.  CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrockman, R. W. & Thomson, J. R. (1956). Cancer Res. 16, 167–170.  PubMed CAS Web of Science Google Scholar
First citationBüyükgüngör, O., Hökelek, T., Taş, M. & Batı, H. (2003). Acta Cryst. E59, o883–o885.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChertanova, L., Pascard, C. & Sheremetev, A. (1994). Acta Cryst. B50, 708–716.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEl-Shazly, R. M., Al-Hazmi, G. A. A., Ghazy, S. E., El-Shahawi, M. S. & El-Asmy, A. A. (2005). Spectrochim. Acta, A61, 243–252.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationForman, S. E. (1964). J. Org. Chem. 29, 3323–3327.  CrossRef CAS Web of Science Google Scholar
First citationHagenbach, R. E. & Gysin, H. (1952). Experientia, 8, 184–185.  CrossRef PubMed CAS Web of Science Google Scholar
First citationHökelek, T., Batı, H., Bekdemir, Y. & Kütük, H. (2001). Acta Cryst. E57, o663–o665.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Büyükgüngör, O., Taş, M. & Batı, H. (2004a). Acta Cryst. E60, o109–o111.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Büyükgüngör, O., Taş, M. & Batı, H. (2004b). Acta Cryst. E60, o406–o408.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Taş, M. & Batı, H. (2004). Cryst. Res. Technol. 39, 363–367.  Web of Science CSD CrossRef Google Scholar
First citationHökelek, T., Zülfikaroğlu, A. & Batı, H. (2001). Acta Cryst. E57, o1247–o1249.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHolan, G., Johnson, W. M. P., Rihs, K. & Virgona, C. T. (1984). Pestic. Sci. 15, 361–368.  CrossRef CAS Web of Science Google Scholar
First citationJones, D. H., Slack, R., Squires, S. & Woolridge, K. R. H. (1965). J. Med. Chem. 8, 676–680.  CrossRef CAS Web of Science Google Scholar
First citationKarle, I. L., Ranganathan, D. & Haridas, V. (1996). J. Am. Chem. Soc. 118, 7128–7133.  CSD CrossRef CAS Web of Science Google Scholar
First citationKlayman, D. L., Bartoserich, J. F., Griffin, T. S., Manson, C. J. & Scovill, J. P. (1979). J. Med. Chem. 22, 885–893.  Google Scholar
First citationLiberta, A. E. & West, D. X. (1992). Biometals, 5, 121–125.  CrossRef PubMed CAS Web of Science Google Scholar
First citationLukevics, E., Jansone, D., Rubina, K., Abele, E., Germane, S., Leite, L., Shymaska, M. & Popelis, J. (1995). Eur. J. Med. Chem. 30, 983–986.  CrossRef CAS Web of Science Google Scholar
First citationMarsman, A. W., Leussing, E. D., Zwikker, J. W. & Jenneskens, L. W. (1999). Chem. Mater. 11, 1484–1491.  Web of Science CSD CrossRef CAS Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Çaylak, N. & Hökelek, T. (2007). Acta Cryst. E63, o3463–o3464.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPetering, H. G. & van Giesen, G. J. (1966). The Biochemistry of Copper, pp. 197–208. New York: Harriman.  Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSarıkavaklı, N., Şahin, E. & Hökelek, T. (2007). Acta Cryst. E63, o3601.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSevagapandian, S., Rjagopal, G., Nehru, K. & Athappan, P. (2000). Transition Met. Chem. 25, 388–393.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 3| March 2008| Pages o623-o624
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds