organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Dihydr­­oxy-9,10-dioxo-9,10-di­hydro­anthracene-2-carbaldehyde

aChemistry Department, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia, bFaculty of Applied Sciences, Universiti Teknologi MARA Malaysia, 40450 Shah Alam, Selangor, Malaysia, and cICSN-CNRS, 1 avenue de la Terrasse, 91198 Gif sur Yvette, France
*Correspondence e-mail: pascal.retailleau@icsn.cnrs-gif.fr

(Received 28 January 2008; accepted 11 February 2008; online 15 February 2008)

The title compound, C15H8O5, also known as nordamnacanthal, was isolated from the Malaysian Morinda citrifolia L. The 20 non-H atoms are coplanar. The structure is stabilized by intra­molecular O—H⋯O hydrogen bonds and inter­molecular O—H⋯O and C—H⋯O hydrogen bonds, forming bilayers of mol­ecular tapes with alternating stacking directions along the a axis.

Related literature

For related literature, see: Chan-Blanco et al. (2006[Chan-Blanco, Y., Vaillant, F., Perez, A. M., Reynes, M., Brillonet, J. M. & Brat, P. (2006). J. Food Compos. Anal. 19, 645-654.]); Ismail (1998[Ismail, N. H. (1998). PhD thesis, Universiti Putra Malaysia.]); Ohsawa & Ohba (1993[Ohsawa, Y. & Ohba, S. (1993). Acta Cryst. C49, 2149-2151.]); Singh et al. (1984[Singh, Y., Ikahihifo, T., Pamive, M. & Slatter, C. (1984). J. Ethnopharmacol. 12, 305-325.]); Whistler (1985[Whistler, W. A. (1985). J. Ethnopharmacol. 13, 239-280.]); Wijnsma & Verpoorte (1986[Wijnsma, R. & Verpoorte, R. (1986). Anthraquinones Rubiaceae in Progress in the Chemistry of Organic Natural Products, edited by W. Herz, H. Griesebach, G. W. Kirby & C. H. Tamn, pp. 79-149. New York: Springer-Verlag.]); Zhu et al. (2008[Zhu, L.-C., Zhao, Z.-G. & Yu, S.-J. (2008). Acta Cryst. E64, o371.]).

[Scheme 1]

Experimental

Crystal data
  • C15H8O5

  • Mr = 268.21

  • Monoclinic, P 21 /c

  • a = 10.547 (2) Å

  • b = 5.669 (1) Å

  • c = 20.231 (3) Å

  • β = 110.62 (4)°

  • V = 1132.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 (2) K

  • 0.60 × 0.39 × 0.14 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 14030 measured reflections

  • 2298 independent reflections

  • 1554 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.150

  • S = 1.06

  • 2296 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2 0.82 1.86 2.590 (3) 148
O1—H1⋯O5 0.82 1.86 2.577 (2) 146
O1—H1⋯O5i 0.82 2.34 2.933 (2) 130
C4—H4⋯O4ii 0.93 2.45 3.358 (2) 166
C10—H10⋯O2iii 0.93 2.53 3.312 (3) 142
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y+3, -z; (iii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT (Nonius, 1999[Nonius. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and COLLECT; data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

Morinda citrifolia Linn. (Noni), has been one of the most used traditional folk medicinal plants in Polynesia for over 2000 years (Whistler,1985). It has been reported to have a broad range of therapeutic and nutritional properties (Chan-Blanco et al.,2006) including antibacterial, antiviral, antifungal, antitumor, analgesic, hypotensive, anti-inflammatory and immune enhancing effects (Singh et al., 1984). Nordamnacanthal, damnacanthal and morindone (Ismail, 1998; Wijnsma & Verpoorte, 1986) have been isolated from the Malaysian Morinda citrifolia Linn. The crystal structure of damnacanthal having been reported by Ohsawa & Ohba (1993), we present in this communication the crystal structure of nordamnacanthal (I). (Fig. 1) shows its molecular structure. The C—C bond lengths in the anthraquinone ring range from 1.377 (3) Å to 1.484 (3) Å, the carbonyl bond distances from 1.220 (2) Å to 1.237 (2) Å and the two hydroxyl bond distances are 1.326 (2) Å and 1.349 (2) Å; all are comparable to those observed in similar structures (Ohsawa & Ohba, 1993; Zhu et al., 2008). All 20 non-H atoms of (I) are essentially coplanar, their mean deviation from the least-squares molecular plane being 0.028 Å and the dihedral angle between the two benzene rings being 1.27 (10)°. The molecule features two intramolecular O—H···O hydrogen bonds, with O3···O2 distance of 2.590 (3) Å and O1···O5 distance of 2.577 (2) Å. Additionally, atom O1 is also engaged into an intermolecular hydrogen bond with atom O5, viz. O1—H1···O5i [symmetry code:(i) -x, 1 - y, -z] leading to the formation of a coplanar centrosymmetric dimer via the key {H—O1—C1—C14—C13—O5}2 synthon, R22(12). Adjacent dimers extend through synthon R22(10) of weak C4—H4···O4ii [symmetry code:(ii) 1 - x, 3 - y, -z] hydrogen bond to form molecular tapes running parallel to the [120] and [120] directions (Fig. 2). The dihedral angle between the two molecular tape orientations is 66.03° and an additional weak C10—H10···O4iii [symmetry code:(ii) -1 + x, 3/2 - y, -1/2 + z] hydrogen bond links the tapes along the c axis. The tapes are stacked along the a axis, forming two kinds of layers in which molecules related by an inversion center stack with an interplanar spacing of 3.255 (4) Å and a centroid offset of ca 3.5 Å (Fig. 3).

Related literature top

For related literature, see: Chan-Blanco et al. (2006); Ismail (1998); Ohsawa & Ohba (1993); Singh et al. (1984); Whistler (1985); Wijnsma & Verpoorte (1986); Zhu et al. (2008).

Experimental top

Morinda citrifolia used in this study was collected from kg. Tanjung Keramat, Langkap, Perak. The roots were harvested, washed, chopped into small pieces and then dried at room temperature for one week. The dried sample was then ground to small size using grinder. The ground roots (1.5 kg) were soaked at room temperature in dichloromethane for 48 h. The solvent was then removed by filtration and fresh solvent added to the plant material. The extraction was repeated three times. The combined filtrate was evaporated under reduced pressure to give brown coloured residue (35.6 g). The crude extract was fractionated using Medium Pressure Liquid Chromatography (MPLC) system fitted with Buchi Pump Module C-601. The sample (10 g) was introduced dry after being pre-absorbed onto acid-washed silica gel (10 g) in two portions. The column (150 mm x 40 mm) was packed with 90 g acid-washed silica gel (Merck 7734) and eluted gradiently with petroleum ether, chloroform and chloroform enriched with increasing percentages of methanol (1%, 2% and 5%). Seven combined fractions were collected based on thin layer chromatography (TLC) pattern (labeled A, B, C, D, E, F, and G).

Nordamnacanthal (1.65 g) were isolated from fraction A after column chromatography. The fraction was re-chromatographed using small column (400 mm x 20 mm) packed with 2% acid-washed silica gel (Merck 9385) eluted gradiently with petroleum ether and chloroform. The first orange band eluted out from the column was collected in small vials and inspected using analytical TLC developed in PE:CHCl3 (4:6) showing a single spot of a purified compound. Recrystallization from hot CHCl3 gave bright orange crystals.

Refinement top

All H atoms were located in difference maps but then were treated as riding in geometrically positions, with O—H = 0.82 Å, and C—H = 0.93 Å (sp2) and with Uiso(H) = 1.2Ueq(carrier).

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1999); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound with the atom numbering; displacement ellipsoids are at the 50% probability level. The intramolecular O—H···O interactions are shown as dotted lines.
[Figure 2] Fig. 2. Part of the crystal structure showing non-parallel molecular slabs forming herringbone pattern along a. (Intra-)Inter-molecular hydrogen bonds are indicated by (dotted) dashed lines. Symmetry codes: as in Table 1.
[Figure 3] Fig. 3. The crystal packing showing the two orientations taken by the stacking of molecular tapes. Note the offset between successive layers.
1,3-Dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carbaldehyde top
Crystal data top
C15H8O5F(000) = 552
Mr = 268.21Dx = 1.574 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybcCell parameters from 10451 reflections
a = 10.547 (2) Åθ = 0.4–26.4°
b = 5.669 (1) ŵ = 0.12 mm1
c = 20.231 (3) ÅT = 293 K
β = 110.62 (4)°Prism, orange
V = 1132.1 (5) Å30.60 × 0.39 × 0.14 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1554 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 26.4°, θmin = 2.1°
ϕ and ω scansh = 013
14030 measured reflectionsk = 70
2298 independent reflectionsl = 2522
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: difference Fourier map
wR(F2) = 0.150H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0705P)2 + 0.3487P]
where P = (Fo2 + 2Fc2)/3
2296 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C15H8O5V = 1132.1 (5) Å3
Mr = 268.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.547 (2) ŵ = 0.12 mm1
b = 5.669 (1) ÅT = 293 K
c = 20.231 (3) Å0.60 × 0.39 × 0.14 mm
β = 110.62 (4)°
Data collection top
Nonius KappaCCD
diffractometer
1554 reflections with I > 2σ(I)
14030 measured reflectionsRint = 0.029
2298 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.06Δρmax = 0.27 e Å3
2296 reflectionsΔρmin = 0.20 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections (2298) except two reflections with Delta(F2)/e.s.d. greater than 9 (2296). The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.32777 (16)1.4401 (3)0.05914 (8)0.0669 (5)
O50.02849 (14)0.7077 (2)0.03142 (7)0.0531 (4)
O10.22406 (15)0.5649 (2)0.07880 (7)0.0525 (4)
H10.14870.56100.04790.063*
O30.62014 (15)1.0321 (3)0.15870 (9)0.0746 (5)
H30.64080.92830.18890.090*
O20.58762 (18)0.6610 (3)0.22568 (9)0.0811 (6)
C60.2604 (2)1.2727 (3)0.05264 (10)0.0437 (5)
C70.12238 (19)1.2323 (3)0.10446 (9)0.0388 (5)
C120.04523 (18)1.0390 (3)0.09796 (9)0.0364 (4)
C130.09986 (19)0.8728 (3)0.03790 (10)0.0388 (5)
C140.23549 (18)0.9106 (3)0.01290 (10)0.0377 (4)
C50.31419 (18)1.1053 (3)0.00715 (10)0.0396 (5)
C40.4429 (2)1.1451 (4)0.05601 (11)0.0493 (5)
H40.49351.27420.05130.059*
C30.4949 (2)0.9898 (4)0.11180 (11)0.0521 (6)
C20.4211 (2)0.7925 (4)0.11979 (10)0.0461 (5)
C10.2905 (2)0.7533 (3)0.06963 (10)0.0425 (5)
C150.4762 (3)0.6333 (4)0.17886 (13)0.0652 (7)
H150.42470.50310.18170.078*
C110.0846 (2)1.0056 (4)0.14710 (10)0.0446 (5)
H110.13590.87660.14300.054*
C100.1371 (2)1.1638 (4)0.20178 (10)0.0509 (5)
H100.22391.14140.23460.061*
C90.0613 (2)1.3547 (4)0.20791 (11)0.0539 (6)
H90.09751.46130.24470.065*
C80.0679 (2)1.3894 (4)0.15996 (10)0.0486 (5)
H80.11851.51830.16480.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0621 (10)0.0626 (10)0.0708 (11)0.0288 (8)0.0169 (8)0.0066 (8)
O50.0512 (9)0.0466 (8)0.0591 (9)0.0150 (7)0.0163 (7)0.0068 (7)
O10.0511 (9)0.0471 (8)0.0565 (9)0.0020 (7)0.0155 (7)0.0087 (7)
O30.0437 (9)0.0866 (12)0.0726 (11)0.0075 (8)0.0056 (8)0.0060 (9)
O20.0657 (11)0.0934 (13)0.0606 (11)0.0183 (10)0.0071 (9)0.0054 (9)
C60.0458 (11)0.0411 (11)0.0474 (11)0.0107 (9)0.0201 (9)0.0052 (9)
C70.0434 (11)0.0367 (10)0.0381 (10)0.0049 (8)0.0167 (9)0.0044 (8)
C120.0367 (10)0.0360 (10)0.0374 (10)0.0028 (8)0.0142 (8)0.0048 (8)
C130.0419 (11)0.0355 (10)0.0421 (11)0.0054 (8)0.0187 (9)0.0036 (8)
C140.0370 (10)0.0388 (10)0.0378 (10)0.0018 (8)0.0138 (8)0.0027 (8)
C50.0359 (10)0.0413 (10)0.0426 (11)0.0048 (8)0.0152 (8)0.0075 (8)
C40.0450 (12)0.0496 (12)0.0536 (13)0.0085 (9)0.0176 (10)0.0075 (10)
C30.0386 (11)0.0605 (13)0.0511 (13)0.0012 (10)0.0081 (10)0.0113 (11)
C20.0427 (11)0.0504 (12)0.0423 (11)0.0075 (9)0.0112 (9)0.0026 (9)
C10.0432 (11)0.0404 (11)0.0474 (11)0.0016 (8)0.0202 (9)0.0033 (8)
C150.0664 (15)0.0655 (15)0.0561 (14)0.0136 (12)0.0122 (12)0.0028 (12)
C110.0413 (11)0.0467 (11)0.0457 (11)0.0068 (9)0.0149 (9)0.0065 (9)
C100.0433 (11)0.0603 (13)0.0430 (11)0.0026 (10)0.0075 (9)0.0059 (10)
C90.0634 (14)0.0528 (13)0.0422 (12)0.0073 (11)0.0146 (11)0.0072 (9)
C80.0578 (13)0.0430 (11)0.0471 (12)0.0066 (9)0.0209 (11)0.0014 (9)
Geometric parameters (Å, º) top
O4—C61.220 (2)C14—C51.410 (3)
O5—C131.237 (2)C5—C41.388 (3)
O1—C11.326 (2)C4—C31.383 (3)
O1—H10.8200C4—H40.9300
O3—C31.349 (3)C3—C21.404 (3)
O3—H30.8200C2—C11.411 (3)
O2—C151.233 (3)C2—C151.446 (3)
C6—C71.482 (3)C15—H150.9300
C6—C51.484 (3)C11—C101.380 (3)
C7—C81.389 (3)C11—H110.9300
C7—C121.399 (2)C10—C91.377 (3)
C12—C111.393 (3)C10—H100.9300
C12—C131.484 (3)C9—C81.380 (3)
C13—C141.454 (3)C9—H90.9300
C14—C11.407 (3)C8—H80.9300
C1—O1—H1109.5O3—C3—C2120.4 (2)
C3—O3—H3109.5C4—C3—C2121.61 (18)
O4—C6—C7120.56 (18)C3—C2—C1118.88 (18)
O4—C6—C5121.01 (18)C3—C2—C15121.0 (2)
C7—C6—C5118.43 (16)C1—C2—C15120.1 (2)
C8—C7—C12119.32 (18)O1—C1—C14122.54 (18)
C8—C7—C6119.77 (17)O1—C1—C2117.17 (18)
C12—C7—C6120.91 (17)C14—C1—C2120.29 (18)
C11—C12—C7119.84 (17)O2—C15—C2123.5 (3)
C11—C12—C13119.92 (16)O2—C15—H15118.2
C7—C12—C13120.23 (16)C2—C15—H15118.2
O5—C13—C14121.38 (17)C10—C11—C12120.01 (19)
O5—C13—C12119.46 (17)C10—C11—H11120.0
C14—C13—C12119.15 (16)C12—C11—H11120.0
C1—C14—C5118.53 (17)C9—C10—C11120.08 (19)
C1—C14—C13120.26 (17)C9—C10—H10120.0
C5—C14—C13121.21 (17)C11—C10—H10120.0
C4—C5—C14121.66 (18)C10—C9—C8120.6 (2)
C4—C5—C6118.30 (17)C10—C9—H9119.7
C14—C5—C6120.04 (17)C8—C9—H9119.7
C3—C4—C5119.03 (19)C9—C8—C7120.12 (19)
C3—C4—H4120.5C9—C8—H8119.9
C5—C4—H4120.5C7—C8—H8119.9
O3—C3—C4118.0 (2)
O4—C6—C7—C81.6 (3)C6—C5—C4—C3179.58 (18)
C5—C6—C7—C8178.31 (17)C5—C4—C3—O3179.91 (17)
O4—C6—C7—C12179.08 (18)C5—C4—C3—C20.5 (3)
C5—C6—C7—C121.0 (3)O3—C3—C2—C1179.82 (18)
C8—C7—C12—C110.3 (3)C4—C3—C2—C10.3 (3)
C6—C7—C12—C11179.58 (17)O3—C3—C2—C151.2 (3)
C8—C7—C12—C13178.19 (17)C4—C3—C2—C15179.25 (19)
C6—C7—C12—C131.1 (3)C5—C14—C1—O1179.51 (17)
C11—C12—C13—O51.1 (3)C13—C14—C1—O11.1 (3)
C7—C12—C13—O5177.34 (17)C5—C14—C1—C20.7 (3)
C11—C12—C13—C14179.93 (16)C13—C14—C1—C2178.70 (17)
C7—C12—C13—C141.5 (3)C3—C2—C1—O1179.83 (17)
O5—C13—C14—C12.3 (3)C15—C2—C1—O11.2 (3)
C12—C13—C14—C1178.89 (16)C3—C2—C1—C140.3 (3)
O5—C13—C14—C5177.04 (18)C15—C2—C1—C14178.65 (18)
C12—C13—C14—C51.8 (3)C3—C2—C15—O21.2 (4)
C1—C14—C5—C40.4 (3)C1—C2—C15—O2177.7 (2)
C13—C14—C5—C4178.95 (17)C7—C12—C11—C100.4 (3)
C1—C14—C5—C6178.98 (16)C13—C12—C11—C10178.07 (17)
C13—C14—C5—C61.7 (3)C12—C11—C10—C90.0 (3)
O4—C6—C5—C40.6 (3)C11—C10—C9—C80.4 (3)
C7—C6—C5—C4179.34 (17)C10—C9—C8—C70.5 (3)
O4—C6—C5—C14178.84 (19)C12—C7—C8—C90.2 (3)
C7—C6—C5—C141.3 (3)C6—C7—C8—C9179.14 (18)
C14—C5—C4—C30.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.821.862.590 (3)148
O1—H1···O50.821.862.577 (2)146
O1—H1···O5i0.822.342.933 (2)130
C4—H4···O4ii0.932.453.358 (2)166
C10—H10···O2iii0.932.533.312 (3)142
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+3, z; (iii) x1, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H8O5
Mr268.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.547 (2), 5.669 (1), 20.231 (3)
β (°) 110.62 (4)
V3)1132.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.60 × 0.39 × 0.14
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14030, 2298, 1554
Rint0.029
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.150, 1.06
No. of reflections2296
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.20

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1999), SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), PLATON (Spek, 2003) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.821.862.590 (3)147.6
O1—H1···O50.821.862.577 (2)146.2
O1—H1···O5i0.822.342.933 (2)129.5
C4—H4···O4ii0.932.453.358 (2)166.0
C10—H10···O2iii0.932.533.312 (3)141.6
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+3, z; (iii) x1, y+3/2, z1/2.
 

Acknowledgements

KA thanks the Universiti Teknologi MARA and the Ministry of Science and Technology for financial support, and the Institut de Chimie des Substances Naturelles for research facilities.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChan-Blanco, Y., Vaillant, F., Perez, A. M., Reynes, M., Brillonet, J. M. & Brat, P. (2006). J. Food Compos. Anal. 19, 645–654.  Web of Science CrossRef Google Scholar
First citationIsmail, N. H. (1998). PhD thesis, Universiti Putra Malaysia.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNonius. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOhsawa, Y. & Ohba, S. (1993). Acta Cryst. C49, 2149–2151.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, Y., Ikahihifo, T., Pamive, M. & Slatter, C. (1984). J. Ethnopharmacol. 12, 305–325.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar
First citationWhistler, W. A. (1985). J. Ethnopharmacol. 13, 239–280.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWijnsma, R. & Verpoorte, R. (1986). Anthraquinones Rubiaceae in Progress in the Chemistry of Organic Natural Products, edited by W. Herz, H. Griesebach, G. W. Kirby & C. H. Tamn, pp. 79–149. New York: Springer-Verlag.  Google Scholar
First citationZhu, L.-C., Zhao, Z.-G. & Yu, S.-J. (2008). Acta Cryst. E64, o371.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds