metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m369-m370

cis-Di­fluoridobis(1,10-phenanthroline)chromium(III) perchlorate monohydrate

aDepartment of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 København Ø, Denmark
*Correspondence e-mail: Birk@kiku.dk

(Received 5 January 2008; accepted 11 January 2008; online 16 January 2008)

The title complex, [CrF2(C12H8N2)2]ClO4·H2O, displays a slightly distorted octa­hedral coordination geometry around the central chromium(III) ion. The Cr environment is composed of a cis arrangement of two 1,10-phenanthroline [average CrIII—N = 2.0726 (10) Å] and two fluoride [average CrIII—F = 1.8533 (6) Å] ligands. The water molecule forms a hydrogen bond to fluorine in a neighbouring cation.

Related literature

For details of the general synthesis of amine-containing difluorido complexes of chromium(III), see: Glerup et al. (1970[Glerup, J., Josephsen, J., Michelsen, K., Pedersen, E. & Schäffer, C. E. (1970). Acta Chem. Scand. 24, 247-254.]). For the structure of the analogous 2,2′-bipyridine complex, see: Yamaguchi-Terasaki et al. (2007[Yamaguchi-Terasaki, Y., Fujihara, T., Nagasawa, A. & Kaizaki, S. (2007). Acta Cryst. E63, m593-m595.]). For related literature, see: Brenčič et al. (1981[Brenčič, J. V., Leban, I. & Polanc, I. (1981). Monatsh. Chem. 112, 1359-1368.], 1987[Brenčič, J. V., Čeh, B. & Leban, I. (1987). Z. Anorg. Allg. Chem. 551, 109-115.]); Delavar & Staples (1981[Delavar, M. & Staples, P. J. (1981). J. Chem. Soc. Dalton Trans. pp. 981-985.]); Kaizaki & Takemoto (1990[Kaizaki, S. & Takemoto, H. (1990). Inorg. Chem. 29, 4960-4964.]); Kane-Maguire et al. (1986[Kane-Maguire, N. A. P., Wallace, K. C. & Speece, D. G. (1986). Inorg. Chem. 25, 4650-4654.]).

[Scheme 1]

Experimental

Crystal data
  • [CrF2(C12H8N2)2]ClO4·H2O

  • Mr = 567.87

  • Triclinic, [P \overline 1]

  • a = 7.6930 (10) Å

  • b = 9.4640 (8) Å

  • c = 16.0610 (17) Å

  • α = 79.750 (7)°

  • β = 83.228 (12)°

  • γ = 88.115 (8)°

  • V = 1142.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.68 mm−1

  • T = 122 (1) K

  • 0.44 × 0.41 × 0.16 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: Gaussian integration (Coppens, 1970[Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.]) Tmin = 0.794, Tmax = 0.913

  • 28606 measured reflections

  • 4014 independent reflections

  • 3851 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.145

  • S = 1.41

  • 4014 reflections

  • 329 parameters

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cr1—F2 1.8444 (10)
Cr1—F1 1.8621 (10)
Cr1—N4 2.0566 (15)
Cr1—N2 2.0607 (15)
Cr1—N3 2.0797 (16)
Cr1—N1 2.0934 (15)
F2—Cr1—F1 95.92 (5)
F2—Cr1—N4 92.33 (5)
F1—Cr1—N4 91.42 (5)
F2—Cr1—N2 91.83 (6)
F1—Cr1—N2 91.86 (5)
N4—Cr1—N2 174.40 (5)
F2—Cr1—N3 89.38 (5)
F1—Cr1—N3 170.08 (5)
N4—Cr1—N3 79.95 (6)
N2—Cr1—N3 96.36 (6)
F2—Cr1—N1 170.54 (5)
F1—Cr1—N1 88.67 (5)
N4—Cr1—N1 95.83 (6)
N2—Cr1—N1 79.72 (6)
N3—Cr1—N1 87.34 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5B⋯F1i 1.03 1.69 2.7183 (19) 175
Symmetry code: (i) x-1, y, z.

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: COLLECT; data reduction: EvalCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Difluoro complexes of chromium(III) with various amine ligands have received a steady interest in the literature. Areas of interest have been e.g. kinetic behavior (Delavar & Staples, 1981), solvatochromism (Kaizaki & Takemoto, 1990) and photochemical/photophysical properties (Kane-Maguire et al., 1986). From a synthetic point of view simple fluoro containing complexes exhibit some advantageous properties for synthesis in non-acidic media. The strong coordination of the small and basic fluoro ligand makes it suitable as an "inorganic" protection group, easily removed and substituted by other ligands. Only a limited number of complexes belonging to this group have been structural characterized e.g. cis-[Cr(NH3)4F2]ClO4 (Brenčič et al., 1981), cis-[Cr(en)2F2]ClO4 . NaClOO4 . H2O (Brenčič et al., 1987) and cis-[Cr(bipy)2F2]ClO4 (Yamaguchi-Terasaki et al., 2007). In this report we present the crystal structure of cis-Difluoro(1,10-phenanthroline)chromium(III) perchlorate monohydrate (1).

The structure of (1) shows a octahedral coordination geometry around the central chromium(III) ion consisting of a cis arrangment of two fluorine and two nitrogen ligator atoms (Figure 1). Comparison of the Cr—N bond distances in trans position relative to the fluoro ligand [N1: 2.0934 (15) Å and N3: 2.0797 (16) Å] show a slightly elongation compared to the corresponding in cis postion [N2: 2.0607 (15) Å and N4: 2.0566 (15) Å]. This pattern of bond lengths are similar to that found in the analogous bipyridine complex cis-Difluoro(2,2'-bipyridine)chromium(III) perchlorate, cis-[Cr(bipy)2F2]ClO4.

The overall crystal packing is predominately determined by the approximately perpendicular orientation of the two planar 1,10-phenanthroline ligands [N3—Cr—N1:87.34 (6) °, N3—Cr—N2: 96.36 (6) °] and the presence of crystal water connecting each asymmetric unit with another through hydrogen bonding from water to fluorine (Figure 2).

Related literature top

For details of the general synthesis of amine-containing difluoro complexes of chromium(III), see Glerup et al. (1970). For the structure of the analogue 2,2'-bipyridine complex, see Yamaguchi-Terasaki et al. (2007).

For related literature, see: Brenčič et al. (1981, 1987); Delavar & Staples (1981); Kaizaki & Takemoto (1990); Kane-Maguire, Wallace & Speece (1986).

Experimental top

The title complex was synthesized by reflux of trans-difluorotetrakis(pyridine)chromium(III) perchlorate and 1,10-phenanthroline in 2-methoxyethanol according to the published method (Glerup et al., 1970).

Crystal suitable for X-ray diffraction were obtained by the following method: 0.208 g of the compound was dissolved in a solution of water/acetonitrile (20 ml/10 ml) and filtered though a filter paper into a small beaker. The beaker was covered with a lid of paper and left undisturbed at room temperature for crystallization (ca 3–5 days). The crystals was harvested by gently scratching with a spatula and washed with the mother liquid.

Refinement top

All H atoms were identified in a difference Fourier map and incorporated in the refinement in a riding model, with C–H = 0.95 Å and Uiso(H) = 1.2UEq.

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: COLLECT (Nonius, 1999); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom labeling scheme of cis-[Cr(phen)2F2]ClO4. H2O. Displacement ellipsoids are drawn at 50% probability. H atoms with arbitrary radii.
[Figure 2] Fig. 2. The crystal packing in cis-[Cr(phen)2F2]ClO4. H2O. Displacement ellipsoids are drawn at 50% probability. H atoms except the one originated from cystal water have been omitted.
cis-Difluorido(1,10-phenanthroline)chromium(III) perchlorate monohydrate top
Crystal data top
[CrF2(C12H8N2)2]ClO4·H2OZ = 2
Mr = 567.87F(000) = 578
Triclinic, P1Dx = 1.651 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.693 (1) ÅCell parameters from 26598 reflections
b = 9.4640 (8) Åθ = 2.3–25.0°
c = 16.0610 (17) ŵ = 0.68 mm1
α = 79.750 (7)°T = 122 K
β = 83.228 (12)°Block, red
γ = 88.115 (8)°0.44 × 0.41 × 0.16 mm
V = 1142.6 (2) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
4014 independent reflections
Radiation source: fine-focus sealed tube3851 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω and ϕ scansθmax = 25.0°, θmin = 2.3°
Absorption correction: gaussian integration
(Coppens, 1970)
h = 99
Tmin = 0.794, Tmax = 0.913k = 1111
28606 measured reflectionsl = 1819
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.145(Δ/σ)max = 0.078
S = 1.41Δρmax = 0.79 e Å3
4014 reflectionsΔρmin = 0.51 e Å3
329 parameters
Crystal data top
[CrF2(C12H8N2)2]ClO4·H2Oγ = 88.115 (8)°
Mr = 567.87V = 1142.6 (2) Å3
Triclinic, P1Z = 2
a = 7.693 (1) ÅMo Kα radiation
b = 9.4640 (8) ŵ = 0.68 mm1
c = 16.0610 (17) ÅT = 122 K
α = 79.750 (7)°0.44 × 0.41 × 0.16 mm
β = 83.228 (12)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
4014 independent reflections
Absorption correction: gaussian integration
(Coppens, 1970)
3851 reflections with I > 2σ(I)
Tmin = 0.794, Tmax = 0.913Rint = 0.025
28606 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.41Δρmax = 0.79 e Å3
4014 reflectionsΔρmin = 0.51 e Å3
329 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr10.86046 (3)0.55137 (3)0.266315 (15)0.01130 (17)
Cl10.42169 (6)0.04581 (5)0.27329 (3)0.02027 (19)
F11.08731 (13)0.60734 (11)0.22192 (6)0.0170 (3)
F20.92467 (13)0.41293 (11)0.35383 (6)0.0175 (3)
N10.76931 (19)0.68048 (16)0.16003 (9)0.0124 (3)
N30.6003 (2)0.52586 (16)0.31812 (9)0.0136 (3)
N40.83917 (19)0.70717 (16)0.34149 (9)0.0146 (3)
N20.8597 (2)0.40348 (16)0.18644 (10)0.0144 (3)
C120.7592 (2)0.60779 (19)0.09479 (11)0.0137 (4)
C10.7256 (2)0.81930 (19)0.14890 (12)0.0171 (4)
H10.73150.87070.19420.020*
C240.5533 (2)0.61063 (18)0.37709 (10)0.0138 (4)
C230.6826 (2)0.70727 (19)0.39112 (10)0.0139 (4)
C130.4814 (2)0.43556 (19)0.30366 (12)0.0173 (4)
H130.51340.37510.26290.021*
C150.2655 (2)0.5115 (2)0.40692 (12)0.0197 (4)
H150.15100.50560.43670.024*
C110.8100 (2)0.45883 (19)0.10871 (11)0.0140 (4)
C100.9151 (2)0.26736 (19)0.20079 (12)0.0191 (4)
H100.94930.22770.25510.023*
C180.4782 (3)0.7862 (2)0.50181 (12)0.0202 (4)
H180.45310.84340.54480.024*
C220.9635 (2)0.7957 (2)0.35158 (12)0.0183 (4)
H221.07300.79640.31730.022*
C70.8106 (2)0.3795 (2)0.04286 (12)0.0171 (4)
C190.6457 (2)0.79451 (19)0.45241 (11)0.0164 (4)
C90.9245 (3)0.1812 (2)0.13812 (13)0.0224 (4)
H90.96710.08510.14970.027*
C200.7809 (3)0.8874 (2)0.46210 (12)0.0208 (4)
H200.76280.94820.50350.025*
C80.8722 (3)0.2354 (2)0.05988 (13)0.0212 (4)
H80.87710.17710.01730.025*
C30.6631 (2)0.8201 (2)0.00597 (12)0.0204 (4)
H30.62780.86910.04640.024*
C210.9360 (3)0.8881 (2)0.41136 (13)0.0231 (4)
H211.02600.95120.41680.028*
C170.3534 (2)0.6962 (2)0.48787 (12)0.0201 (4)
H170.24210.69330.52070.024*
C20.6715 (3)0.8918 (2)0.07198 (12)0.0214 (4)
H20.64060.99080.06610.026*
C60.7569 (2)0.4481 (2)0.03680 (12)0.0198 (4)
H60.75600.39460.08150.024*
C50.7068 (3)0.5882 (2)0.05005 (12)0.0205 (4)
H50.67090.63110.10350.025*
C40.7071 (2)0.6730 (2)0.01613 (11)0.0168 (4)
C160.3878 (2)0.6065 (2)0.42455 (11)0.0164 (4)
C140.3132 (2)0.4267 (2)0.34592 (12)0.0205 (4)
H140.23120.36300.33330.025*
O30.3942 (2)0.10036 (16)0.26532 (11)0.0357 (4)
O20.5918 (3)0.0563 (2)0.29920 (14)0.0537 (5)
O40.2950 (3)0.0879 (2)0.33573 (14)0.0617 (7)
O10.4169 (4)0.1381 (2)0.19353 (12)0.0641 (7)
O50.1662 (2)0.87161 (16)0.12962 (9)0.0286 (4)*
H5A0.25680.90690.16470.034*
H5B0.13060.77420.16640.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.0102 (2)0.0141 (2)0.0097 (2)0.00101 (14)0.00002 (14)0.00270 (15)
Cl10.0265 (3)0.0206 (3)0.0139 (3)0.0005 (2)0.0013 (2)0.0043 (2)
F10.0123 (5)0.0210 (6)0.0168 (6)0.0029 (4)0.0026 (4)0.0030 (4)
F20.0128 (5)0.0227 (6)0.0152 (5)0.0009 (4)0.0013 (4)0.0017 (4)
N10.0098 (7)0.0129 (7)0.0140 (7)0.0007 (6)0.0019 (6)0.0029 (6)
N30.0110 (7)0.0157 (7)0.0139 (7)0.0005 (6)0.0028 (5)0.0011 (6)
N40.0136 (8)0.0185 (8)0.0117 (7)0.0003 (6)0.0011 (6)0.0024 (6)
N20.0140 (8)0.0136 (8)0.0154 (8)0.0016 (6)0.0019 (6)0.0038 (6)
C120.0090 (8)0.0195 (9)0.0125 (9)0.0024 (7)0.0010 (7)0.0038 (7)
C10.0124 (9)0.0166 (9)0.0224 (10)0.0005 (7)0.0003 (7)0.0051 (7)
C240.0128 (9)0.0153 (8)0.0114 (8)0.0024 (7)0.0023 (6)0.0027 (7)
C230.0146 (9)0.0161 (8)0.0107 (8)0.0029 (7)0.0030 (7)0.0010 (7)
C130.0182 (9)0.0174 (9)0.0164 (9)0.0010 (7)0.0055 (7)0.0008 (7)
C150.0110 (9)0.0219 (9)0.0217 (10)0.0009 (7)0.0006 (7)0.0073 (7)
C110.0102 (8)0.0181 (9)0.0139 (9)0.0024 (7)0.0015 (7)0.0046 (7)
C100.0183 (9)0.0150 (9)0.0231 (10)0.0012 (7)0.0011 (8)0.0010 (7)
C180.0239 (10)0.0233 (10)0.0127 (9)0.0108 (8)0.0020 (7)0.0030 (7)
C220.0144 (9)0.0245 (10)0.0171 (9)0.0034 (8)0.0022 (7)0.0056 (7)
C70.0129 (9)0.0209 (9)0.0183 (9)0.0049 (7)0.0032 (7)0.0080 (7)
C190.0206 (10)0.0170 (9)0.0113 (9)0.0027 (7)0.0047 (7)0.0001 (7)
C90.0221 (10)0.0138 (9)0.0307 (11)0.0008 (8)0.0029 (8)0.0061 (8)
C200.0265 (10)0.0226 (10)0.0164 (9)0.0025 (8)0.0071 (8)0.0097 (7)
C80.0193 (10)0.0206 (10)0.0249 (10)0.0043 (8)0.0057 (8)0.0121 (8)
C30.0167 (9)0.0250 (10)0.0183 (9)0.0010 (8)0.0031 (7)0.0000 (8)
C210.0255 (11)0.0230 (10)0.0242 (10)0.0055 (8)0.0084 (8)0.0082 (8)
C170.0149 (9)0.0244 (10)0.0168 (9)0.0086 (8)0.0036 (7)0.0030 (7)
C20.0206 (10)0.0162 (9)0.0268 (10)0.0016 (8)0.0035 (8)0.0014 (8)
C60.0162 (9)0.0297 (10)0.0158 (9)0.0030 (8)0.0006 (7)0.0111 (8)
C50.0179 (10)0.0323 (11)0.0121 (9)0.0025 (8)0.0020 (7)0.0054 (8)
C40.0108 (8)0.0218 (9)0.0169 (9)0.0012 (7)0.0003 (7)0.0017 (7)
C160.0124 (9)0.0183 (9)0.0152 (9)0.0042 (7)0.0016 (7)0.0054 (7)
C140.0144 (9)0.0181 (9)0.0276 (10)0.0027 (7)0.0079 (8)0.0033 (8)
O30.0323 (9)0.0276 (8)0.0520 (10)0.0016 (7)0.0062 (7)0.0190 (7)
O20.0472 (12)0.0437 (10)0.0732 (13)0.0143 (9)0.0298 (10)0.0008 (10)
O40.0711 (15)0.0491 (11)0.0621 (13)0.0118 (10)0.0385 (11)0.0304 (10)
O10.111 (2)0.0517 (12)0.0274 (10)0.0159 (12)0.0227 (11)0.0056 (8)
Geometric parameters (Å, º) top
Cr1—F21.8444 (10)C11—C71.401 (3)
Cr1—F11.8621 (10)C10—C91.398 (3)
Cr1—N42.0566 (15)C10—H100.9501
Cr1—N22.0607 (15)C18—C171.367 (3)
Cr1—N32.0797 (16)C18—C191.428 (3)
Cr1—N12.0934 (15)C18—H180.9501
Cl1—O41.4144 (17)C22—C211.404 (3)
Cl1—O11.4200 (18)C22—H220.9501
Cl1—O21.4310 (19)C7—C81.419 (3)
Cl1—O31.4365 (15)C7—C61.429 (3)
N1—C11.331 (2)C19—C201.423 (3)
N1—C121.363 (2)C9—C81.371 (3)
N3—C131.339 (2)C9—H90.9500
N3—C241.357 (2)C20—C211.362 (3)
N4—C221.335 (2)C20—H200.9500
N4—C231.364 (2)C8—H80.9500
N2—C101.333 (2)C3—C21.365 (3)
N2—C111.359 (2)C3—C41.406 (3)
C12—C41.401 (3)C3—H30.9500
C12—C111.436 (3)C21—H210.9500
C1—C21.404 (3)C17—C161.433 (3)
C1—H10.9501C17—H170.9500
C24—C161.403 (3)C2—H20.9500
C24—C231.436 (2)C6—C51.355 (3)
C23—C191.393 (3)C6—H60.9499
C13—C141.386 (3)C5—C41.442 (3)
C13—H130.9501C5—H50.9500
C15—C141.384 (3)C14—H140.9500
C15—C161.407 (3)O5—H5A1.0444
C15—H150.9500O5—H5B1.0283
F2—Cr1—F195.92 (5)C7—C11—C12119.83 (16)
F2—Cr1—N492.33 (5)N2—C10—C9121.87 (17)
F1—Cr1—N491.42 (5)N2—C10—H10119.1
F2—Cr1—N291.83 (6)C9—C10—H10119.0
F1—Cr1—N291.86 (5)C17—C18—C19120.56 (17)
N4—Cr1—N2174.40 (5)C17—C18—H18119.6
F2—Cr1—N389.38 (5)C19—C18—H18119.9
F1—Cr1—N3170.08 (5)N4—C22—C21121.54 (17)
N4—Cr1—N379.95 (6)N4—C22—H22119.2
N2—Cr1—N396.36 (6)C21—C22—H22119.3
F2—Cr1—N1170.54 (5)C11—C7—C8116.47 (17)
F1—Cr1—N188.67 (5)C11—C7—C6119.10 (17)
N4—Cr1—N195.83 (6)C8—C7—C6124.39 (17)
N2—Cr1—N179.72 (6)C23—C19—C20116.89 (17)
N3—Cr1—N187.34 (6)C23—C19—C18119.31 (17)
O4—Cl1—O1111.05 (15)C20—C19—C18123.80 (17)
O4—Cl1—O2108.77 (15)C8—C9—C10119.92 (17)
O1—Cl1—O2107.61 (15)C8—C9—H9120.0
O4—Cl1—O3110.09 (11)C10—C9—H9120.1
O1—Cl1—O3110.47 (12)C21—C20—C19119.31 (17)
O2—Cl1—O3108.78 (11)C21—C20—H20120.5
C1—N1—C12118.50 (15)C19—C20—H20120.1
C1—N1—Cr1128.82 (12)C9—C8—C7119.61 (18)
C12—N1—Cr1112.66 (11)C9—C8—H8120.3
C13—N3—C24118.21 (16)C7—C8—H8120.1
C13—N3—Cr1129.08 (13)C2—C3—C4119.46 (17)
C24—N3—Cr1112.64 (12)C2—C3—H3120.2
C22—N4—C23118.54 (16)C4—C3—H3120.3
C22—N4—Cr1127.53 (13)C20—C21—C22120.31 (18)
C23—N4—Cr1113.65 (12)C20—C21—H21119.8
C10—N2—C11118.64 (16)C22—C21—H21119.9
C10—N2—Cr1127.12 (13)C18—C17—C16121.10 (17)
C11—N2—Cr1113.99 (12)C18—C17—H17119.4
N1—C12—C4122.95 (16)C16—C17—H17119.6
N1—C12—C11116.89 (15)C3—C2—C1120.06 (17)
C4—C12—C11120.14 (16)C3—C2—H2120.1
N1—C1—C2121.76 (17)C1—C2—H2119.8
N1—C1—H1119.1C5—C6—C7121.37 (17)
C2—C1—H1119.2C5—C6—H6119.2
N3—C24—C16123.29 (17)C7—C6—H6119.5
N3—C24—C23117.20 (16)C6—C5—C4120.78 (17)
C16—C24—C23119.51 (17)C6—C5—H5119.7
N4—C23—C19123.39 (16)C4—C5—H5119.5
N4—C23—C24116.13 (16)C12—C4—C3117.27 (17)
C19—C23—C24120.48 (17)C12—C4—C5118.77 (17)
N3—C13—C14122.54 (18)C3—C4—C5123.94 (17)
N3—C13—H13118.9C24—C16—C15116.91 (17)
C14—C13—H13118.6C24—C16—C17119.01 (17)
C14—C15—C16119.58 (17)C15—C16—C17124.08 (17)
C14—C15—H15120.1C15—C14—C13119.45 (17)
C16—C15—H15120.3C15—C14—H14120.1
N2—C11—C7123.46 (17)C13—C14—H14120.4
N2—C11—C12116.68 (16)H5A—O5—H5B101.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···F1i1.031.692.7183 (19)175
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formula[CrF2(C12H8N2)2]ClO4·H2O
Mr567.87
Crystal system, space groupTriclinic, P1
Temperature (K)122
a, b, c (Å)7.693 (1), 9.4640 (8), 16.0610 (17)
α, β, γ (°)79.750 (7), 83.228 (12), 88.115 (8)
V3)1142.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.68
Crystal size (mm)0.44 × 0.41 × 0.16
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionGaussian integration
(Coppens, 1970)
Tmin, Tmax0.794, 0.913
No. of measured, independent and
observed [I > 2σ(I)] reflections
28606, 4014, 3851
Rint0.025
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.145, 1.41
No. of reflections4014
No. of parameters329
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.51

Computer programs: COLLECT (Nonius, 1999), EVALCCD (Duisenberg et al., 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Selected geometric parameters (Å, º) top
Cr1—F21.8444 (10)Cr1—N22.0607 (15)
Cr1—F11.8621 (10)Cr1—N32.0797 (16)
Cr1—N42.0566 (15)Cr1—N12.0934 (15)
F2—Cr1—F195.92 (5)N4—Cr1—N379.95 (6)
F2—Cr1—N492.33 (5)N2—Cr1—N396.36 (6)
F1—Cr1—N491.42 (5)F2—Cr1—N1170.54 (5)
F2—Cr1—N291.83 (6)F1—Cr1—N188.67 (5)
F1—Cr1—N291.86 (5)N4—Cr1—N195.83 (6)
N4—Cr1—N2174.40 (5)N2—Cr1—N179.72 (6)
F2—Cr1—N389.38 (5)N3—Cr1—N187.34 (6)
F1—Cr1—N3170.08 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···F1i1.0291.6922.7183 (19)174.84
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors are grateful to Mr Flemming Hansen (Centre of Crystallographic Studies, University of Copenhagen) for collection of the X-ray diffraction data.

References

First citationBrenčič, J. V., Čeh, B. & Leban, I. (1987). Z. Anorg. Allg. Chem. 551, 109–115.  Google Scholar
First citationBrenčič, J. V., Leban, I. & Polanc, I. (1981). Monatsh. Chem. 112, 1359–1368.  Google Scholar
First citationCoppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.  Google Scholar
First citationDelavar, M. & Staples, P. J. (1981). J. Chem. Soc. Dalton Trans. pp. 981–985.  CrossRef Web of Science Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGlerup, J., Josephsen, J., Michelsen, K., Pedersen, E. & Schäffer, C. E. (1970). Acta Chem. Scand. 24, 247–254.  CrossRef CAS Web of Science Google Scholar
First citationKaizaki, S. & Takemoto, H. (1990). Inorg. Chem. 29, 4960–4964.  CrossRef CAS Web of Science Google Scholar
First citationKane-Maguire, N. A. P., Wallace, K. C. & Speece, D. G. (1986). Inorg. Chem. 25, 4650–4654.  CrossRef CAS Web of Science Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamaguchi-Terasaki, Y., Fujihara, T., Nagasawa, A. & Kaizaki, S. (2007). Acta Cryst. E63, m593–m595.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m369-m370
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds