organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Bromo-2,4,6-tri­cyclo­hexyl­benzene

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: joelt@tulane.edu

(Received 13 December 2007; accepted 14 December 2007; online 21 December 2007)

The title compound, C24H25Br, packs efficiently in the crystal structure with no solvent-accessible voids and several inter­molecular H⋯H contacts approximating the sum of the van der Waals radii. The mol­ecule is quite crowded, with intra­molecular Br⋯H and C⋯H contacts ca 0.38 and 0.30 Å, respectively, less than the sum of the corresponding van der Waals radii. All cyclo­hexyl rings adopt chair conformations with the `seat' of the chair inclined at approximately 57–81° to the mean plane of the benzene ring, while those ortho to bromine have their centroids displaced in opposite directions from this plane.

Related literature

For related structures see: Columbus et al. (1994[Columbus, I., Cohen, S. & Biali, S. E. (1994). J. Am. Chem. Soc. 116, 10307-10307.]); Vilardo et al. (2000[Vilardo, J. S., Salberg, M. M., Parker, J. R., Fanwick, P. E. & Rothwell, I. P. (2000). Inorg. Chim. Acta, 299, 135-141.]). For the synthesis see: Kouldelka et al. (1985[Kouldelka, J., Saman, D. & Exner, O. (1985). Collect. Czech. Chem. Commun. 50, 208-214.]). For related literature, see: Saito et al. (2004[Saito, M., Tokitoh, N. & Okazaki, R. (2004). J. Am. Chem. Soc. 126, 15572-15582.]).

[Scheme 1]

Experimental

Crystal data
  • C24H35Br

  • Mr = 403.43

  • Monoclinic, P 21 /c

  • a = 15.510 (1) Å

  • b = 11.6718 (8) Å

  • c = 11.3431 (8) Å

  • β = 99.912 (1)°

  • V = 2022.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.04 mm−1

  • T = 100 (2) K

  • 0.20 × 0.11 × 0.04 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. Version 2.05. University of Göttingen, Germany.]) Tmin = 0.742, Tmax = 0.921

  • 17176 measured reflections

  • 4621 independent reflections

  • 3711 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.090

  • S = 1.08

  • 4621 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) puckering parameters (Å,°)

Ring Q θ φ
C7–C12 0.586 179.6 279.2
C13–C18 0.574 2.5 345.0
C19–C24 0.577 178.2 220.7

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART (Version 5.625) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus. Version 7.03. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2000[Bruker (2000). SMART (Version 5.625) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound (TCBBr, I) has been prepared as a precursor to the Grignard reagent TCBMgBr (Kouldelka et al., 1985) with the latter used to synthesize sterically hindered acetophenones and nitrobenzenes as well as stable stannylenes (R2Sn:), stannanethiones (R2Sn=S) and stannaneselenones (R2Sn=Se) (Saito, et al., 2004). Viewed along the Br-C1vector, the plane defined by C8, C9, C11 and C12 ("seat" of the chair) is inclined at an angle of 57.3 (3)° to the plane of the aromatic ring while C7 is 0.07 (1) Å below the latter plane. Similarly, the plane defined by C20, C21, C23 and C24 is inclined at an angle of 122.4 (3)° with C19 0.07 (1) Å below the plane of the aromatic ring while the plane defined by C14, C15, C17, C18 makes an angle of 81.5 (3)° with the latter plane. The tilt is towards C5 and C13 lies in the plane of the aromatic ring. Additionally, the center of gravity of the C7—C12 ring lies 0.23 (1) Å above the mean plane of the aromatic ring while that of the C19—C24 ring lies 0.51 (1) Å below it. This contrasts with 2,6-dicyclohexyl-3,5-di-tert-butylphenol (Vilardo et al., 2000) and 2,3,6-tricyclohexylbiphenyl (Columbus et al., 1994) where the centers of gravity of the corresponding cyclohexyl groups are essentially in the plane of the aromatic ring (in the former this is required by symmetry). The methine H atoms H7 and H19 point towards the bromine which is the orientation seen in 2,3,6-tricyclohexylbiphenyl but opposite from that in 2,6-dicyclohexyl-3,5-di-tert-butylphenol. All three cyclohexyl groups adopt chair conformations with the pertinent puckering parameters (Cremer & Pople, 1975) listed in Table 1. There are 20 intermolecular H···H contacts that are 0.09 (2)–0.13 (2) Å less than the sum of the van der Waals radii and 14 equal to this sum indicative of the compact molecular packing. In addition there are 12 intramolecular H···C contacts 0.07 (2)–0.30 (2) Å less and 9 intramolecular H···H contacts 0.05 (3)–0.30 (3) Å less than the sums of the respective van der Waals radii. This contrasts with 2,6-dicyclohexyl-3,5-di-tert -butylphenol where no such short contacts are seen and 2,3,6-tricyclohexylbiphenyl where there is one C—H···Cg (Cg is the center of gravity of the central aromatic ring) interaction with H···Cg = 2.71 Å and a C—H···Cg angle of 161°.

Related literature top

For related structures see: Columbus et al. (1994) and Vilardo et al. (2000). For the synthesis see: Kouldelka et al. (1985). For related literature, see: Saito et al. (2004).

Experimental top

The title compound was prepared by the literature method (Kouldelka et al., 1985).

Refinement top

H atoms were included in calculated postions with C—H = 0.95 - 1.00Å and were included in the riding-model approximation with Uiso(H) = 1.2Ueq(C).

Structure description top

The title compound (TCBBr, I) has been prepared as a precursor to the Grignard reagent TCBMgBr (Kouldelka et al., 1985) with the latter used to synthesize sterically hindered acetophenones and nitrobenzenes as well as stable stannylenes (R2Sn:), stannanethiones (R2Sn=S) and stannaneselenones (R2Sn=Se) (Saito, et al., 2004). Viewed along the Br-C1vector, the plane defined by C8, C9, C11 and C12 ("seat" of the chair) is inclined at an angle of 57.3 (3)° to the plane of the aromatic ring while C7 is 0.07 (1) Å below the latter plane. Similarly, the plane defined by C20, C21, C23 and C24 is inclined at an angle of 122.4 (3)° with C19 0.07 (1) Å below the plane of the aromatic ring while the plane defined by C14, C15, C17, C18 makes an angle of 81.5 (3)° with the latter plane. The tilt is towards C5 and C13 lies in the plane of the aromatic ring. Additionally, the center of gravity of the C7—C12 ring lies 0.23 (1) Å above the mean plane of the aromatic ring while that of the C19—C24 ring lies 0.51 (1) Å below it. This contrasts with 2,6-dicyclohexyl-3,5-di-tert-butylphenol (Vilardo et al., 2000) and 2,3,6-tricyclohexylbiphenyl (Columbus et al., 1994) where the centers of gravity of the corresponding cyclohexyl groups are essentially in the plane of the aromatic ring (in the former this is required by symmetry). The methine H atoms H7 and H19 point towards the bromine which is the orientation seen in 2,3,6-tricyclohexylbiphenyl but opposite from that in 2,6-dicyclohexyl-3,5-di-tert-butylphenol. All three cyclohexyl groups adopt chair conformations with the pertinent puckering parameters (Cremer & Pople, 1975) listed in Table 1. There are 20 intermolecular H···H contacts that are 0.09 (2)–0.13 (2) Å less than the sum of the van der Waals radii and 14 equal to this sum indicative of the compact molecular packing. In addition there are 12 intramolecular H···C contacts 0.07 (2)–0.30 (2) Å less and 9 intramolecular H···H contacts 0.05 (3)–0.30 (3) Å less than the sums of the respective van der Waals radii. This contrasts with 2,6-dicyclohexyl-3,5-di-tert -butylphenol where no such short contacts are seen and 2,3,6-tricyclohexylbiphenyl where there is one C—H···Cg (Cg is the center of gravity of the central aromatic ring) interaction with H···Cg = 2.71 Å and a C—H···Cg angle of 161°.

For related structures see: Columbus et al. (1994) and Vilardo et al. (2000). For the synthesis see: Kouldelka et al. (1985). For related literature, see: Saito et al. (2004).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. Molecular structure of I. Displacement ellipsoids are drawn at the 50% probability level. H-atoms are drawn as spheres of arbitrary radius.
1-Bromo-2,4,6-tricyclohexylbenzene top
Crystal data top
C24H35BrF(000) = 856
Mr = 403.43Dx = 1.325 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7741 reflections
a = 15.510 (1) Åθ = 2.2–28.2°
b = 11.6718 (8) ŵ = 2.04 mm1
c = 11.3431 (8) ÅT = 100 K
β = 99.912 (1)°Plate, colorless
V = 2022.7 (2) Å30.20 × 0.11 × 0.04 mm
Z = 4
Data collection top
Bruker SMART APEXI CCD area-detector
diffractometer
4621 independent reflections
Radiation source: fine-focus sealed tube3711 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
phi and ω scansθmax = 27.5°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 2020
Tmin = 0.742, Tmax = 0.921k = 1515
17176 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0478P)2]
where P = (Fo2 + 2Fc2)/3
4621 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C24H35BrV = 2022.7 (2) Å3
Mr = 403.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.510 (1) ŵ = 2.04 mm1
b = 11.6718 (8) ÅT = 100 K
c = 11.3431 (8) Å0.20 × 0.11 × 0.04 mm
β = 99.912 (1)°
Data collection top
Bruker SMART APEXI CCD area-detector
diffractometer
4621 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
3711 reflections with I > 2σ(I)
Tmin = 0.742, Tmax = 0.921Rint = 0.044
17176 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.08Δρmax = 0.48 e Å3
4621 reflectionsΔρmin = 0.32 e Å3
226 parameters
Special details top

Experimental. The diffraction data were collected in three sets of 606 frames (ω scans, 0.3°/scan) at φ settings of 0, 120 and 240°.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms were placed in calculated positions (C—H = 0.95 - 0.98 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached carbon atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.629009 (15)0.56395 (2)1.082654 (19)0.01661 (8)
C10.68387 (15)0.56480 (19)0.94340 (19)0.0126 (4)
C20.63806 (15)0.61497 (19)0.8383 (2)0.0131 (5)
C30.68065 (15)0.61665 (19)0.7398 (2)0.0138 (5)
H30.65250.65250.66820.017*
C40.76278 (15)0.56804 (19)0.7419 (2)0.0138 (5)
C50.80369 (15)0.51719 (19)0.8475 (2)0.0135 (5)
H50.85950.48300.84940.016*
C60.76628 (15)0.51420 (19)0.95094 (19)0.0126 (5)
C70.54657 (15)0.66413 (19)0.83056 (19)0.0134 (5)
H70.51600.61710.88450.016*
C80.49112 (15)0.6580 (2)0.7052 (2)0.0176 (5)
H8A0.51940.70360.64890.021*
H8B0.48760.57750.67730.021*
C90.39895 (15)0.7037 (2)0.7055 (2)0.0178 (5)
H9A0.36490.70070.62330.021*
H9B0.36910.65470.75720.021*
C100.40203 (16)0.8265 (2)0.7510 (2)0.0192 (5)
H10A0.34180.85370.75310.023*
H10B0.42780.87670.69580.023*
C110.45671 (15)0.8340 (2)0.8763 (2)0.0183 (5)
H11A0.42810.78900.93280.022*
H11B0.46010.91470.90330.022*
C120.54896 (15)0.78791 (19)0.8769 (2)0.0154 (5)
H12A0.58250.79070.95940.019*
H12B0.57930.83710.82590.019*
C130.80663 (15)0.56872 (19)0.63217 (19)0.0129 (4)
H130.85990.51930.65080.015*
C140.74858 (16)0.5171 (2)0.5220 (2)0.0178 (5)
H14A0.73090.43860.54090.021*
H14B0.69490.56390.50080.021*
C150.79693 (17)0.5128 (2)0.4158 (2)0.0207 (5)
H15A0.75690.48340.34470.025*
H15B0.84690.45910.43390.025*
C160.83072 (18)0.6307 (2)0.3873 (2)0.0245 (6)
H16A0.78050.68150.35830.029*
H16B0.86590.62330.32260.029*
C170.88686 (17)0.6843 (2)0.4972 (2)0.0215 (5)
H17A0.90370.76290.47760.026*
H17B0.94110.63890.51980.026*
C180.83754 (16)0.6886 (2)0.6028 (2)0.0167 (5)
H18A0.78630.74000.58300.020*
H18B0.87630.72030.67370.020*
C190.81235 (15)0.45326 (19)1.06289 (19)0.0137 (5)
H190.79580.49361.13350.016*
C200.91201 (15)0.4548 (2)1.0778 (2)0.0204 (5)
H20A0.93270.53511.07890.024*
H20B0.93040.41581.00870.024*
C210.95395 (16)0.3951 (2)1.1937 (2)0.0230 (6)
H21A1.01840.39571.19990.028*
H21B0.93920.43761.26310.028*
C220.92215 (16)0.2718 (2)1.1973 (2)0.0231 (6)
H22A0.94730.23681.27510.028*
H22B0.94250.22701.13320.028*
C230.82232 (16)0.2673 (2)1.1803 (2)0.0190 (5)
H23A0.80300.18641.17680.023*
H23B0.80260.30381.24980.023*
C240.78019 (16)0.3286 (2)1.0658 (2)0.0171 (5)
H24A0.71580.32811.06030.021*
H24B0.79440.28670.99570.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01767 (13)0.02172 (14)0.01130 (12)0.00188 (10)0.00488 (9)0.00310 (10)
C10.0161 (11)0.0139 (11)0.0091 (10)0.0030 (9)0.0054 (9)0.0000 (9)
C20.0145 (11)0.0122 (11)0.0125 (11)0.0019 (9)0.0016 (9)0.0002 (9)
C30.0172 (12)0.0139 (11)0.0098 (10)0.0000 (9)0.0008 (9)0.0007 (9)
C40.0176 (11)0.0126 (11)0.0113 (10)0.0037 (9)0.0027 (9)0.0001 (9)
C50.0135 (11)0.0132 (11)0.0133 (11)0.0011 (9)0.0009 (9)0.0009 (9)
C60.0157 (11)0.0106 (11)0.0107 (11)0.0024 (9)0.0001 (9)0.0007 (9)
C70.0155 (11)0.0148 (12)0.0101 (10)0.0004 (9)0.0032 (9)0.0011 (9)
C80.0185 (12)0.0201 (12)0.0131 (11)0.0033 (10)0.0002 (9)0.0034 (10)
C90.0144 (12)0.0232 (13)0.0149 (11)0.0014 (10)0.0004 (9)0.0012 (10)
C100.0185 (13)0.0186 (12)0.0208 (12)0.0043 (10)0.0048 (10)0.0041 (10)
C110.0213 (13)0.0138 (12)0.0205 (12)0.0023 (10)0.0055 (10)0.0009 (10)
C120.0194 (12)0.0155 (12)0.0119 (11)0.0008 (9)0.0040 (9)0.0002 (9)
C130.0153 (11)0.0141 (11)0.0096 (10)0.0016 (9)0.0030 (9)0.0002 (9)
C140.0210 (13)0.0185 (12)0.0137 (11)0.0012 (10)0.0024 (10)0.0004 (10)
C150.0266 (14)0.0247 (14)0.0110 (12)0.0003 (11)0.0042 (10)0.0021 (10)
C160.0351 (15)0.0245 (14)0.0162 (12)0.0034 (12)0.0110 (11)0.0046 (11)
C170.0271 (14)0.0179 (12)0.0217 (13)0.0002 (10)0.0101 (11)0.0033 (10)
C180.0211 (12)0.0141 (11)0.0157 (11)0.0001 (10)0.0054 (9)0.0003 (9)
C190.0174 (12)0.0168 (12)0.0068 (10)0.0000 (9)0.0015 (9)0.0008 (9)
C200.0147 (12)0.0281 (14)0.0175 (12)0.0021 (10)0.0005 (10)0.0077 (10)
C210.0165 (13)0.0308 (14)0.0192 (13)0.0010 (11)0.0040 (10)0.0094 (11)
C220.0220 (13)0.0277 (14)0.0189 (13)0.0060 (11)0.0016 (10)0.0072 (11)
C230.0226 (13)0.0180 (12)0.0160 (12)0.0001 (10)0.0022 (10)0.0035 (10)
C240.0187 (12)0.0171 (12)0.0149 (11)0.0012 (10)0.0011 (9)0.0003 (9)
Geometric parameters (Å, º) top
Br1—C11.919 (2)C14—C151.526 (3)
C1—C61.397 (3)C14—H14A0.9900
C1—C21.406 (3)C14—H14B0.9900
C2—C31.393 (3)C15—C161.526 (4)
C2—C71.519 (3)C15—H15A0.9900
C3—C41.391 (3)C15—H15B0.9900
C3—H30.9500C16—C171.526 (4)
C4—C51.388 (3)C16—H16A0.9900
C4—C131.518 (3)C16—H16B0.9900
C5—C61.396 (3)C17—C181.529 (3)
C5—H50.9500C17—H17A0.9900
C6—C191.522 (3)C17—H17B0.9900
C7—C81.532 (3)C18—H18A0.9900
C7—C121.536 (3)C18—H18B0.9900
C7—H71.0000C19—C201.526 (3)
C8—C91.526 (3)C19—C241.541 (3)
C8—H8A0.9900C19—H191.0000
C8—H8B0.9900C20—C211.531 (3)
C9—C101.522 (3)C20—H20A0.9900
C9—H9A0.9900C20—H20B0.9900
C9—H9B0.9900C21—C221.524 (4)
C10—C111.527 (3)C21—H21A0.9900
C10—H10A0.9900C21—H21B0.9900
C10—H10B0.9900C22—C231.528 (3)
C11—C121.527 (3)C22—H22A0.9900
C11—H11A0.9900C22—H22B0.9900
C11—H11B0.9900C23—C241.527 (3)
C12—H12A0.9900C23—H23A0.9900
C12—H12B0.9900C23—H23B0.9900
C13—C141.532 (3)C24—H24A0.9900
C13—C181.534 (3)C24—H24B0.9900
C13—H131.0000
C6—C1—C2123.5 (2)C15—C14—H14B109.5
C6—C1—Br1118.56 (16)C13—C14—H14B109.5
C2—C1—Br1117.97 (16)H14A—C14—H14B108.0
C3—C2—C1116.5 (2)C14—C15—C16111.8 (2)
C3—C2—C7121.0 (2)C14—C15—H15A109.3
C1—C2—C7122.5 (2)C16—C15—H15A109.3
C4—C3—C2122.7 (2)C14—C15—H15B109.3
C4—C3—H3118.7C16—C15—H15B109.3
C2—C3—H3118.7H15A—C15—H15B107.9
C5—C4—C3118.1 (2)C15—C16—C17111.4 (2)
C5—C4—C13120.5 (2)C15—C16—H16A109.3
C3—C4—C13121.5 (2)C17—C16—H16A109.3
C4—C5—C6122.8 (2)C15—C16—H16B109.3
C4—C5—H5118.6C17—C16—H16B109.3
C6—C5—H5118.6H16A—C16—H16B108.0
C5—C6—C1116.5 (2)C16—C17—C18111.2 (2)
C5—C6—C19120.6 (2)C16—C17—H17A109.4
C1—C6—C19122.8 (2)C18—C17—H17A109.4
C2—C7—C8113.94 (18)C16—C17—H17B109.4
C2—C7—C12111.61 (18)C18—C17—H17B109.4
C8—C7—C12109.78 (18)H17A—C17—H17B108.0
C2—C7—H7107.0C17—C18—C13110.95 (19)
C8—C7—H7107.0C17—C18—H18A109.5
C12—C7—H7107.0C13—C18—H18A109.5
C9—C8—C7110.99 (19)C17—C18—H18B109.5
C9—C8—H8A109.4C13—C18—H18B109.5
C7—C8—H8A109.4H18A—C18—H18B108.0
C9—C8—H8B109.4C6—C19—C20114.07 (19)
C7—C8—H8B109.4C6—C19—C24110.62 (18)
H8A—C8—H8B108.0C20—C19—C24109.54 (19)
C10—C9—C8110.8 (2)C6—C19—H19107.4
C10—C9—H9A109.5C20—C19—H19107.4
C8—C9—H9A109.5C24—C19—H19107.4
C10—C9—H9B109.5C19—C20—C21111.2 (2)
C8—C9—H9B109.5C19—C20—H20A109.4
H9A—C9—H9B108.1C21—C20—H20A109.4
C9—C10—C11110.45 (19)C19—C20—H20B109.4
C9—C10—H10A109.6C21—C20—H20B109.4
C11—C10—H10A109.6H20A—C20—H20B108.0
C9—C10—H10B109.6C22—C21—C20111.2 (2)
C11—C10—H10B109.6C22—C21—H21A109.4
H10A—C10—H10B108.1C20—C21—H21A109.4
C10—C11—C12110.75 (19)C22—C21—H21B109.4
C10—C11—H11A109.5C20—C21—H21B109.4
C12—C11—H11A109.5H21A—C21—H21B108.0
C10—C11—H11B109.5C21—C22—C23110.7 (2)
C12—C11—H11B109.5C21—C22—H22A109.5
H11A—C11—H11B108.1C23—C22—H22A109.5
C11—C12—C7111.23 (19)C21—C22—H22B109.5
C11—C12—H12A109.4C23—C22—H22B109.5
C7—C12—H12A109.4H22A—C22—H22B108.1
C11—C12—H12B109.4C24—C23—C22111.6 (2)
C7—C12—H12B109.4C24—C23—H23A109.3
H12A—C12—H12B108.0C22—C23—H23A109.3
C4—C13—C14112.55 (19)C24—C23—H23B109.3
C4—C13—C18112.58 (18)C22—C23—H23B109.3
C14—C13—C18110.07 (19)H23A—C23—H23B108.0
C4—C13—H13107.1C23—C24—C19111.56 (19)
C14—C13—H13107.1C23—C24—H24A109.3
C18—C13—H13107.1C19—C24—H24A109.3
C15—C14—C13110.94 (19)C23—C24—H24B109.3
C15—C14—H14A109.5C19—C24—H24B109.3
C13—C14—H14A109.5H24A—C24—H24B108.0
C6—C1—C2—C32.6 (3)C2—C7—C12—C11176.34 (18)
Br1—C1—C2—C3178.47 (16)C8—C7—C12—C1156.3 (2)
C6—C1—C2—C7176.8 (2)C5—C4—C13—C14125.1 (2)
Br1—C1—C2—C72.1 (3)C3—C4—C13—C1454.1 (3)
C1—C2—C3—C42.3 (3)C5—C4—C13—C18109.8 (2)
C7—C2—C3—C4177.1 (2)C3—C4—C13—C1871.0 (3)
C2—C3—C4—C50.7 (3)C4—C13—C14—C15176.62 (19)
C2—C3—C4—C13178.5 (2)C18—C13—C14—C1556.9 (3)
C3—C4—C5—C60.8 (3)C13—C14—C15—C1655.6 (3)
C13—C4—C5—C6180.0 (2)C14—C15—C16—C1754.2 (3)
C4—C5—C6—C10.5 (3)C15—C16—C17—C1854.5 (3)
C4—C5—C6—C19177.6 (2)C16—C17—C18—C1356.5 (3)
C2—C1—C6—C51.2 (3)C4—C13—C18—C17176.06 (19)
Br1—C1—C6—C5179.83 (16)C14—C13—C18—C1757.5 (3)
C2—C1—C6—C19175.8 (2)C5—C6—C19—C2030.8 (3)
Br1—C1—C6—C193.1 (3)C1—C6—C19—C20152.3 (2)
C3—C2—C7—C828.9 (3)C5—C6—C19—C2493.2 (3)
C1—C2—C7—C8150.4 (2)C1—C6—C19—C2483.7 (3)
C3—C2—C7—C1296.1 (2)C6—C19—C20—C21178.4 (2)
C1—C2—C7—C1284.5 (3)C24—C19—C20—C2157.0 (3)
C2—C7—C8—C9177.37 (19)C19—C20—C21—C2257.6 (3)
C12—C7—C8—C956.6 (3)C20—C21—C22—C2355.6 (3)
C7—C8—C9—C1057.7 (3)C21—C22—C23—C2454.8 (3)
C8—C9—C10—C1157.3 (3)C22—C23—C24—C1955.6 (3)
C9—C10—C11—C1256.9 (3)C6—C19—C24—C23177.29 (19)
C10—C11—C12—C756.8 (3)C20—C19—C24—C2356.1 (2)

Experimental details

Crystal data
Chemical formulaC24H35Br
Mr403.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)15.510 (1), 11.6718 (8), 11.3431 (8)
β (°) 99.912 (1)
V3)2022.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.04
Crystal size (mm)0.20 × 0.11 × 0.04
Data collection
DiffractometerBruker SMART APEXI CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.742, 0.921
No. of measured, independent and
observed [I > 2σ(I)] reflections
17176, 4621, 3711
Rint0.044
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.090, 1.08
No. of reflections4621
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.32

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000).

Cremer & Pople (1975) puckering parameters (Å,°) top
RingQθφ
C7–C120.586179.6279.2
C13–C180.5742.5345.0
C19–C240.577178.2220.7
 

Acknowledgements

We thank the Chemistry Department of Tulane University for support of the X-ray laboratory, and the Louisiana Board of Regents through the Louisiana Educational Quality Support Fund (Grant LEQSF (2003–2003)-ENH-TR-67) for the purchase of the APEX diffractometer.

References

First citationBruker (2000). SMART (Version 5.625) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). SAINT-Plus. Version 7.03. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationColumbus, I., Cohen, S. & Biali, S. E. (1994). J. Am. Chem. Soc. 116, 10307–10307.  CSD CrossRef Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationKouldelka, J., Saman, D. & Exner, O. (1985). Collect. Czech. Chem. Commun. 50, 208–214.  Google Scholar
First citationSaito, M., Tokitoh, N. & Okazaki, R. (2004). J. Am. Chem. Soc. 126, 15572–15582.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2002). SADABS. Version 2.05. University of Göttingen, Germany.  Google Scholar
First citationVilardo, J. S., Salberg, M. M., Parker, J. R., Fanwick, P. E. & Rothwell, I. P. (2000). Inorg. Chim. Acta, 299, 135–141.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds