metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Aceto­nitrile)[bis­­(2-pyridylmeth­yl)amine]bis­­(perchlorato)copper(II)

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 20 November 2007; accepted 14 December 2007; online 21 December 2007)

In the title compound, [Cu(ClO4)2(C12H13N3)(C2H3N)], the CuII atom is six-coordinate in a Jahn–Teller distorted octahedral geometry, with coordination by the tridentate chelating ligand, an acetonitrile mol­ecule, and two axial perchlorate anions. The tridentate ligand bis­(2-pyridylmeth­yl)amine chelates meridionally and equatorially while an acetonitrile mol­ecule is coordinated at the fourth equatorial site. The two perchlorate anions are disordered with site occupancy factors of 0.72/0.28. The amine H is involved in intra­molecular hydrogen bonding to the perchlorate O atoms and there are extensive but weak inter­molecular C—H⋯O inter­actions.

Related literature

For related literature, see: Belle et al. (2002[Belle, C., Beguin, C., Gautier-Luneau, I., Hamman, S., Philouze, C., Pierre, J. L., Thomas, F. & Storelli, S. (2002). Inorg. Chem. 41, 479-491.]); Gultneh et al. (1999[Gultneh, Y., Khan, A. R., Blaize, D., Chaudhry, S., Ahvazi, B., Marvey, B. B. & Butcher, R. J. (1999). J. Inorg. Biochem. 75, 7-18.]); Humphreys et al. (2002[Humphreys, K. J., Karlin, K. D. & Rokita, S. E. (2002). J. Am. Chem. Soc. 124, 8055-8066.]); Palaniandavar et al. (1995[Palaniandavar, M., Pandiyan, T., Lakshiminarayanan, M. & Manohar, H. J. (1995). J. Chem. Soc. Dalton Trans. pp. 455-461.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(ClO4)2(C12H13N3)(C2H3N)]

  • Mr = 502.75

  • Monoclinic, P 21 /c

  • a = 8.3046 (16) Å

  • b = 31.453 (4) Å

  • c = 8.4978 (11) Å

  • β = 118.646 (10)°

  • V = 1948.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.45 mm−1

  • T = 293 (2) K

  • 0.45 × 0.21 × 0.07 mm

Data collection
  • Bruker P4S diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.757, Tmax = 0.964 (expected range = 0.709–0.904)

  • 4638 measured reflections

  • 4347 independent reflections

  • 2718 reflections with I > 2σ(I)

  • Rint = 0.030

  • 3 standard reflections every 97 reflections intensity decay: <2%

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.193

  • S = 1.04

  • 4347 reflections

  • 320 parameters

  • 92 restraints

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H0A⋯O22A 0.91 2.45 2.89 (3) 110
N—H0A⋯O23 0.91 2.30 3.084 (12) 144
N—H0A⋯O23i 0.91 2.50 3.317 (10) 150
C2—H21⋯O13Aii 0.96 2.23 2.98 (2) 133
C2—H22⋯O14iii 0.96 2.36 3.103 (14) 134
C1A—H1AA⋯O12ii 0.93 2.46 3.176 (9) 134
C3A—H3AA⋯O23iv 0.93 2.53 3.376 (15) 152
C3A—H3AA⋯O23Aiv 0.93 2.29 2.993 (14) 133
C6A—H6AA⋯O21i 0.97 2.56 3.381 (9) 143
C2B—H2BA⋯O14Av 0.93 2.35 3.112 (16) 140
C3B—H3BA⋯O11vi 0.93 2.56 3.429 (10) 156
C4B—H4BA⋯O24Avii 0.93 2.25 3.06 (3) 145
C6B—H6BA⋯O12 0.97 2.56 3.425 (13) 149
C6B—H6BB⋯O24Avii 0.97 2.51 3.211 (16) 129
Symmetry codes: (i) -x+2, -y, -z; (ii) x, y, z+1; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) -x+1, -y, -z; (v) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) x+1, y, z; (vii) x, y, z-1.

Data collection: XSCANS (Bruker, 1997[Bruker (1997). XSCANS. Version 2.20. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990[Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2000[Bruker (2000). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Bis(2-pyridylmethyl)amine (L1) has been used as a chelating ligand for several metal ions, as a single unit, or as two or more units bridged by other groups (such as m-xylyl spaces or aliphatic hydrocarbon chains) through the amine N atom (Gultneh et al., 1999; Palaniandavar et al., 1995; Belle et al., 2002; Humphreys et al., 2002). We report here the structure of the copper (II) complex of the ligand L1. The complex was synthesized by the reaction of L1 with Cu(ClO4)2.6H2O in acetonitrile.

The crystal structure shows that CuII is six-coordinate in a Jahn-Teller distorted geometry with coordination by the tridentate chelating ligand, an acetonitrile molecule, and two axial perchlorate anions (Fig. 1.). The tridentate ligand L1 is chelating meridionally and equatorially while an acetonitrile molecule is coordinated at the fourth equatorial site. One axial perchlorate group is at a CuII—OClO3- distance of 2.455 (9) Å while the other is at 2.828 (5) Å consistent with its expected Jahn-Teller elongation (O—Cu—O angle 169.1 (2)°). The mutually trans Cu—Npy distances are 1.980 (5) Å and 1.984 (5) Å and span an angle of 165.3 (2)°. The Cu—Namine bond distance is 1.991 (5) Å. The Cu—Nacetonitrile bond distance of 1.980 (5) Å is comparable to the Cu—N distances of the N atoms. The amine H is involved in intramolecular hydrogen bonding to the perchlorate O atoms and there are extensive but weak intermolecular C—H···O interactions. (Table 1.).

Related literature top

For related literature, see: Belle et al. (2002); Gultneh et al. (1999); Humphreys et al. (2002); Palaniandavar et al. (1995).

Experimental top

The title compound, bis(2-pyridylmethyl)amine copper(II) acetonitrile bis(perchlorate), was obtained by refluxing bis(2-pyridylmethyl)amine (2 mmol) and copper(II) perchlorate hexahydrate (2 mmol) in 200 ml of acetonitrile for 1 h. The product deposited on cooling the solution. Suitable crystals suited for crystallographic structure determination were obtained by slow diffusion of diethyl ether into the nitromethane solution of the complex.

Refinement top

The two perchlorate anions are disordered such that O11 and O21 are unique and the remaining O atoms are disordered over two conformations with occupancy factors of 0.708 (9), 0.292 (9) and 0.73 (3), 0.27 (3), respectively. The H atoms were idealized with an N—H distance of 0.91 and C—H distances were idealized at 0.93 (aromatic C—H), 0.96 (CH3), and 0.97 (CH2) Å and Uiso(H) = 1.2Ueq(C) (1.5Ueq(C) for the CH3 protons).

Structure description top

Bis(2-pyridylmethyl)amine (L1) has been used as a chelating ligand for several metal ions, as a single unit, or as two or more units bridged by other groups (such as m-xylyl spaces or aliphatic hydrocarbon chains) through the amine N atom (Gultneh et al., 1999; Palaniandavar et al., 1995; Belle et al., 2002; Humphreys et al., 2002). We report here the structure of the copper (II) complex of the ligand L1. The complex was synthesized by the reaction of L1 with Cu(ClO4)2.6H2O in acetonitrile.

The crystal structure shows that CuII is six-coordinate in a Jahn-Teller distorted geometry with coordination by the tridentate chelating ligand, an acetonitrile molecule, and two axial perchlorate anions (Fig. 1.). The tridentate ligand L1 is chelating meridionally and equatorially while an acetonitrile molecule is coordinated at the fourth equatorial site. One axial perchlorate group is at a CuII—OClO3- distance of 2.455 (9) Å while the other is at 2.828 (5) Å consistent with its expected Jahn-Teller elongation (O—Cu—O angle 169.1 (2)°). The mutually trans Cu—Npy distances are 1.980 (5) Å and 1.984 (5) Å and span an angle of 165.3 (2)°. The Cu—Namine bond distance is 1.991 (5) Å. The Cu—Nacetonitrile bond distance of 1.980 (5) Å is comparable to the Cu—N distances of the N atoms. The amine H is involved in intramolecular hydrogen bonding to the perchlorate O atoms and there are extensive but weak intermolecular C—H···O interactions. (Table 1.).

For related literature, see: Belle et al. (2002); Gultneh et al. (1999); Humphreys et al. (2002); Palaniandavar et al. (1995).

Computing details top

Data collection: XSCANS (Bruker, 1997); cell refinement: XSCANS (Bruker, 1997); data reduction: XSCANS (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. The title compound with numbering scheme used. Ellipsoids are drawn at the 20% probability level.
[Figure 2] Fig. 2. The packing arrangement viewed down the c axis showing the intramolecular N—H···O and intermolecular C—H···O interactions in dashed lines.
(Acetonitrile)[bis(2-pyridylmethyl)amine]bis(perchlorato)copper(II) top
Crystal data top
[Cu(ClO4)2(C12H13N3)(C2H3N)]F(000) = 1020
Mr = 502.75Dx = 1.714 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 54 reflections
a = 8.3046 (16) Åθ = 2.6–13.1°
b = 31.453 (4) ŵ = 1.45 mm1
c = 8.4978 (11) ÅT = 293 K
β = 118.646 (10)°Plate, blue
V = 1948.0 (5) Å30.45 × 0.21 × 0.07 mm
Z = 4
Data collection top
Bruker P4S
diffractometer
2718 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 27.5°, θmin = 2.6°
2θ/ω scansh = 09
Absorption correction: empirical (using intensity measurements) via psi scans
(North et al., 1968)
k = 400
Tmin = 0.757, Tmax = 0.964l = 119
4638 measured reflections3 standard reflections every 97 reflections
4347 independent reflections intensity decay: <2
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.193H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0863P)2 + 3.5739P]
where P = (Fo2 + 2Fc2)/3
4347 reflections(Δ/σ)max = 0.001
320 parametersΔρmax = 0.49 e Å3
92 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Cu(ClO4)2(C12H13N3)(C2H3N)]V = 1948.0 (5) Å3
Mr = 502.75Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.3046 (16) ŵ = 1.45 mm1
b = 31.453 (4) ÅT = 293 K
c = 8.4978 (11) Å0.45 × 0.21 × 0.07 mm
β = 118.646 (10)°
Data collection top
Bruker P4S
diffractometer
2718 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements) via psi scans
(North et al., 1968)
Rint = 0.030
Tmin = 0.757, Tmax = 0.9643 standard reflections every 97 reflections
4638 measured reflections intensity decay: <2
4347 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06492 restraints
wR(F2) = 0.193H-atom parameters constrained
S = 1.04Δρmax = 0.49 e Å3
4347 reflectionsΔρmin = 0.46 e Å3
320 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu0.85396 (9)0.12165 (2)0.01007 (9)0.0455 (2)
Cl10.5466 (2)0.19134 (7)0.4772 (2)0.0704 (5)
Cl21.07924 (18)0.04196 (5)0.29953 (18)0.0480 (4)
O110.6293 (8)0.1760 (2)0.2975 (7)0.104 (2)
O120.5827 (15)0.1680 (3)0.5954 (12)0.107 (4)0.708 (9)
O130.3563 (10)0.1998 (4)0.5489 (12)0.106 (3)0.708 (9)
O140.6252 (16)0.2343 (3)0.4642 (15)0.128 (4)0.708 (9)
O12A0.412 (3)0.1546 (6)0.561 (3)0.123 (7)0.292 (9)
O13A0.673 (3)0.1865 (9)0.538 (3)0.121 (8)0.292 (9)
O14A0.449 (3)0.2264 (6)0.510 (3)0.134 (8)0.292 (9)
O211.2524 (7)0.0234 (2)0.4056 (8)0.105 (2)
O221.0940 (12)0.0848 (3)0.2525 (18)0.073 (3)0.73 (3)
O230.9968 (17)0.0176 (3)0.1363 (12)0.091 (4)0.73 (3)
O240.9656 (18)0.0399 (5)0.378 (2)0.114 (5)0.73 (3)
O22A1.083 (3)0.0726 (9)0.180 (4)0.061 (5)0.27 (3)
O23A0.945 (3)0.0114 (7)0.200 (4)0.103 (11)0.27 (3)
O24A1.031 (4)0.0626 (11)0.422 (3)0.120 (13)0.27 (3)
N0.8033 (7)0.07655 (17)0.1923 (6)0.0535 (12)
H0A0.87220.05360.13260.064*
N10.8876 (7)0.16941 (18)0.1547 (7)0.0578 (13)
N1A0.6448 (6)0.09486 (15)0.0037 (6)0.0437 (10)
N1B1.0370 (7)0.14026 (16)0.0821 (7)0.0505 (12)
C10.9117 (9)0.1962 (2)0.2536 (9)0.0592 (16)
C20.9472 (12)0.2296 (3)0.3847 (12)0.085 (2)
H210.91790.21940.47460.127*
H220.87260.25390.32590.127*
H231.07440.23750.44020.127*
C1A0.5988 (8)0.1008 (2)0.1336 (7)0.0501 (14)
H1AA0.66350.12060.22370.060*
C2A0.4574 (8)0.0783 (2)0.1363 (8)0.0568 (16)
H2AA0.43020.08200.22960.068*
C3A0.3585 (8)0.0508 (2)0.0004 (9)0.0579 (16)
H3AA0.26030.03610.00170.069*
C4A0.4043 (8)0.04453 (19)0.1353 (9)0.0544 (15)
H4AA0.33830.02560.22850.065*
C5A0.5498 (7)0.06705 (18)0.1285 (7)0.0440 (12)
C6A0.6090 (8)0.0636 (2)0.2696 (8)0.0608 (17)
H6AA0.59460.03450.31260.073*
H6AB0.53310.08180.37040.073*
C1B1.1723 (8)0.1693 (2)0.0060 (9)0.0613 (17)
H1BA1.18570.18090.11230.074*
C2B1.2893 (10)0.1821 (3)0.0557 (13)0.081 (2)
H2BA1.38170.20180.00700.097*
C3B1.2643 (11)0.1644 (3)0.2174 (13)0.090 (3)
H3BA1.33840.17310.26580.108*
C4B1.1319 (11)0.1345 (3)0.3037 (11)0.075 (2)
H4BA1.11760.12200.40870.090*
C5B1.0171 (9)0.1229 (2)0.2317 (9)0.0580 (16)
C6B0.8664 (10)0.0902 (2)0.3200 (8)0.0624 (17)
H6BA0.76470.10240.42590.075*
H6BB0.91200.06590.35690.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0421 (4)0.0597 (5)0.0456 (4)0.0037 (3)0.0299 (3)0.0057 (3)
Cl10.0599 (10)0.0979 (14)0.0629 (10)0.0036 (9)0.0371 (9)0.0078 (9)
Cl20.0430 (7)0.0613 (9)0.0422 (7)0.0001 (6)0.0225 (6)0.0009 (6)
O110.086 (4)0.151 (6)0.072 (4)0.032 (4)0.036 (3)0.023 (4)
O120.120 (8)0.114 (8)0.098 (6)0.021 (6)0.061 (6)0.035 (5)
O130.070 (5)0.147 (9)0.101 (6)0.021 (5)0.041 (5)0.001 (6)
O140.146 (9)0.093 (7)0.154 (9)0.027 (6)0.079 (8)0.022 (6)
O12A0.110 (12)0.124 (13)0.105 (11)0.020 (11)0.026 (10)0.011 (11)
O13A0.122 (16)0.131 (18)0.163 (16)0.012 (13)0.110 (13)0.011 (14)
O14A0.122 (13)0.092 (12)0.166 (13)0.027 (12)0.050 (13)0.006 (12)
O210.066 (3)0.113 (5)0.103 (5)0.021 (3)0.014 (3)0.016 (4)
O220.070 (4)0.064 (5)0.072 (6)0.010 (4)0.023 (4)0.004 (4)
O230.099 (7)0.075 (6)0.057 (5)0.009 (5)0.003 (5)0.010 (4)
O240.127 (9)0.137 (11)0.137 (10)0.022 (8)0.111 (9)0.025 (8)
O22A0.065 (7)0.066 (9)0.065 (9)0.014 (7)0.041 (8)0.020 (7)
O23A0.101 (19)0.106 (19)0.08 (2)0.064 (15)0.026 (15)0.010 (14)
O24A0.22 (4)0.11 (2)0.076 (16)0.01 (2)0.11 (2)0.034 (16)
N0.057 (3)0.071 (3)0.045 (3)0.001 (2)0.035 (2)0.003 (2)
N10.056 (3)0.065 (3)0.065 (3)0.009 (3)0.039 (3)0.014 (3)
N1A0.040 (2)0.049 (3)0.050 (3)0.000 (2)0.028 (2)0.000 (2)
N1B0.049 (3)0.061 (3)0.054 (3)0.013 (2)0.035 (2)0.014 (2)
C10.049 (3)0.074 (5)0.060 (4)0.004 (3)0.030 (3)0.005 (3)
C20.094 (6)0.067 (5)0.100 (6)0.017 (4)0.053 (5)0.029 (4)
C1A0.042 (3)0.074 (4)0.042 (3)0.002 (3)0.026 (3)0.006 (3)
C2A0.043 (3)0.084 (5)0.054 (4)0.001 (3)0.032 (3)0.007 (3)
C3A0.039 (3)0.072 (4)0.066 (4)0.001 (3)0.028 (3)0.015 (3)
C4A0.038 (3)0.049 (3)0.066 (4)0.002 (3)0.017 (3)0.002 (3)
C5A0.036 (3)0.048 (3)0.048 (3)0.008 (2)0.020 (2)0.002 (2)
C6A0.049 (3)0.084 (5)0.048 (3)0.004 (3)0.023 (3)0.016 (3)
C1B0.047 (3)0.063 (4)0.074 (4)0.006 (3)0.030 (3)0.008 (3)
C2B0.055 (4)0.085 (5)0.118 (7)0.010 (4)0.054 (5)0.030 (5)
C3B0.076 (5)0.103 (7)0.125 (8)0.024 (5)0.075 (6)0.053 (6)
C4B0.080 (5)0.093 (6)0.083 (5)0.033 (4)0.064 (4)0.034 (4)
C5B0.055 (4)0.075 (4)0.061 (4)0.019 (3)0.040 (3)0.023 (3)
C6B0.074 (4)0.080 (5)0.051 (3)0.014 (4)0.045 (3)0.003 (3)
Geometric parameters (Å, º) top
Cu—N11.980 (5)N1B—C1B1.360 (8)
Cu—N1B1.980 (5)C1—C21.455 (10)
Cu—N1A1.984 (4)C2—H210.9600
Cu—N1.991 (5)C2—H220.9600
Cu—O22A2.379 (17)C2—H230.9600
Cu—O222.455 (9)C1A—C2A1.380 (8)
Cu—O112.828 (5)C1A—H1AA0.9300
Cl1—O14A1.317 (13)C2A—C3A1.360 (9)
Cl1—O121.387 (7)C2A—H2AA0.9300
Cl1—O13A1.389 (13)C3A—C4A1.390 (9)
Cl1—O131.420 (7)C3A—H3AA0.9300
Cl1—O111.425 (5)C4A—C5A1.377 (8)
Cl1—O141.483 (8)C4A—H4AA0.9300
Cl1—O12A1.524 (14)C5A—C6A1.503 (8)
Cl2—O241.394 (7)C6A—H6AA0.9700
Cl2—O211.406 (5)C6A—H6AB0.9700
Cl2—O23A1.407 (13)C1B—C2B1.367 (9)
Cl2—O22A1.412 (12)C1B—H1BA0.9300
Cl2—O221.428 (7)C2B—C3B1.403 (12)
Cl2—O24A1.435 (12)C2B—H2BA0.9300
Cl2—O231.438 (7)C3B—C4B1.364 (12)
N—C6A1.477 (8)C3B—H3BA0.9300
N—C6B1.478 (7)C4B—C5B1.405 (8)
N—H0A0.9100C4B—H4BA0.9300
N1—C11.137 (8)C5B—C6B1.512 (10)
N1A—C5A1.341 (7)C6B—H6BA0.9700
N1A—C1A1.344 (6)C6B—H6BB0.9700
N1B—C5B1.320 (8)
N1—Cu—N1B97.2 (2)C1A—N1A—Cu126.2 (4)
N1—Cu—N1A96.40 (19)C5B—N1B—C1B119.8 (5)
N1B—Cu—N1A165.3 (2)C5B—N1B—Cu114.5 (4)
N1—Cu—N175.1 (2)C1B—N1B—Cu125.6 (4)
N1B—Cu—N83.0 (2)N1—C1—C2178.1 (8)
N1A—Cu—N83.01 (19)C1—C2—H21109.5
N1—Cu—O22A102.5 (9)C1—C2—H22109.5
N1B—Cu—O22A85.3 (4)H21—C2—H22109.5
N1A—Cu—O22A97.0 (5)C1—C2—H23109.5
N—Cu—O22A82.4 (9)H21—C2—H23109.5
N1—Cu—O2286.4 (4)H22—C2—H23109.5
N1B—Cu—O2290.6 (3)N1A—C1A—C2A121.4 (6)
N1A—Cu—O2295.6 (3)N1A—C1A—H1AA119.3
N—Cu—O2298.5 (4)C2A—C1A—H1AA119.3
O22A—Cu—O2216.4 (6)C3A—C2A—C1A119.0 (6)
N1—Cu—O1187.9 (2)C3A—C2A—H2AA120.5
N1B—Cu—O1180.84 (18)C1A—C2A—H2AA120.5
N1A—Cu—O1194.23 (19)C2A—C3A—C4A120.0 (6)
N—Cu—O1187.3 (2)C2A—C3A—H3AA120.0
O12—Cl1—O13111.7 (6)C4A—C3A—H3AA120.0
O14A—Cl1—O11116.3 (11)C5A—C4A—C3A118.4 (6)
O12—Cl1—O11115.9 (5)C5A—C4A—H4AA120.8
O13A—Cl1—O11107.6 (10)C3A—C4A—H4AA120.8
O13—Cl1—O11112.9 (5)N1A—C5A—C4A121.5 (5)
O12—Cl1—O14107.2 (6)N1A—C5A—C6A115.4 (5)
O13—Cl1—O14102.8 (6)C4A—C5A—C6A123.1 (5)
O11—Cl1—O14105.1 (5)N—C6A—C5A109.3 (5)
O14A—Cl1—O12A107.3 (12)N—C6A—H6AA109.8
O13A—Cl1—O12A104.8 (12)C5A—C6A—H6AA109.8
O24—Cl2—O21113.2 (6)N—C6A—H6AB109.8
O21—Cl2—O23A112.0 (11)C5A—C6A—H6AB109.8
O21—Cl2—O22A112.0 (9)H6AA—C6A—H6AB108.3
O23A—Cl2—O22A108.6 (10)N1B—C1B—C2B122.6 (7)
O24—Cl2—O22110.2 (6)N1B—C1B—H1BA118.7
O21—Cl2—O22111.8 (4)C2B—C1B—H1BA118.7
O21—Cl2—O24A106.0 (10)C1B—C2B—C3B117.4 (8)
O23A—Cl2—O24A109.1 (12)C1B—C2B—H2BA121.3
O22A—Cl2—O24A108.9 (11)C3B—C2B—H2BA121.3
O24—Cl2—O23108.6 (6)C4B—C3B—C2B120.2 (7)
O21—Cl2—O23105.4 (5)C4B—C3B—H3BA119.9
O22—Cl2—O23107.3 (5)C2B—C3B—H3BA119.9
Cl1—O11—Cu155.4 (4)C3B—C4B—C5B119.1 (8)
Cl2—O22—Cu124.0 (5)C3B—C4B—H4BA120.5
Cl2—O22A—Cu130.1 (12)C5B—C4B—H4BA120.5
C6A—N—C6B116.7 (5)N1B—C5B—C4B120.9 (7)
C6A—N—Cu108.7 (4)N1B—C5B—C6B116.8 (5)
C6B—N—Cu110.3 (4)C4B—C5B—C6B122.2 (7)
C6A—N—H0A106.9N—C6B—C5B109.5 (5)
C6B—N—H0A106.9N—C6B—H6BA109.8
Cu—N—H0A106.9C5B—C6B—H6BA109.8
C1—N1—Cu177.8 (6)N—C6B—H6BB109.8
C5A—N1A—C1A119.6 (5)C5B—C6B—H6BB109.8
C5A—N1A—Cu114.1 (3)H6BA—C6B—H6BB108.2
O14A—Cl1—O11—Cu174.7 (16)O22—Cu—N1A—C5A109.8 (5)
O12—Cl1—O11—Cu3.7 (12)O11—Cu—N1A—C5A74.8 (4)
O13A—Cl1—O11—Cu35.7 (16)N1—Cu—N1A—C1A19.9 (5)
O13—Cl1—O11—Cu134.3 (10)N1B—Cu—N1A—C1A177.9 (7)
O14—Cl1—O11—Cu114.4 (10)N—Cu—N1A—C1A165.0 (5)
O12A—Cl1—O11—Cu72.2 (14)O22A—Cu—N1A—C1A83.6 (10)
N1—Cu—O11—Cl1152.0 (10)O22—Cu—N1A—C1A67.1 (6)
N1B—Cu—O11—Cl154.3 (10)O11—Cu—N1A—C1A108.2 (5)
N1A—Cu—O11—Cl1111.8 (10)N1—Cu—N1B—C5B161.1 (4)
N—Cu—O11—Cl129.0 (10)N1A—Cu—N1B—C5B3.1 (10)
O22A—Cu—O11—Cl122 (3)N—Cu—N1B—C5B14.0 (4)
O22—Cu—O11—Cl193 (2)O22A—Cu—N1B—C5B96.9 (10)
O24—Cl2—O22—Cu76.8 (8)O22—Cu—N1B—C5B112.5 (5)
O21—Cl2—O22—Cu156.4 (6)O11—Cu—N1B—C5B74.4 (4)
O23A—Cl2—O22—Cu9.1 (16)N1—Cu—N1B—C1B17.1 (5)
O22A—Cl2—O22—Cu60 (2)N1A—Cu—N1B—C1B175.0 (7)
O24A—Cl2—O22—Cu99.3 (11)N—Cu—N1B—C1B167.9 (5)
O23—Cl2—O22—Cu41.3 (8)O22A—Cu—N1B—C1B85.0 (10)
N1—Cu—O22—Cl2132.1 (10)O22—Cu—N1B—C1B69.4 (6)
N1B—Cu—O22—Cl2130.7 (10)O11—Cu—N1B—C1B103.7 (5)
N1A—Cu—O22—Cl236.0 (10)C5A—N1A—C1A—C2A1.2 (9)
N—Cu—O22—Cl247.7 (10)Cu—N1A—C1A—C2A175.6 (4)
O22A—Cu—O22—Cl259.7 (17)N1A—C1A—C2A—C3A2.6 (10)
O11—Cu—O22—Cl2169.2 (11)C1A—C2A—C3A—C4A2.1 (10)
O24—Cl2—O22A—Cu21 (3)C2A—C3A—C4A—C5A0.5 (9)
O21—Cl2—O22A—Cu171.5 (18)C1A—N1A—C5A—C4A0.5 (8)
O23A—Cl2—O22A—Cu64 (2)Cu—N1A—C5A—C4A177.7 (4)
O22—Cl2—O22A—Cu76 (3)C1A—N1A—C5A—C6A178.4 (5)
O24A—Cl2—O22A—Cu55 (2)Cu—N1A—C5A—C6A4.4 (6)
O23—Cl2—O22A—Cu86 (2)C3A—C4A—C5A—N1A0.9 (9)
N1—Cu—O22A—Cl283 (3)C3A—C4A—C5A—C6A178.6 (6)
N1B—Cu—O22A—Cl2180 (3)C6B—N—C6A—C5A158.4 (5)
N1A—Cu—O22A—Cl215 (3)Cu—N—C6A—C5A32.9 (6)
N—Cu—O22A—Cl297 (3)N1A—C5A—C6A—N25.0 (8)
O22—Cu—O22A—Cl271 (2)C4A—C5A—C6A—N157.1 (6)
O11—Cu—O22A—Cl2148.2 (9)C5B—N1B—C1B—C2B1.1 (10)
N1B—Cu—N—C6A150.7 (4)Cu—N1B—C1B—C2B177.0 (5)
N1A—Cu—N—C6A25.0 (4)N1B—C1B—C2B—C3B0.6 (11)
O22A—Cu—N—C6A123.1 (6)C1B—C2B—C3B—C4B2.2 (11)
O22—Cu—N—C6A119.7 (5)C2B—C3B—C4B—C5B2.2 (11)
O11—Cu—N—C6A69.6 (4)C1B—N1B—C5B—C4B1.1 (9)
N1B—Cu—N—C6B21.5 (4)Cu—N1B—C5B—C4B177.1 (5)
N1A—Cu—N—C6B154.2 (4)C1B—N1B—C5B—C6B178.8 (6)
O22A—Cu—N—C6B107.7 (6)Cu—N1B—C5B—C6B3.0 (7)
O22—Cu—N—C6B111.1 (5)C3B—C4B—C5B—N1B0.5 (10)
O11—Cu—N—C6B59.6 (4)C3B—C4B—C5B—C6B179.6 (7)
N1—Cu—N1A—C5A163.1 (4)C6A—N—C6B—C5B149.5 (6)
N1B—Cu—N1A—C5A5.1 (10)Cu—N—C6B—C5B24.8 (6)
N—Cu—N1A—C5A12.0 (4)N1B—C5B—C6B—N14.8 (8)
O22A—Cu—N1A—C5A93.4 (9)C4B—C5B—C6B—N165.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···O22A0.912.452.89 (3)110
N—H0A···O230.912.303.084 (12)144
N—H0A···O23i0.912.503.317 (10)150
C2—H21···O13Aii0.962.232.98 (2)133
C2—H22···O14iii0.962.363.103 (14)134
C1A—H1AA···O12ii0.932.463.176 (9)134
C3A—H3AA···O23iv0.932.533.376 (15)152
C3A—H3AA···O23Aiv0.932.292.993 (14)133
C6A—H6AA···O21i0.972.563.381 (9)143
C2B—H2BA···O14Av0.932.353.112 (16)140
C3B—H3BA···O11vi0.932.563.429 (10)156
C4B—H4BA···O24Avii0.932.253.06 (3)145
C6B—H6BA···O120.972.563.425 (13)149
C6B—H6BB···O24Avii0.972.513.211 (16)129
Symmetry codes: (i) x+2, y, z; (ii) x, y, z+1; (iii) x, y+1/2, z+1/2; (iv) x+1, y, z; (v) x+1, y+1/2, z+1/2; (vi) x+1, y, z; (vii) x, y, z1.

Experimental details

Crystal data
Chemical formula[Cu(ClO4)2(C12H13N3)(C2H3N)]
Mr502.75
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.3046 (16), 31.453 (4), 8.4978 (11)
β (°) 118.646 (10)
V3)1948.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.45
Crystal size (mm)0.45 × 0.21 × 0.07
Data collection
DiffractometerBruker P4S
Absorption correctionEmpirical (using intensity measurements) via psi scans
(North et al., 1968)
Tmin, Tmax0.757, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
4638, 4347, 2718
Rint0.030
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.193, 1.04
No. of reflections4347
No. of parameters320
No. of restraints92
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.46

Computer programs: XSCANS (Bruker, 1997), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···O22A0.912.452.89 (3)110.0
N—H0A···O230.912.303.084 (12)143.7
N—H0A···O23i0.912.503.317 (10)150.1
C2—H21···O13Aii0.962.232.98 (2)133.3
C2—H22···O14iii0.962.363.103 (14)133.6
C1A—H1AA···O12ii0.932.463.176 (9)134.2
C3A—H3AA···O23iv0.932.533.376 (15)152.1
C3A—H3AA···O23Aiv0.932.292.993 (14)132.5
C6A—H6AA···O21i0.972.563.381 (9)143.0
C2B—H2BA···O14Av0.932.353.112 (16)139.5
C3B—H3BA···O11vi0.932.563.429 (10)156.3
C4B—H4BA···O24Avii0.932.253.06 (3)144.9
C6B—H6BA···O120.972.563.425 (13)149.1
C6B—H6BB···O24Avii0.972.513.211 (16)129.0
Symmetry codes: (i) x+2, y, z; (ii) x, y, z+1; (iii) x, y+1/2, z+1/2; (iv) x+1, y, z; (v) x+1, y+1/2, z+1/2; (vi) x+1, y, z; (vii) x, y, z1.
 

Acknowledgements

RJB acknowledges the Laboratory for the Structure of Matter at the Naval Research Laboratory, Washington, DC, USA, for access to their diffractometer.

References

First citationBelle, C., Beguin, C., Gautier-Luneau, I., Hamman, S., Philouze, C., Pierre, J. L., Thomas, F. & Storelli, S. (2002). Inorg. Chem. 41, 479–491.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (1997). XSCANS. Version 2.20. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2000). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGultneh, Y., Khan, A. R., Blaize, D., Chaudhry, S., Ahvazi, B., Marvey, B. B. & Butcher, R. J. (1999). J. Inorg. Biochem. 75, 7–18.  Web of Science CSD CrossRef CAS Google Scholar
First citationHumphreys, K. J., Karlin, K. D. & Rokita, S. E. (2002). J. Am. Chem. Soc. 124, 8055–8066.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPalaniandavar, M., Pandiyan, T., Lakshiminarayanan, M. & Manohar, H. J. (1995). J. Chem. Soc. Dalton Trans. pp. 455–461.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1990). Acta Cryst. A46, 467–473.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds