organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Euphorbia factor L8: a diterpenoid from the seeds of Euphorbia lathyris

aChengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China, and bCenter for Testing and Analysis, Sichuan University, Chengdu 610041, People's Republic of China
*Correspondence e-mail: lurh@cib.ac.cn

(Received 3 October 2007; accepted 14 December 2007; online 21 December 2007)

The title compound [systematic name: (2S*,3S*,4R*,5R*,9S*,11S*,15R*)-5,15-diacet­oxy-3-nicotino­yloxy-14-oxolathyra-6(17),12(E)-diene], C30H37NO7, was isolated from the seeds of Euphorbia lathyris. The tricyclic diterpenoid molecule contains an 11-membered ring, a five-membered ring exhibiting an envelope conformation and a three-membered ring. The 11-membered ring is cis-fused with the three-membered ring and trans-fused with the five-membered ring.

Related literature

For related literature, see: Appendino et al. (1999[Appendino, G., Tron, G. C., Cravotto, G., Palmisano, G. & Jakupovic, J. (1999). J. Nat. Prod. 62, 76-79.]); Fujiwara et al. (1996[Fujiwara, M., Ijichi, K., Tokuhisa, K., Katsuura, K., Shigeta, S., Konno, K., Wang, G.-Y.-S., Uemura, D., Yokota, T. & Baba, M. (1996). Antimicrob. Agents Chemother. 40, 271-273.]); Kupchan et al. (1976[Kupchan, S. M., Uchida, I., Branfman, A. R., Dailey, R. G. Jr & Fel, B. Y. (1976). Science, 191, 571-572.]); the Pharmacopoeia Commission of the People's Republic of China (2005[Pharmacopoeia Commission of the People's Republic of China (2005). Pharmacopoeia of the People's Republic of China 2005, p. 24. Beijing: Chemical Industry Press.]).

[Scheme 1]

Experimental

Crystal data
  • C30H37NO7

  • Mr = 523.61

  • Orthorhombic, P 21 21 21

  • a = 10.162 (6) Å

  • b = 15.249 (5) Å

  • c = 18.802 (9) Å

  • V = 2914 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 (2) K

  • 0.36 × 0.34 × 0.25 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 3444 measured reflections

  • 3065 independent reflections

  • 1462 reflections with I > 2σ(I)

  • Rint = 0.003

  • 3 standard reflections every 300 reflections intensity decay: 0.3%

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.118

  • S = 0.93

  • 3065 reflections

  • 354 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: DIFRAC (Gabe & White, 1993[Gabe, E. J. & White, P. S. (1993). DIFRAC. Am. Crystallogr. Assoc. Meet., Pittsburgh, Abstract PA 104.]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The seed of Euphorbia lathyris is a traditional Chinese medicine which has been used for the treatment of hydropsy, ascites, amenorrhea, scabies (Pharmacopoeia Commission of the People's Republic of China, 2005). Several constituents in this plant proved to have significant activity (Kupchan et al., 1976; Fujiwara et al., 1996) and this medicine has been used to treat tumors and cancer in many countries. In our current investigation, Euphorbia Factor L8 (I) was isolated from the seeds of this plant. The structure of (I) was elucidated by comprehensive spectroscopic analysis, and was confirmed by single-crystal X-ray diffraction analysis reported here (Fig. 1). The title compound shows the tricyclic terpenoid skeleton of lathyrane, consisting of fused five-, eleven- and three-membered rings (A: C1–C4/C15, B: C4–C9/C11–C15, C: C9–C11). Rings A and B are trans-joined (torsion angle H4–C4–C15–O3 = -152.8°), while rings B and C are cis-joined (H9–C9–C11–H11 = 0.99°). Ring A adopts an envelope conformation, with atom C3 0.64 Å out of the plane defined by atoms C1/C2/C4/C15.

Related literature top

For related literature, see: Appendino et al. (1999); Fujiwara et al. (1996); Kupchan et al. (1976); the Pharmacopoeia Commission of the People's Republic of China (2005).

Experimental top

The seeds of E. lathyris (10 kg) were collected in Sichuan province, People's Republic of China and extracted with 95% EtOH at room temperature. The extract was concentrated in vacuo and filtered. The filtrate was partitioned between EtOAc and H2O. The EtOAc soluble materials (1 kg) were subjected to silica-gel column chromatography (160–200 mesh, 4 kg) with petrol-EtOAc stepwise elution. The column chromatographic fractions (500 ml each) were combined into 12 fractions according to thin-layer chromatography monitoring analysis. Fraction 5 (7.5 g) was applied to a RP-18 silica-gel column and eluted with MeOH/H2O (7:3) to yield five fractions. Fraction 5.2 (1.4 g) was subjected to silica-gel column chromatography (200–300 mesh, 50 g) and eluted with petrol-EtOAc (5:1) to afford the compound (I). The isolated product was recrystallized at room temperature from acetone to afford the block crytals. 13C NMR (150 MHz, CDCl3, δ, p.p.m.): 48.6(C1), 37.7(C2), 81.6(C3), 52.3(C4), 65.5(C5), 144.4(C6), 34.9(C7), 21.0(C8), 35.4(C9), 25.3(C10), 28.5(C11), 146.6(C12), 134.3(C13), 196.6(C14), 92.5(C15), 14.2(C16), 115.5(C17), 29.0(C18), 16.8(C19), 12.4(C20), 164.9(C21), 126.0(C22), 137.0(C23), 123.3(C24), 153.5(C25), 151.0(C26), 170.2(C27), 21.6(C28), 169.7(C29), 22.1(C30).

Refinement top

All hydrogen atoms were located geometrically with C—H distances of 0.93–0.98 Å, and refined using a riding model. The absolute configuration could not be determined from the X-ray analysis, owing to the absence of strong anomalous scatterers, and Friedel pairs were averaged. However, the absolute configuration can be suggested on a biogenetic basis (Appendino et al., 1999).

Structure description top

The seed of Euphorbia lathyris is a traditional Chinese medicine which has been used for the treatment of hydropsy, ascites, amenorrhea, scabies (Pharmacopoeia Commission of the People's Republic of China, 2005). Several constituents in this plant proved to have significant activity (Kupchan et al., 1976; Fujiwara et al., 1996) and this medicine has been used to treat tumors and cancer in many countries. In our current investigation, Euphorbia Factor L8 (I) was isolated from the seeds of this plant. The structure of (I) was elucidated by comprehensive spectroscopic analysis, and was confirmed by single-crystal X-ray diffraction analysis reported here (Fig. 1). The title compound shows the tricyclic terpenoid skeleton of lathyrane, consisting of fused five-, eleven- and three-membered rings (A: C1–C4/C15, B: C4–C9/C11–C15, C: C9–C11). Rings A and B are trans-joined (torsion angle H4–C4–C15–O3 = -152.8°), while rings B and C are cis-joined (H9–C9–C11–H11 = 0.99°). Ring A adopts an envelope conformation, with atom C3 0.64 Å out of the plane defined by atoms C1/C2/C4/C15.

For related literature, see: Appendino et al. (1999); Fujiwara et al. (1996); Kupchan et al. (1976); the Pharmacopoeia Commission of the People's Republic of China (2005).

Computing details top

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC (Gabe & White, 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. ORTEP plot of compound (I) showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the a axis. H-atoms omitted for clarity.
(2S*,3S*,4R*,5R*,9S*,11S*, 15R*)-5,15-diacetoxy-3-nicotinoyloxy-14-oxolathyra-6(17),12(E)- diene top
Crystal data top
C30H37NO7Dx = 1.194 Mg m3
Mr = 523.61Melting point: 469(1) K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 24 reflections
a = 10.162 (6) Åθ = 4.5–5.5°
b = 15.249 (5) ŵ = 0.08 mm1
c = 18.802 (9) ÅT = 298 K
V = 2914 (2) Å3Block, colourless
Z = 40.36 × 0.34 × 0.25 mm
F(000) = 1120
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.003
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 1.7°
Graphite monochromatorh = 112
ω/2θ scansk = 318
3444 measured reflectionsl = 122
3065 independent reflections3 standard reflections every 300 reflections
1462 reflections with I > 2σ(I) intensity decay: 0.3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0541P)2]
where P = (Fo2 + 2Fc2)/3
3065 reflections(Δ/σ)max < 0.001
354 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C30H37NO7V = 2914 (2) Å3
Mr = 523.61Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.162 (6) ŵ = 0.08 mm1
b = 15.249 (5) ÅT = 298 K
c = 18.802 (9) Å0.36 × 0.34 × 0.25 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.003
3444 measured reflections3 standard reflections every 300 reflections
3065 independent reflections intensity decay: 0.3%
1462 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 0.93Δρmax = 0.18 e Å3
3065 reflectionsΔρmin = 0.24 e Å3
354 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4410 (3)0.60363 (17)0.75057 (16)0.0422 (8)
O20.3383 (4)0.6889 (2)0.67028 (18)0.0745 (12)
O30.6027 (3)0.50915 (17)0.86366 (15)0.0442 (8)
O40.5648 (4)0.4774 (2)0.97859 (19)0.0725 (11)
O50.6858 (4)0.6902 (2)0.97413 (16)0.0600 (10)
O60.6894 (4)0.63864 (19)0.68532 (16)0.0539 (9)
O70.6709 (5)0.4992 (3)0.6477 (2)0.0887 (14)
N10.3198 (5)0.3782 (2)0.6543 (2)0.0653 (13)
C10.4680 (5)0.6336 (3)0.9021 (2)0.0463 (13)
H1A0.40560.58570.89850.071 (7)*
H1B0.46750.65520.95060.071 (7)*
C20.4308 (5)0.7065 (3)0.8509 (2)0.0465 (12)
H20.47030.76100.86840.045 (5)*
C30.5024 (5)0.6806 (3)0.7833 (2)0.0401 (12)
H30.50820.72970.74980.045 (5)*
C40.6377 (5)0.6534 (3)0.8103 (2)0.0405 (12)
H40.68210.70760.82460.045 (5)*
C50.7290 (5)0.6088 (3)0.7565 (2)0.0441 (12)
H50.71750.54510.75960.045 (5)*
C60.8749 (5)0.6304 (3)0.7607 (3)0.0491 (14)
C70.9639 (6)0.5689 (4)0.7203 (3)0.0763 (18)
H7A1.05100.59500.71840.071 (7)*
H7B0.93180.56480.67180.071 (7)*
C80.9773 (6)0.4764 (4)0.7498 (3)0.0732 (17)
H8A0.89010.45470.76120.071 (7)*
H8B1.01290.43910.71270.071 (7)*
C91.0623 (6)0.4677 (4)0.8146 (3)0.0686 (15)
H91.15380.48470.80550.045 (5)*
C101.0512 (6)0.3977 (4)0.8693 (3)0.0697 (17)
C111.0173 (5)0.4919 (3)0.8887 (3)0.0586 (16)
H111.08340.52200.91780.045 (5)*
C120.8824 (5)0.5235 (3)0.8982 (2)0.0454 (12)
H120.81840.49840.86930.064 (7)*
C130.8419 (5)0.5850 (3)0.9442 (2)0.0446 (12)
C140.7110 (5)0.6257 (3)0.9385 (2)0.0443 (12)
C150.6070 (5)0.6020 (3)0.8815 (2)0.0410 (12)
C160.2825 (5)0.7213 (3)0.8442 (3)0.0612 (15)
H16A0.24140.66870.82710.129 (6)*
H16B0.26610.76830.81150.129 (6)*
H16C0.24680.73610.88990.129 (6)*
C170.9201 (6)0.7006 (4)0.7918 (3)0.0720 (16)
H17A1.00930.71380.78940.089 (15)*
H17B0.86310.73740.81640.089 (15)*
C180.9437 (7)0.3300 (4)0.8661 (3)0.090 (2)
H18A0.97600.27840.84260.129 (6)*
H18B0.87020.35320.84010.129 (6)*
H18C0.91640.31530.91340.129 (6)*
C191.1778 (7)0.3627 (5)0.9013 (4)0.112 (3)
H19A1.21630.32070.86940.129 (6)*
H19B1.15910.33500.94600.129 (6)*
H19C1.23820.41020.90860.129 (6)*
C200.9313 (6)0.6255 (3)0.9990 (3)0.0698 (16)
H20A0.95960.68220.98290.129 (6)*
H20B1.00670.58851.00590.129 (6)*
H20C0.88470.63161.04310.129 (6)*
C210.3664 (5)0.6179 (3)0.6929 (3)0.0453 (12)
C220.3204 (5)0.5350 (3)0.6607 (2)0.0411 (12)
C230.2381 (5)0.5386 (3)0.6026 (3)0.0531 (13)
H230.20990.59250.58520.064 (7)*
C240.1981 (6)0.4628 (4)0.5708 (3)0.0655 (15)
H240.14280.46390.53140.064 (7)*
C250.2414 (6)0.3849 (4)0.5984 (3)0.0697 (17)
H250.21410.33340.57640.064 (7)*
C260.3572 (5)0.4531 (3)0.6841 (3)0.0511 (13)
H260.41210.45000.72360.064 (7)*
C270.6664 (6)0.5762 (4)0.6360 (3)0.0630 (16)
C280.6346 (7)0.6157 (4)0.5654 (2)0.089 (2)
H28A0.60760.57030.53320.129 (6)*
H28B0.71110.64470.54690.129 (6)*
H28C0.56460.65750.57090.129 (6)*
C290.5746 (5)0.4539 (3)0.9179 (3)0.0548 (13)
C300.5620 (7)0.3613 (3)0.8920 (4)0.085 (2)
H30A0.54720.32300.93180.129 (6)*
H30B0.64140.34440.86810.129 (6)*
H30C0.48910.35720.85970.129 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.043 (2)0.0396 (17)0.0435 (17)0.0049 (17)0.0102 (19)0.0047 (16)
O20.093 (3)0.0434 (18)0.088 (3)0.003 (2)0.046 (3)0.0091 (19)
O30.046 (2)0.0370 (17)0.0495 (18)0.0018 (16)0.0047 (19)0.0033 (15)
O40.087 (3)0.067 (2)0.063 (2)0.003 (2)0.026 (3)0.013 (2)
O50.070 (3)0.0543 (18)0.0553 (18)0.013 (2)0.012 (2)0.0226 (17)
O60.059 (2)0.065 (2)0.0376 (17)0.0056 (19)0.004 (2)0.0063 (17)
O70.119 (4)0.076 (3)0.072 (2)0.003 (3)0.004 (3)0.026 (2)
N10.080 (4)0.044 (2)0.072 (3)0.000 (3)0.014 (3)0.010 (2)
C10.043 (3)0.046 (3)0.050 (3)0.001 (2)0.006 (3)0.006 (2)
C20.042 (3)0.044 (3)0.054 (3)0.001 (3)0.000 (3)0.010 (2)
C30.032 (3)0.040 (3)0.049 (3)0.003 (2)0.002 (3)0.001 (2)
C40.037 (3)0.044 (2)0.040 (2)0.007 (2)0.001 (3)0.005 (2)
C50.046 (3)0.052 (3)0.034 (3)0.002 (3)0.007 (3)0.001 (2)
C60.036 (3)0.068 (3)0.044 (3)0.003 (3)0.004 (3)0.008 (3)
C70.055 (4)0.107 (5)0.067 (4)0.016 (4)0.019 (4)0.004 (4)
C80.061 (4)0.094 (4)0.065 (3)0.024 (4)0.013 (4)0.018 (3)
C90.038 (3)0.096 (4)0.072 (4)0.016 (4)0.006 (3)0.008 (4)
C100.056 (4)0.079 (4)0.074 (4)0.026 (4)0.002 (4)0.009 (3)
C110.042 (4)0.067 (4)0.067 (3)0.011 (3)0.005 (3)0.016 (3)
C120.039 (3)0.052 (3)0.046 (3)0.004 (3)0.003 (3)0.005 (2)
C130.042 (3)0.050 (3)0.042 (3)0.008 (3)0.001 (3)0.004 (2)
C140.052 (4)0.043 (3)0.037 (3)0.001 (3)0.004 (3)0.002 (3)
C150.046 (3)0.035 (2)0.042 (3)0.000 (2)0.004 (3)0.007 (2)
C160.037 (3)0.075 (3)0.072 (4)0.010 (3)0.002 (3)0.007 (3)
C170.036 (4)0.097 (4)0.082 (4)0.013 (4)0.006 (4)0.011 (4)
C180.098 (5)0.074 (4)0.097 (4)0.020 (4)0.012 (5)0.023 (3)
C190.092 (6)0.132 (6)0.111 (5)0.060 (5)0.011 (5)0.021 (5)
C200.061 (4)0.073 (3)0.075 (3)0.006 (3)0.017 (4)0.026 (3)
C210.046 (3)0.042 (3)0.048 (3)0.002 (3)0.008 (3)0.002 (3)
C220.039 (3)0.039 (2)0.046 (3)0.002 (3)0.002 (3)0.002 (2)
C230.053 (4)0.053 (3)0.053 (3)0.004 (3)0.006 (3)0.000 (3)
C240.073 (4)0.071 (3)0.053 (3)0.002 (4)0.029 (3)0.014 (3)
C250.082 (5)0.058 (4)0.069 (3)0.015 (4)0.016 (4)0.025 (3)
C260.051 (3)0.050 (3)0.052 (3)0.000 (3)0.014 (3)0.002 (2)
C270.058 (4)0.079 (4)0.052 (3)0.009 (4)0.007 (3)0.016 (3)
C280.104 (5)0.117 (5)0.045 (3)0.003 (5)0.004 (4)0.006 (3)
C290.044 (3)0.044 (3)0.077 (4)0.004 (3)0.007 (3)0.007 (3)
C300.085 (5)0.045 (3)0.126 (5)0.011 (4)0.011 (5)0.004 (3)
Geometric parameters (Å, º) top
O1—C211.340 (5)C10—C111.522 (7)
O1—C31.465 (5)C11—C121.463 (7)
O2—C211.198 (5)C11—H110.9800
O3—C291.354 (6)C12—C131.341 (6)
O3—C151.457 (5)C12—H120.9300
O4—C291.199 (6)C13—C141.471 (7)
O5—C141.217 (5)C13—C201.507 (7)
O6—C271.349 (6)C14—C151.547 (6)
O6—C51.470 (5)C16—H16A0.9600
O7—C271.196 (6)C16—H16B0.9600
N1—C251.323 (6)C16—H16C0.9600
N1—C261.328 (5)C17—H17A0.9300
C1—C21.518 (6)C17—H17B0.9300
C1—C151.542 (6)C18—H18A0.9600
C1—H1A0.9700C18—H18B0.9600
C1—H1B0.9700C18—H18C0.9600
C2—C31.516 (6)C19—H19A0.9600
C2—C161.529 (7)C19—H19B0.9600
C2—H20.9800C19—H19C0.9600
C3—C41.523 (6)C20—H20A0.9600
C3—H30.9800C20—H20B0.9600
C4—C51.532 (6)C20—H20C0.9600
C4—C151.582 (6)C21—C221.478 (6)
C4—H40.9800C22—C261.375 (6)
C5—C61.521 (7)C22—C231.377 (6)
C5—H50.9800C23—C241.364 (6)
C6—C171.303 (7)C23—H230.9300
C6—C71.508 (7)C24—C251.368 (7)
C7—C81.521 (7)C24—H240.9300
C7—H7A0.9700C25—H250.9300
C7—H7B0.9700C26—H260.9300
C8—C91.500 (7)C27—C281.492 (7)
C8—H8A0.9700C28—H28A0.9600
C8—H8B0.9700C28—H28B0.9600
C9—C101.487 (7)C28—H28C0.9600
C9—C111.513 (7)C29—C301.499 (7)
C9—H90.9800C30—H30A0.9600
C10—C181.504 (8)C30—H30B0.9600
C10—C191.518 (8)C30—H30C0.9600
C21—O1—C3116.8 (3)O5—C14—C13119.4 (5)
C29—O3—C15115.9 (3)O5—C14—C15115.2 (4)
C27—O6—C5117.0 (4)C13—C14—C15124.7 (4)
C25—N1—C26116.1 (4)O3—C15—C1109.5 (4)
C2—C1—C15107.4 (4)O3—C15—C14114.0 (4)
C2—C1—H1A110.2C1—C15—C14112.4 (4)
C15—C1—H1A110.2O3—C15—C4106.9 (3)
C2—C1—H1B110.2C1—C15—C4103.7 (4)
C15—C1—H1B110.2C14—C15—C4109.6 (4)
H1A—C1—H1B108.5C2—C16—H16A109.5
C3—C2—C1102.8 (3)C2—C16—H16B109.5
C3—C2—C16116.3 (4)H16A—C16—H16B109.5
C1—C2—C16113.9 (4)C2—C16—H16C109.5
C3—C2—H2107.8H16A—C16—H16C109.5
C1—C2—H2107.8H16B—C16—H16C109.5
C16—C2—H2107.8C6—C17—H17A120.0
O1—C3—C2110.9 (4)C6—C17—H17B120.0
O1—C3—C4107.8 (3)H17A—C17—H17B120.0
C2—C3—C4103.0 (4)C10—C18—H18A109.5
O1—C3—H3111.6C10—C18—H18B109.5
C2—C3—H3111.6H18A—C18—H18B109.5
C4—C3—H3111.6C10—C18—H18C109.5
C3—C4—C5116.6 (4)H18A—C18—H18C109.5
C3—C4—C15103.8 (4)H18B—C18—H18C109.5
C5—C4—C15117.3 (4)C10—C19—H19A109.5
C3—C4—H4106.1C10—C19—H19B109.5
C5—C4—H4106.1H19A—C19—H19B109.5
C15—C4—H4106.1C10—C19—H19C109.5
O6—C5—C6104.4 (4)H19A—C19—H19C109.5
O6—C5—C4107.3 (4)H19B—C19—H19C109.5
C6—C5—C4117.4 (4)C13—C20—H20A109.5
O6—C5—H5109.2C13—C20—H20B109.5
C6—C5—H5109.2H20A—C20—H20B109.5
C4—C5—H5109.2C13—C20—H20C109.5
C17—C6—C7121.7 (5)H20A—C20—H20C109.5
C17—C6—C5123.0 (5)H20B—C20—H20C109.5
C7—C6—C5115.1 (5)O2—C21—O1124.7 (4)
C6—C7—C8116.5 (4)O2—C21—C22123.5 (4)
C6—C7—H7A108.2O1—C21—C22111.8 (4)
C8—C7—H7A108.2C26—C22—C23117.1 (4)
C6—C7—H7B108.2C26—C22—C21124.0 (4)
C8—C7—H7B108.2C23—C22—C21118.8 (4)
H7A—C7—H7B107.3C24—C23—C22119.6 (5)
C9—C8—C7115.4 (5)C24—C23—H23120.2
C9—C8—H8A108.4C22—C23—H23120.2
C7—C8—H8A108.4C23—C24—C25118.3 (5)
C9—C8—H8B108.4C23—C24—H24120.9
C7—C8—H8B108.4C25—C24—H24120.9
H8A—C8—H8B107.5N1—C25—C24124.2 (5)
C10—C9—C8125.6 (5)N1—C25—H25117.9
C10—C9—C1161.0 (3)C24—C25—H25117.9
C8—C9—C11123.5 (5)N1—C26—C22124.6 (4)
C10—C9—H9112.5N1—C26—H26117.7
C8—C9—H9112.5C22—C26—H26117.7
C11—C9—H9112.5O7—C27—O6124.0 (5)
C9—C10—C18121.3 (5)O7—C27—C28124.7 (5)
C9—C10—C19117.5 (6)O6—C27—C28111.4 (5)
C18—C10—C19113.0 (5)C27—C28—H28A109.5
C9—C10—C1160.4 (4)C27—C28—H28B109.5
C18—C10—C11119.6 (5)H28A—C28—H28B109.5
C19—C10—C11115.4 (5)C27—C28—H28C109.5
C12—C11—C9118.4 (5)H28A—C28—H28C109.5
C12—C11—C10123.5 (5)H28B—C28—H28C109.5
C9—C11—C1058.7 (3)O4—C29—O3123.3 (4)
C12—C11—H11114.9O4—C29—C30125.7 (5)
C9—C11—H11114.9O3—C29—C30111.0 (5)
C10—C11—H11114.9C29—C30—H30A109.5
C13—C12—C11126.6 (5)C29—C30—H30B109.5
C13—C12—H12116.7H30A—C30—H30B109.5
C11—C12—H12116.7C29—C30—H30C109.5
C12—C13—C14121.7 (4)H30A—C30—H30C109.5
C12—C13—C20122.9 (5)H30B—C30—H30C109.5
C14—C13—C20115.0 (4)

Experimental details

Crystal data
Chemical formulaC30H37NO7
Mr523.61
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)10.162 (6), 15.249 (5), 18.802 (9)
V3)2914 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.36 × 0.34 × 0.25
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3444, 3065, 1462
Rint0.003
(sin θ/λ)max1)0.607
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.118, 0.93
No. of reflections3065
No. of parameters354
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.24

Computer programs: DIFRAC (Gabe & White, 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

Support by the `Western Light' Joint Research Program of the Chinese Academy of Sciences is acknowledged. The authors are also grateful to the staff of the analytical group of Chengdu Institute of Biology, Chinese Academy of Sciences, for the NMR spectroscopic data.

References

First citationAppendino, G., Tron, G. C., Cravotto, G., Palmisano, G. & Jakupovic, J. (1999). J. Nat. Prod. 62, 76–79.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFujiwara, M., Ijichi, K., Tokuhisa, K., Katsuura, K., Shigeta, S., Konno, K., Wang, G.-Y.-S., Uemura, D., Yokota, T. & Baba, M. (1996). Antimicrob. Agents Chemother. 40, 271–273.  CAS PubMed Web of Science Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J. & White, P. S. (1993). DIFRAC. Am. Crystallogr. Assoc. Meet., Pittsburgh, Abstract PA 104.  Google Scholar
First citationKupchan, S. M., Uchida, I., Branfman, A. R., Dailey, R. G. Jr & Fel, B. Y. (1976). Science, 191, 571–572.  CrossRef PubMed CAS Web of Science Google Scholar
First citationPharmacopoeia Commission of the People's Republic of China (2005). Pharmacopoeia of the People's Republic of China 2005, p. 24. Beijing: Chemical Industry Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds