organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl­ammonium bis­­(3-oxido­naphthalene-2-carboxyl­ato)borate hemihydrate

aDepartment of Chemistry, Faculty of Arts and Sciences, University of Kırıkkale, Campus, Yahşihan, 71450 Kırıkkale, Turkey, bDepartment of Physics, Faculty of Arts and Sciences, University of Kırıkkale, Campus, Yahşihan, 71450 Kırıkkale, Turkey, and cStructural Research, Material Science, Darmstadt University of Technology, Petersen Strasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: mustafatombul38@gmail.com

(Received 28 November 2007; accepted 13 December 2007; online 18 December 2007)

The title compound, C2H8N+·C22H12BO6·0.5H2O, was synthesized under atmospheric conditions in the presence of dimethyl­formamide acting as a template. The structure is composed of [NH2(CH3)2]+ cations, bis­(3-oxidonaphthalene-2-carboxyl­ato)borate anions and water mol­ecules. The water molecule lies on a twofold rotation axis. The stabilization of the crystal structure comes from electrostatic inter­actions and is assisted by inter­molecular O—H⋯O and N—H⋯O hydrogen bonds between the layers.

Related literature

For related literature, see: Carr et al. (2005[Carr, J. M., Duggan, P. J., Humphrey, D. G. & Tyndall, E. M. (2005). Aust. J. Chem. 58, 21-25.]); Downard et al. (2002[Downard, A., Nieuwenhuyzen, M., Seddon, K.-R., Van den Berg, J.-A., Schmidt, M.-A., Vaughan, J.-F. S. & Wellz-Biermann, U. (2002). Cryst. Growth Des. 2, 111-119.]); Errington et al. (1999[Errington, R. J., Tombul, M., Walker, G. L. P., Clegg, W., Heath, S. L. & Horsburgh, L. (1999). J. Chem. Soc. Dalton Trans. pp. 3533-3534.]); Green et al. (2000[Green, S., Nelson, A., Warriner, S. & Whittaker, B. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 4403-4408.]); Grice et al. (1999[Grice, J. D., Burns, P. C. & Hawthorne, F. C. (1999). Can. Mineral. 37, 731-762.]); Li & Liu (2006[Li, P. & Liu, Z.-H. (2006). Z. Kristallogr. New Cryst. Struct. 221, 179-180.]); Schubert et al. (2000[Schubert, D. M., Visi, M. Z. & Knobler, C. B. (2000). Inorg. Chem. 39, 2250-2251.]); Tombul et al. (2003[Tombul, M., Errington, R. J., Coxall, R. A. & Clegg, W. (2003). Acta Cryst. C59, m231-m233.]); Tombul, Guven, Büyükgüngör et al. (2007[Tombul, M., Guven, K., Büyükgüngör, O., Aktas, H. & Durlu, T. N. (2007). Acta Cryst. C63, m430-m432.]); Touboul et al. (2003[Touboul, M., Penin, N. & Nowogrocki, G. (2003). Solid State Sci. 5, 1327-1342.]); Zhang & Liu (2006[Zhang, W.-J. & Liu, Z.-H. (2006). Z. Kristallogr. New Cryst. Struct. 221, 189-190.]); Zhang et al. (2005[Zhang, J., Wang, J., Huang, X.-Y. & Chen, J.-T. (2005). Z. Kristallogr. New Cryst. Struct. 220, 1-2.]).

[Scheme 1]

Experimental

Crystal data
  • C2H8N+·C22H12BO6·0.5H2O

  • Mr = 438.24

  • Monoclinic, C 2/c

  • a = 32.011 (3) Å

  • b = 9.774 (1) Å

  • c = 14.742 (1) Å

  • β = 112.628 (7)°

  • V = 4257.2 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 303 (2) K

  • 0.48 × 0.08 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: numerical [using a multifaceted crystal model based on expressions derived (Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.981, Tmax = 0.994

  • 16173 measured reflections

  • 4321 independent reflections

  • 1708 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.093

  • wR(F2) = 0.152

  • S = 1.12

  • 4321 reflections

  • 299 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Selected geometric parameters (Å, °)

O1—B1 1.427 (5)
O2—B1 1.496 (5)
O4—B1 1.426 (5)
O5—B1 1.502 (5)
O4—B1—O1 110.7 (4)
O4—B1—O2 107.7 (3)
O1—B1—O2 112.4 (3)
O4—B1—O5 112.0 (3)
O1—B1—O5 107.9 (3)
O2—B1—O5 106.1 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H25A⋯O3i 1.00 1.88 2.849 (4) 162
N5—H25B⋯O6ii 0.95 2.12 2.839 (4) 131
N5—H25B⋯O3iii 0.95 2.33 2.871 (4) 116
O7—H27⋯O5 0.85 (3) 2.18 (4) 3.010 (3) 163.3 (12)
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) x, y+1, z; (iii) -x, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions 1.171.31.4. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions 1.171.31.4. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

Owing to their rich structural chemistry and potential applications in mineralogy (Grice et al., 1999) and nonlinear optical materials (Touboul et al., 2003), borates have provided an abounding area of research for over half a century. Boron can form a large variety of compounds due to the complexity of the structures involved. Boron atom coordinate with oxygen not only in fourfold coordination (tetrahedral, BO4) but also in threefold coordination (triangular, BO3). These BO3 and BO4 groups favour polymerization via common corners into large polynuclear anion units including isolated or finite clusters, chains, sheets, and networks (Grice et al., 1999). Most borates synthesized and studied to date have been prepared under the templating effect of inorganic cations, such as alkali-metal, alkaline-earth, rare-earth or transition cations. Accordingly, many borate systems taking into account alkali metal, alkaline earth metal, rare-earth, and transition metals have been explored in recent years (Schubert et al., 2000). Currently, studies conducted in this area are primarily focused on improving existing materials utilized and search for new materials. In comparison to inorganic borates, synthesis, crystal structure and application of organic borates seem to be insufficient (Li & Liu, 2006; Zhang & Liu, 2006; Carr et al., 2005; Zhang et al., 2005; Downard et al., 2002; Green et al., 2000). As part of our ongoing study of the synthesis and structure of organoborate complexes (Errington et al., 1999; Tombul et al., 2003; Tombul, Guven, Büyükgüngör et al., 2007), we have prepared a new organically templated borate, (I), using dimethylformamide as the structure-directing agent.

The asymmetric unit of (I) (Fig.1) consists of [BO4(C11H6O)2]- anions, [NH2(CH3)2]+ cations and water molecule. The [BO4(C11H6O)2]- anion consists of one set of distorted [BO4] tetrahedra and two sets of slightly deformed [C11H6O] planes with oxygen atoms as sharing vertexes. The boron atom is bonded to four oxygen atoms to form a highly tetrahedral environment (mean OBO bond angle of 109.46 (3)°). The B—O bond lengths are typical for such tetrahedral borates, with B—Ocarboxyl bond lengths (mean 1.499 (5) Å) being slightly longer than B—Ohyroxyl bond lengths (mean 1.427 (5) Å). Each [C11H6O] unit is almost planar, and both [C11H6O] units in BO4(C11H6O)2]- are nearly perpendicular to each other. The borate rings highly coplanar with the corresponding aryl rings [with 0.0779 Å r.m.s. deviation for Plane A (C1—C11/O1—O3) and 0.0648 Å r.m.s. deviation for Plane B (C12—C22/,O4—O6)]. The coordination planes (Planes C (O2, B1, O1) and D (O5, B1, O4) intersects at an angle of 89.73 (26) °. Dimethylammonium cation is distorted tetrahedral environment with CNC bond angle of 113.5 (4) ° and located with a large distance from the anion (B—N distance 6.108 (15) Å).

In the crystal structure [BO4(C11H6O)2]- anions and [NH2(CH3)2]+ cations are discrete units and they interact both electrostatically and via N—H···O hydrogen bonds with N···O distances in the range 2.839 (4) Å – 2.872 (4) Å (Fig.2). The water molecule is also involved in normal, slightly bent, hydrogen bond with the borate anion at a distance of 3.012 (3) Å. The acceptors are all carboxylate O atoms of the aromatic ring (Table 2). For the synthesis of (I), dimethylformamide acts not only as the solvent, but also as the reactant and it decomposes under experimental conditions forming [NH2(CH3)2]+ cations.

Related literature top

For related literature, see: Carr et al. (2005); Downard et al. (2002); Errington et al. (1999); Green et al. (2000); Grice et al. (1999); Li & Liu (2006); Schubert et al. (2000); Tombul et al. (2003); Tombul, Guven, Büyükgüngör et al. (2007); Touboul et al. (2003); Zhang & Liu (2006); Zhang et al. (2005).

Experimental top

For the preparation of title compound, (I), B(OH)3 (133 mg, 2.16 mmol,) was carefully added to a stirred DMF (10.0 ml) solution of 3-hydroxynaphthalene-2-carboxylic acid (875 mg, 4.65 mmol) at ambient temperature. The reaction mixture initially gave a brown solution which was stirred at 398 K for 2.5 h until all became a gel-like material. This product was then redissolved in the mixture of MeOH/CH2Cl2 (10 ml; 1:1) and allowed to stand at room temperature for a couple of hours, whereupon transparent and fine crystals were harvested. Yield, 79% (based on B(OH)3); Elemental analysis: (Found): C 65.48, H 5.18, N 3.19%. Calculated for C24H22O7NB: C 64.45, H 4.96, N 3.13%. 1H NMR (d6-DMSO-CDCl3, 298 K, TMS): δ (p.p.m.): All aromatic signals are observed between the region at 7.12 and 8.43. 13C NMR (d6-DMSO-CDCl3, 298 K, TMS): δ (p.p.m.): δ 119.7, 122.5, 128.1, 132.2, 142.4, 160.0, 161.6, 169.7, 177.0.

Refinement top

The H27 atom was located in a difference map and refined freely. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.96 Å and N—H = 0.9530–1.0035 Å with Uiso(H) = 1.2 or 1.5 times Ueq(C,N) of the parent atom.

Structure description top

Owing to their rich structural chemistry and potential applications in mineralogy (Grice et al., 1999) and nonlinear optical materials (Touboul et al., 2003), borates have provided an abounding area of research for over half a century. Boron can form a large variety of compounds due to the complexity of the structures involved. Boron atom coordinate with oxygen not only in fourfold coordination (tetrahedral, BO4) but also in threefold coordination (triangular, BO3). These BO3 and BO4 groups favour polymerization via common corners into large polynuclear anion units including isolated or finite clusters, chains, sheets, and networks (Grice et al., 1999). Most borates synthesized and studied to date have been prepared under the templating effect of inorganic cations, such as alkali-metal, alkaline-earth, rare-earth or transition cations. Accordingly, many borate systems taking into account alkali metal, alkaline earth metal, rare-earth, and transition metals have been explored in recent years (Schubert et al., 2000). Currently, studies conducted in this area are primarily focused on improving existing materials utilized and search for new materials. In comparison to inorganic borates, synthesis, crystal structure and application of organic borates seem to be insufficient (Li & Liu, 2006; Zhang & Liu, 2006; Carr et al., 2005; Zhang et al., 2005; Downard et al., 2002; Green et al., 2000). As part of our ongoing study of the synthesis and structure of organoborate complexes (Errington et al., 1999; Tombul et al., 2003; Tombul, Guven, Büyükgüngör et al., 2007), we have prepared a new organically templated borate, (I), using dimethylformamide as the structure-directing agent.

The asymmetric unit of (I) (Fig.1) consists of [BO4(C11H6O)2]- anions, [NH2(CH3)2]+ cations and water molecule. The [BO4(C11H6O)2]- anion consists of one set of distorted [BO4] tetrahedra and two sets of slightly deformed [C11H6O] planes with oxygen atoms as sharing vertexes. The boron atom is bonded to four oxygen atoms to form a highly tetrahedral environment (mean OBO bond angle of 109.46 (3)°). The B—O bond lengths are typical for such tetrahedral borates, with B—Ocarboxyl bond lengths (mean 1.499 (5) Å) being slightly longer than B—Ohyroxyl bond lengths (mean 1.427 (5) Å). Each [C11H6O] unit is almost planar, and both [C11H6O] units in BO4(C11H6O)2]- are nearly perpendicular to each other. The borate rings highly coplanar with the corresponding aryl rings [with 0.0779 Å r.m.s. deviation for Plane A (C1—C11/O1—O3) and 0.0648 Å r.m.s. deviation for Plane B (C12—C22/,O4—O6)]. The coordination planes (Planes C (O2, B1, O1) and D (O5, B1, O4) intersects at an angle of 89.73 (26) °. Dimethylammonium cation is distorted tetrahedral environment with CNC bond angle of 113.5 (4) ° and located with a large distance from the anion (B—N distance 6.108 (15) Å).

In the crystal structure [BO4(C11H6O)2]- anions and [NH2(CH3)2]+ cations are discrete units and they interact both electrostatically and via N—H···O hydrogen bonds with N···O distances in the range 2.839 (4) Å – 2.872 (4) Å (Fig.2). The water molecule is also involved in normal, slightly bent, hydrogen bond with the borate anion at a distance of 3.012 (3) Å. The acceptors are all carboxylate O atoms of the aromatic ring (Table 2). For the synthesis of (I), dimethylformamide acts not only as the solvent, but also as the reactant and it decomposes under experimental conditions forming [NH2(CH3)2]+ cations.

For related literature, see: Carr et al. (2005); Downard et al. (2002); Errington et al. (1999); Green et al. (2000); Grice et al. (1999); Li & Liu (2006); Schubert et al. (2000); Tombul et al. (2003); Tombul, Guven, Büyükgüngör et al. (2007); Touboul et al. (2003); Zhang & Liu (2006); Zhang et al. (2005).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Mercury (Macrae et al., 2006).; software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Showing the atom-labelling scheme of (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Hydrogen bond labelling scheme for (I). Dashed lines indicate hydrogen bonds. Some hydrogen atoms were omited for clarity). [Symmetry codes: (i): x, -y + 1, z - 1/2, (ii): x, y + 1, z, (iii):-x, -y + 1, -z + 1].
Dimethylammonium bis(3-oxidonaphthalene-2-carboxylato)borate hemihydrate top
Crystal data top
C2H8N+·C22H12BO6·0.5H2OF(000) = 1832
Mr = 438.24Dx = 1.367 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2075 reflections
a = 32.011 (3) Åθ = 2.5–21.1°
b = 9.774 (1) ŵ = 0.10 mm1
c = 14.742 (1) ÅT = 303 K
β = 112.628 (7)°Rod shape, light yellow
V = 4257.2 (7) Å30.48 × 0.08 × 0.08 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
4321 independent reflections
Radiation source: fine-focus sealed tube1708 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
Detector resolution: 8.4012 pixels mm-1θmax = 26.4°, θmin = 2.5°
Rotation method data acquisition using ω and φ scansh = 4040
Absorption correction: numerical
[absorption correction using a multifaceted crystal model based on expressions derived (Clark & Reid, 1995)]
k = 912
Tmin = 0.981, Tmax = 0.994l = 1818
16173 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.093Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0247P)2 + 7.7951P]
where P = (Fo2 + 2Fc2)/3
4321 reflections(Δ/σ)max < 0.001
299 parametersΔρmax = 0.21 e Å3
3 restraintsΔρmin = 0.23 e Å3
Crystal data top
C2H8N+·C22H12BO6·0.5H2OV = 4257.2 (7) Å3
Mr = 438.24Z = 8
Monoclinic, C2/cMo Kα radiation
a = 32.011 (3) ŵ = 0.10 mm1
b = 9.774 (1) ÅT = 303 K
c = 14.742 (1) Å0.48 × 0.08 × 0.08 mm
β = 112.628 (7)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
4321 independent reflections
Absorption correction: numerical
[absorption correction using a multifaceted crystal model based on expressions derived (Clark & Reid, 1995)]
1708 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.994Rint = 0.079
16173 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0933 restraints
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.21 e Å3
4321 reflectionsΔρmin = 0.23 e Å3
299 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.01987 (8)0.4067 (3)0.37753 (18)0.0487 (8)
O20.03911 (9)0.2873 (3)0.5007 (2)0.0520 (8)
O30.01354 (9)0.2159 (3)0.6392 (2)0.0643 (9)
O40.09425 (8)0.4084 (3)0.37123 (19)0.0474 (7)
O50.06167 (9)0.2000 (3)0.33692 (19)0.0498 (8)
O60.10420 (9)0.0190 (3)0.2734 (2)0.0608 (9)
C10.02357 (13)0.3624 (4)0.4222 (3)0.0421 (11)
C20.05411 (13)0.3882 (4)0.3807 (3)0.0443 (11)
H20.04510.43580.32160.053*
C30.09922 (13)0.3435 (4)0.4264 (3)0.0423 (11)
C40.13136 (14)0.3649 (5)0.3838 (3)0.0564 (13)
H40.12300.41260.32490.068*
C50.17420 (16)0.3169 (5)0.4274 (4)0.0693 (15)
H50.19470.33140.39760.083*
C60.18799 (15)0.2461 (5)0.5163 (4)0.0712 (15)
H60.21750.21350.54520.085*
C70.15843 (14)0.2246 (5)0.5608 (3)0.0615 (13)
H70.16790.17840.62050.074*
C80.11340 (13)0.2721 (4)0.5170 (3)0.0443 (11)
C90.08061 (13)0.2483 (4)0.5579 (3)0.0457 (11)
H90.08900.20260.61760.055*
C100.03693 (13)0.2910 (4)0.5115 (3)0.0398 (10)
C110.00351 (14)0.2617 (4)0.5560 (4)0.0482 (12)
C120.13259 (13)0.3378 (4)0.3605 (3)0.0406 (10)
C130.16686 (12)0.4009 (4)0.3771 (3)0.0462 (11)
H130.16380.49230.39620.055*
C140.20682 (13)0.3303 (5)0.3661 (3)0.0470 (12)
C150.24235 (14)0.3923 (5)0.3855 (3)0.0686 (15)
H150.23970.48280.40650.082*
C160.28029 (16)0.3202 (6)0.3738 (4)0.0833 (17)
H160.30350.36280.38630.100*
C170.28545 (16)0.1834 (6)0.3434 (4)0.0858 (17)
H170.31170.13560.33620.103*
C180.25178 (14)0.1214 (5)0.3245 (3)0.0694 (14)
H180.25510.03040.30460.083*
C190.21161 (13)0.1922 (5)0.3345 (3)0.0457 (11)
C200.17613 (13)0.1312 (4)0.3159 (3)0.0463 (11)
H200.17920.04120.29370.056*
C210.13709 (12)0.2008 (4)0.3295 (3)0.0379 (10)
C220.10027 (14)0.1318 (5)0.3107 (3)0.0466 (11)
B10.05381 (15)0.3300 (5)0.3956 (4)0.0444 (13)
N50.06832 (10)0.8557 (4)0.1613 (2)0.0518 (9)
H25A0.03680.82990.16880.062*
H25B0.06190.90080.22250.062*
C230.09329 (15)0.7284 (5)0.1570 (4)0.0791 (16)
H23A0.07630.67130.21170.095*
H23B0.09790.68130.09670.095*
H23C0.12210.74940.15960.095*
C240.09181 (16)0.9503 (5)0.0806 (3)0.0898 (18)
H24A0.09970.90360.01900.108*
H24B0.07231.02610.08310.108*
H24C0.11880.98330.08690.108*
O70.00000.0715 (4)0.25000.0849 (15)
H270.0156 (12)0.1236 (14)0.271 (3)0.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0322 (16)0.061 (2)0.0533 (19)0.0011 (15)0.0168 (15)0.0074 (15)
O20.0364 (16)0.071 (2)0.053 (2)0.0023 (16)0.0217 (15)0.0056 (17)
O30.0504 (18)0.088 (3)0.058 (2)0.0010 (17)0.0247 (17)0.0188 (19)
O40.0370 (16)0.0427 (19)0.0651 (19)0.0031 (14)0.0226 (15)0.0049 (15)
O50.0442 (17)0.047 (2)0.063 (2)0.0006 (15)0.0262 (16)0.0089 (16)
O60.0632 (19)0.051 (2)0.078 (2)0.0015 (17)0.0375 (17)0.0150 (18)
C10.037 (3)0.042 (3)0.048 (3)0.006 (2)0.017 (2)0.000 (2)
C20.040 (3)0.050 (3)0.045 (3)0.008 (2)0.020 (2)0.000 (2)
C30.038 (3)0.043 (3)0.049 (3)0.010 (2)0.019 (2)0.012 (2)
C40.046 (3)0.067 (3)0.067 (3)0.013 (3)0.033 (3)0.011 (3)
C50.052 (3)0.084 (4)0.088 (4)0.009 (3)0.045 (3)0.012 (3)
C60.040 (3)0.076 (4)0.103 (4)0.001 (3)0.033 (3)0.001 (3)
C70.043 (3)0.060 (3)0.079 (3)0.003 (2)0.020 (3)0.007 (3)
C80.038 (3)0.042 (3)0.049 (3)0.004 (2)0.012 (2)0.003 (2)
C90.046 (3)0.045 (3)0.049 (3)0.003 (2)0.021 (2)0.000 (2)
C100.035 (2)0.040 (3)0.048 (3)0.005 (2)0.021 (2)0.001 (2)
C110.046 (3)0.047 (3)0.056 (3)0.004 (2)0.024 (3)0.002 (3)
C120.038 (2)0.038 (3)0.047 (3)0.001 (2)0.017 (2)0.002 (2)
C130.040 (2)0.041 (3)0.060 (3)0.001 (2)0.021 (2)0.008 (2)
C140.034 (2)0.054 (3)0.056 (3)0.005 (2)0.020 (2)0.003 (2)
C150.047 (3)0.069 (4)0.100 (4)0.002 (3)0.039 (3)0.007 (3)
C160.054 (3)0.085 (5)0.123 (5)0.004 (3)0.048 (3)0.006 (4)
C170.049 (3)0.086 (5)0.133 (5)0.015 (3)0.046 (3)0.006 (4)
C180.053 (3)0.070 (4)0.089 (4)0.011 (3)0.031 (3)0.004 (3)
C190.035 (2)0.053 (3)0.050 (3)0.003 (2)0.018 (2)0.001 (2)
C200.048 (3)0.045 (3)0.047 (3)0.002 (2)0.019 (2)0.005 (2)
C210.033 (2)0.041 (3)0.040 (3)0.004 (2)0.014 (2)0.001 (2)
C220.049 (3)0.045 (3)0.048 (3)0.001 (3)0.021 (2)0.002 (2)
B10.027 (3)0.057 (4)0.050 (3)0.002 (3)0.017 (3)0.001 (3)
N50.048 (2)0.056 (2)0.052 (2)0.006 (2)0.0200 (19)0.003 (2)
C230.069 (3)0.074 (4)0.097 (4)0.020 (3)0.035 (3)0.026 (3)
C240.106 (4)0.096 (5)0.065 (4)0.040 (4)0.029 (3)0.013 (3)
O70.086 (4)0.060 (3)0.135 (4)0.0000.071 (3)0.000
Geometric parameters (Å, º) top
O1—C11.360 (4)C12—C211.405 (5)
O1—B11.427 (5)C13—C141.406 (5)
O2—C111.316 (4)C13—H130.9300
O2—B11.496 (5)C14—C151.412 (5)
O3—C111.227 (4)C14—C191.417 (5)
O4—C121.363 (4)C15—C161.356 (6)
O4—B11.426 (5)C15—H150.9300
O5—C221.324 (4)C16—C171.399 (6)
O5—B11.502 (5)C16—H160.9300
O6—C221.216 (4)C17—C181.355 (6)
C1—C21.362 (5)C17—H170.9300
C1—C101.404 (5)C18—C191.417 (5)
C2—C31.408 (5)C18—H180.9300
C2—H20.9300C19—C201.400 (5)
C3—C41.412 (5)C20—C211.368 (5)
C3—C81.417 (5)C20—H200.9300
C4—C51.355 (6)C21—C221.473 (5)
C4—H40.9300N5—C241.466 (5)
C5—C61.395 (6)N5—C231.467 (5)
C5—H50.9300N5—H25A1.0035
C6—C71.360 (5)N5—H25B0.9530
C6—H60.9300C23—H23A0.9600
C7—C81.412 (5)C23—H23B0.9600
C7—H70.9300C23—H23C0.9600
C8—C91.416 (5)C24—H24A0.9600
C9—C101.364 (5)C24—H24B0.9600
C9—H90.9300C24—H24C0.9600
C10—C111.482 (5)O7—H270.85 (3)
C12—C131.361 (5)
C1—O1—B1116.9 (3)C16—C15—H15119.9
C11—O2—B1122.2 (3)C14—C15—H15119.9
C12—O4—B1116.5 (3)C15—C16—C17121.8 (5)
C22—O5—B1121.6 (3)C15—C16—H16119.1
O1—C1—C2120.0 (4)C17—C16—H16119.1
O1—C1—C10119.9 (4)C18—C17—C16119.2 (5)
C2—C1—C10120.1 (4)C18—C17—H17120.4
C1—C2—C3120.5 (4)C16—C17—H17120.4
C1—C2—H2119.7C17—C18—C19121.4 (5)
C3—C2—H2119.7C17—C18—H18119.3
C2—C3—C4121.9 (4)C19—C18—H18119.3
C2—C3—C8120.2 (4)C20—C19—C18122.9 (4)
C4—C3—C8117.9 (4)C20—C19—C14118.5 (4)
C5—C4—C3121.0 (5)C18—C19—C14118.6 (4)
C5—C4—H4119.5C21—C20—C19121.6 (4)
C3—C4—H4119.5C21—C20—H20119.2
C4—C5—C6120.9 (4)C19—C20—H20119.2
C4—C5—H5119.5C20—C21—C12119.7 (4)
C6—C5—H5119.5C20—C21—C22119.8 (4)
C7—C6—C5120.2 (4)C12—C21—C22120.5 (4)
C7—C6—H6119.9O6—C22—O5120.7 (4)
C5—C6—H6119.9O6—C22—C21123.3 (4)
C6—C7—C8120.4 (5)O5—C22—C21116.0 (4)
C6—C7—H7119.8O4—B1—O1110.7 (4)
C8—C7—H7119.8O4—B1—O2107.7 (3)
C7—C8—C9123.0 (4)O1—B1—O2112.4 (3)
C7—C8—C3119.6 (4)O4—B1—O5112.0 (3)
C9—C8—C3117.4 (4)O1—B1—O5107.9 (3)
C10—C9—C8121.4 (4)O2—B1—O5106.1 (4)
C10—C9—H9119.3C24—N5—C23113.5 (4)
C8—C9—H9119.3C24—N5—H25A115.4
C9—C10—C1120.4 (4)C23—N5—H25A107.4
C9—C10—C11119.6 (4)C24—N5—H25B109.4
C1—C10—C11120.0 (4)C23—N5—H25B110.4
O3—C11—O2119.9 (4)H25A—N5—H25B99.9
O3—C11—C10123.9 (4)N5—C23—H23A109.5
O2—C11—C10116.2 (4)N5—C23—H23B109.5
C13—C12—O4120.1 (4)H23A—C23—H23B109.5
C13—C12—C21120.1 (4)N5—C23—H23C109.5
O4—C12—C21119.7 (4)H23A—C23—H23C109.5
C12—C13—C14121.2 (4)H23B—C23—H23C109.5
C12—C13—H13119.4N5—C24—H24A109.5
C14—C13—H13119.4N5—C24—H24B109.5
C13—C14—C15122.3 (4)H24A—C24—H24B109.5
C13—C14—C19118.9 (4)N5—C24—H24C109.5
C15—C14—C19118.8 (4)H24A—C24—H24C109.5
C16—C15—C14120.2 (5)H24B—C24—H24C109.5
B1—O1—C1—C2152.4 (4)C13—C14—C15—C16180.0 (4)
B1—O1—C1—C1028.0 (5)C19—C14—C15—C160.2 (7)
O1—C1—C2—C3179.7 (4)C14—C15—C16—C170.6 (8)
C10—C1—C2—C30.1 (6)C15—C16—C17—C180.4 (9)
C1—C2—C3—C4178.0 (4)C16—C17—C18—C190.3 (8)
C1—C2—C3—C80.6 (6)C17—C18—C19—C20179.8 (5)
C2—C3—C4—C5177.7 (4)C17—C18—C19—C140.8 (7)
C8—C3—C4—C51.0 (6)C13—C14—C19—C200.2 (6)
C3—C4—C5—C60.7 (7)C15—C14—C19—C20179.6 (4)
C4—C5—C6—C70.2 (8)C13—C14—C19—C18179.3 (4)
C5—C6—C7—C80.8 (7)C15—C14—C19—C180.5 (6)
C6—C7—C8—C9177.5 (4)C18—C19—C20—C21177.6 (4)
C6—C7—C8—C30.5 (6)C14—C19—C20—C211.4 (6)
C2—C3—C8—C7178.3 (4)C19—C20—C21—C121.7 (6)
C4—C3—C8—C70.4 (6)C19—C20—C21—C22178.9 (4)
C2—C3—C8—C90.2 (6)C13—C12—C21—C200.2 (6)
C4—C3—C8—C9178.5 (4)O4—C12—C21—C20178.1 (3)
C7—C8—C9—C10177.3 (4)C13—C12—C21—C22179.6 (4)
C3—C8—C9—C100.7 (6)O4—C12—C21—C221.4 (5)
C8—C9—C10—C11.2 (6)B1—O5—C22—O6171.3 (4)
C8—C9—C10—C11178.9 (4)B1—O5—C22—C218.7 (5)
O1—C1—C10—C9178.8 (4)C20—C21—C22—O68.0 (6)
C2—C1—C10—C90.8 (6)C12—C21—C22—O6171.4 (4)
O1—C1—C10—C111.1 (6)C20—C21—C22—O5172.0 (4)
C2—C1—C10—C11179.3 (4)C12—C21—C22—O58.5 (5)
B1—O2—C11—O3173.9 (4)C12—O4—B1—O1163.5 (3)
B1—O2—C11—C106.0 (6)C12—O4—B1—O273.2 (4)
C9—C10—C11—O39.7 (6)C12—O4—B1—O543.1 (5)
C1—C10—C11—O3170.2 (4)C1—O1—B1—O4161.8 (3)
C9—C10—C11—O2170.2 (4)C1—O1—B1—O241.4 (5)
C1—C10—C11—O29.9 (6)C1—O1—B1—O575.3 (4)
B1—O4—C12—C13153.2 (4)C11—O2—B1—O4153.3 (4)
B1—O4—C12—C2128.6 (5)C11—O2—B1—O131.1 (6)
O4—C12—C13—C14179.7 (4)C11—O2—B1—O586.6 (4)
C21—C12—C13—C141.5 (6)C22—O5—B1—O434.1 (5)
C12—C13—C14—C15178.2 (4)C22—O5—B1—O1156.1 (3)
C12—C13—C14—C191.7 (6)C22—O5—B1—O283.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H25A···O3i1.001.882.849 (4)162
N5—H25B···O6ii0.952.122.839 (4)131
N5—H25B···O3iii0.952.332.871 (4)116
O7—H27···O50.85 (3)2.18 (4)3.010 (3)163 (1)
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y+1, z; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC2H8N+·C22H12BO6·0.5H2O
Mr438.24
Crystal system, space groupMonoclinic, C2/c
Temperature (K)303
a, b, c (Å)32.011 (3), 9.774 (1), 14.742 (1)
β (°) 112.628 (7)
V3)4257.2 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.48 × 0.08 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionNumerical
[absorption correction using a multifaceted crystal model based on expressions derived (Clark & Reid, 1995)]
Tmin, Tmax0.981, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
16173, 4321, 1708
Rint0.079
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.093, 0.152, 1.12
No. of reflections4321
No. of parameters299
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.23

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), Mercury (Macrae et al., 2006)., publCIF (Westrip, 2008).

Selected geometric parameters (Å, º) top
O1—B11.427 (5)O4—B11.426 (5)
O2—B11.496 (5)O5—B11.502 (5)
O4—B1—O1110.7 (4)O4—B1—O5112.0 (3)
O4—B1—O2107.7 (3)O1—B1—O5107.9 (3)
O1—B1—O2112.4 (3)O2—B1—O5106.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H25A···O3i1.001.882.849 (4)161.8
N5—H25B···O6ii0.952.122.839 (4)130.7
N5—H25B···O3iii0.952.332.871 (4)115.5
O7—H27···O50.85 (3)2.18 (4)3.010 (3)163.3 (12)
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y+1, z; (iii) x, y+1, z+1.
 

Acknowledgements

The authors gratefully acknowledge Kırıkkale University Scientific Research Centre for financial support of this work (grant No. 2007/49) and Professor Dr Hartmut Fuess, Institute of Materials Science, Darmstadt University of Technology, Germany, for use of the diffractometer.

References

First citationCarr, J. M., Duggan, P. J., Humphrey, D. G. & Tyndall, E. M. (2005). Aust. J. Chem. 58, 21–25.  Web of Science CSD CrossRef CAS Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDownard, A., Nieuwenhuyzen, M., Seddon, K.-R., Van den Berg, J.-A., Schmidt, M.-A., Vaughan, J.-F. S. & Wellz-Biermann, U. (2002). Cryst. Growth Des. 2, 111–119.  Web of Science CSD CrossRef CAS Google Scholar
First citationErrington, R. J., Tombul, M., Walker, G. L. P., Clegg, W., Heath, S. L. & Horsburgh, L. (1999). J. Chem. Soc. Dalton Trans. pp. 3533–3534.  Web of Science CrossRef Google Scholar
First citationGreen, S., Nelson, A., Warriner, S. & Whittaker, B. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 4403–4408.  Web of Science CSD CrossRef Google Scholar
First citationGrice, J. D., Burns, P. C. & Hawthorne, F. C. (1999). Can. Mineral. 37, 731–762.  CAS Google Scholar
First citationLi, P. & Liu, Z.-H. (2006). Z. Kristallogr. New Cryst. Struct. 221, 179–180.  CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions 1.171.31.4. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSchubert, D. M., Visi, M. Z. & Knobler, C. B. (2000). Inorg. Chem. 39, 2250–2251.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationTombul, M., Errington, R. J., Coxall, R. A. & Clegg, W. (2003). Acta Cryst. C59, m231–m233.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTombul, M., Guven, K., Büyükgüngör, O., Aktas, H. & Durlu, T. N. (2007). Acta Cryst. C63, m430–m432.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTouboul, M., Penin, N. & Nowogrocki, G. (2003). Solid State Sci. 5, 1327–1342.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar
First citationZhang, W.-J. & Liu, Z.-H. (2006). Z. Kristallogr. New Cryst. Struct. 221, 189–190.  CAS Google Scholar
First citationZhang, J., Wang, J., Huang, X.-Y. & Chen, J.-T. (2005). Z. Kristallogr. New Cryst. Struct. 220, 1–2.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds