organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzyl N-[2-(1H-indol-3-yl)eth­yl]di­thio­carbamate

aDepartment of Chemistry, Urumu Dhanalakshmi College, Tiruchirappalli 620 019, India, bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA, and cCentre for Synthesis and Chemical Biology, Department of Pharmaceutical and Medicinal Chemistry, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
*Correspondence e-mail: vembu57@yahoo.com

(Received 8 December 2007; accepted 11 December 2007; online 18 December 2007)

The indole and phenyl ring systems in the title compound, C18H18N2S2, are nearly coplanar, the indole and phenyl planes forming a dihedral angle of 6.5 (1)°. Supra­molecular aggregation is effected by N—H⋯S, C—H⋯S, N—H⋯π and C—H⋯π inter­actions. The crystal studied exhibited inversion twinning.

Related literature

For a detailed account of the indole­amine 2,3-dioxy­genase (IDO) inhibitory properties of the title compound and other brassinin derivatives, see: Gaspari et al. (2006[Gaspari, P., Banerjee, T., Malachowski, W. P., Muller, A. J., Prendergast, G. C., DuHadaway, J., Bennett, S. & Donovan, A. M. (2006). J. Med. Chem. 49, 684-692.]) and references cited therein. For hydrogen-bond criteria, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press.]); Desiraju (1989[Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.]). For graph-set notations, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18N2S2

  • Mr = 326.46

  • Monoclinic, C c

  • a = 34.554 (10) Å

  • b = 5.459 (2) Å

  • c = 8.875 (3) Å

  • β = 102.522 (18)°

  • V = 1634.3 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 90 K

  • 0.30 × 0.27 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer with an Oxford Cryosystems Cryostream cooler

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.909, Tmax = 0.984

  • 14452 measured reflections

  • 3638 independent reflections

  • 2846 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.083

  • S = 1.06

  • 3638 reflections

  • 271 parameters

  • 2 restraints

  • All H-atom parameters refined

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.36 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1615 Friedel pairs

  • Flack parameter: 0.44 (6)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C2–C5 ring, Cg2 that of the C4–C9 ring and Cg3 that of the C17–C22 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11B⋯S14 0.95 (3) 2.65 (2) 3.103 (2) 109.6 (17)
C16—H16A⋯S14 1.00 (2) 2.80 (2) 3.222 (2) 106.1 (15)
N12—H12⋯S14i 0.84 (3) 2.50 (3) 3.283 (2) 156 (2)
C16—H16A⋯S15ii 1.00 (2) 2.78 (2) 3.642 (3) 144.8 (17)
N1—H1⋯Cg2iii 0.84 (3) 2.658 3.373 143.65
C8—H8⋯Cg2ii 0.95 (3) 3.244 3.868 124.79
C9—H9⋯Cg1ii 0.94 (3) 2.807 3.574 140.03
C18—H18⋯Cg3iv 1.04 (3) 3.174 4.053 142.60
C21—H21⋯Cg3v 0.93 (3) 3.212 3.946 136.93
Symmetry codes: (i) [x, -y, z+{\script{1\over 2}}]; (ii) [x, -y, z-{\script{1\over 2}}]; (iii) [x, -y+1, z+{\script{1\over 2}}]; (iv) [x, -y, z+{\script{1\over 2}}]; (v) [x, -y-1, z-{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The enzyme indoleamine 2,3-dioxygenase (IDO) has been reported to play a role in tumour immunosuppression. IDO inhibitors have been reported to be novel therapeutics for cancer treatment. The natural product brassinin has been shown to be a moderately active competitive IDO inhibitor. The title compound, (I), Fig. 1, is a brassinin derivative and its IDO inhibitory properties have been reported (Gaspari et al., 2006). The present investigation is aimed at the study of the molecular and supramolecular architecture of the title compound. This study may serve as a forerunner to an investigation of the correlation between the molecular and supramolecular features of this compound with its biological activity.

In (I), the dithiocarbamate moiety is essentially planar, as shown by the small deviation of N12 [0.0036 (6) Å], C13 [-0.009 (2) Å], S14 [0.0032 (5) Å] & S15 [0.0027 (5) Å] atoms from their mean plane. The interplanar angle between the indole and the phenyl ring is 6.5 (1)° thereby confirming their near coplanarity.

The crystal structure of (I) is stabilized by the interplay of N—H···S, C—H···S, N—H···π and C—H···π interactions, Fig. 2, Table 1. The H-bond distances found in (I) agree with those reported in literature (Desiraju & Steiner, 1999; Desiraju, 1989). The C11—H11B···S14 interaction generates a motif of graph set (Bernstein et al., 1995; Etter, 1990) S(5). Another S(5) motif is formed by the C16—H16···S14 interaction. The N12—H12···S14i interaction generates an infinite one-dimensional chain along [001]. The N12—H12···S14i and C16—H16A···S15ii interactions generate a binary motif of graph set R22(9). The C8—H8···Cg2ii and C9—H9···Cg1ii interactions generate an R22(6) motif in which each of the aromatic rings are considered as single acceptor atoms. Cg1 is the centroid of the N1, C2, C3, C4 & C5 ring, Cg2 that of the C4, C5, C6, C7, C8 & C9 ring and Cg3 that of the C17, C18, C19, C20, C21 & C22 ring, Table 1.

Related literature top

For a detailed account of the indoleamine 2,3-dioxygenase (IDO) inhibitory properties of the title compound and other brassinin derivatives, see: Gaspari et al. (2006) and references cited therein. For hydrogen-bond criteria, see: Desiraju & Steiner (1999); Desiraju (1989). For graph-set notations, see: Bernstein et al. (1995); Etter (1990). Cg1 is the centroid of the N1,C2–C5 ring, Cg2 that of the C4–C9 ring and Cg3 that of the C17–C22 ring.

Experimental top

The title compound was prepared by the reported procedure (Gaspari et al., 2006). Diffraction quality crystals were obtained by recrystallizing the crude product from a 1:1 mixture of dichloromethane and petroleum ether.

Refinement top

All H-atoms were located in difference maps and their positions and isotropic displacement parameters freely refined. Refinement of the Flack (1983) parameter indicated an inversion twin with components of slightly different size.

Structure description top

The enzyme indoleamine 2,3-dioxygenase (IDO) has been reported to play a role in tumour immunosuppression. IDO inhibitors have been reported to be novel therapeutics for cancer treatment. The natural product brassinin has been shown to be a moderately active competitive IDO inhibitor. The title compound, (I), Fig. 1, is a brassinin derivative and its IDO inhibitory properties have been reported (Gaspari et al., 2006). The present investigation is aimed at the study of the molecular and supramolecular architecture of the title compound. This study may serve as a forerunner to an investigation of the correlation between the molecular and supramolecular features of this compound with its biological activity.

In (I), the dithiocarbamate moiety is essentially planar, as shown by the small deviation of N12 [0.0036 (6) Å], C13 [-0.009 (2) Å], S14 [0.0032 (5) Å] & S15 [0.0027 (5) Å] atoms from their mean plane. The interplanar angle between the indole and the phenyl ring is 6.5 (1)° thereby confirming their near coplanarity.

The crystal structure of (I) is stabilized by the interplay of N—H···S, C—H···S, N—H···π and C—H···π interactions, Fig. 2, Table 1. The H-bond distances found in (I) agree with those reported in literature (Desiraju & Steiner, 1999; Desiraju, 1989). The C11—H11B···S14 interaction generates a motif of graph set (Bernstein et al., 1995; Etter, 1990) S(5). Another S(5) motif is formed by the C16—H16···S14 interaction. The N12—H12···S14i interaction generates an infinite one-dimensional chain along [001]. The N12—H12···S14i and C16—H16A···S15ii interactions generate a binary motif of graph set R22(9). The C8—H8···Cg2ii and C9—H9···Cg1ii interactions generate an R22(6) motif in which each of the aromatic rings are considered as single acceptor atoms. Cg1 is the centroid of the N1, C2, C3, C4 & C5 ring, Cg2 that of the C4, C5, C6, C7, C8 & C9 ring and Cg3 that of the C17, C18, C19, C20, C21 & C22 ring, Table 1.

For a detailed account of the indoleamine 2,3-dioxygenase (IDO) inhibitory properties of the title compound and other brassinin derivatives, see: Gaspari et al. (2006) and references cited therein. For hydrogen-bond criteria, see: Desiraju & Steiner (1999); Desiraju (1989). For graph-set notations, see: Bernstein et al. (1995); Etter (1990). Cg1 is the centroid of the N1,C2–C5 ring, Cg2 that of the C4–C9 ring and Cg3 that of the C17–C22 ring.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with the atoms labelled and displacement ellipsoids depicted at the 50% probability level for all non-H atoms. H-atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. The molecular packing viewed down the b-axis. Dashed lines represent the weak N—H···S and C—H···S interactions within the lattice.
Benzyl N-[2-(1H-indol-3-yl)ethyl]dithiocarbamate top
Crystal data top
C18H18N2S2F(000) = 688
Mr = 326.46Dx = 1.327 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1986 reflections
a = 34.554 (10) Åθ = 2.5–28.3°
b = 5.459 (2) ŵ = 0.32 mm1
c = 8.875 (3) ÅT = 90 K
β = 102.522 (18)°Plate, colorless
V = 1634.3 (9) Å30.30 × 0.27 × 0.05 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer with an Oxford Cryosystems Cryostream cooler
3638 independent reflections
Radiation source: fine-focus sealed tube2846 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ω scans with κ offsetsθmax = 28.3°, θmin = 3.6°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
h = 4545
Tmin = 0.909, Tmax = 0.984k = 77
14452 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038All H-atom parameters refined
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0459P)2 + 0.298P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3638 reflectionsΔρmax = 0.28 e Å3
271 parametersΔρmin = 0.36 e Å3
2 restraintsAbsolute structure: Flack (1983), 1615 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.44 (6)
Crystal data top
C18H18N2S2V = 1634.3 (9) Å3
Mr = 326.46Z = 4
Monoclinic, CcMo Kα radiation
a = 34.554 (10) ŵ = 0.32 mm1
b = 5.459 (2) ÅT = 90 K
c = 8.875 (3) Å0.30 × 0.27 × 0.05 mm
β = 102.522 (18)°
Data collection top
Nonius KappaCCD
diffractometer with an Oxford Cryosystems Cryostream cooler
3638 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
2846 reflections with I > 2σ(I)
Tmin = 0.909, Tmax = 0.984Rint = 0.013
14452 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038All H-atom parameters refined
wR(F2) = 0.083Δρmax = 0.28 e Å3
S = 1.06Δρmin = 0.36 e Å3
3638 reflectionsAbsolute structure: Flack (1983), 1615 Friedel pairs
271 parametersAbsolute structure parameter: 0.44 (6)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.46964 (6)0.5161 (4)1.1785 (2)0.0254 (4)
C20.43138 (7)0.4259 (4)1.1409 (3)0.0226 (5)
C30.42960 (6)0.2308 (4)1.0432 (2)0.0213 (4)
C40.46901 (6)0.1951 (4)1.0199 (2)0.0193 (4)
C50.49326 (6)0.3788 (4)1.1043 (2)0.0212 (5)
C60.53368 (7)0.4004 (4)1.1042 (3)0.0255 (5)
C70.54953 (7)0.2338 (4)1.0168 (2)0.0267 (5)
C80.52616 (7)0.0488 (4)0.9323 (3)0.0251 (5)
C90.48610 (6)0.0264 (4)0.9334 (3)0.0221 (5)
C100.39402 (6)0.0822 (4)0.9696 (3)0.0220 (5)
C110.35556 (7)0.1763 (4)1.0067 (3)0.0223 (5)
N120.32086 (5)0.0433 (4)0.9222 (2)0.0220 (4)
C130.29978 (6)0.1080 (4)0.7835 (2)0.0197 (4)
S140.309251 (17)0.35477 (9)0.68619 (5)0.02339 (14)
S150.261499 (15)0.10448 (9)0.71423 (4)0.02185 (14)
C160.22633 (7)0.0708 (4)0.5720 (3)0.0213 (5)
C170.19391 (6)0.1051 (4)0.4973 (2)0.0201 (5)
C180.15460 (7)0.0621 (5)0.5069 (3)0.0264 (5)
C190.12465 (7)0.2181 (5)0.4336 (3)0.0307 (5)
C200.13319 (8)0.4170 (4)0.3499 (3)0.0288 (5)
C210.17215 (7)0.4632 (4)0.3412 (3)0.0264 (5)
C220.20258 (7)0.3073 (4)0.4145 (2)0.0232 (5)
H10.4773 (8)0.640 (5)1.233 (3)0.027 (7)*
H20.4095 (7)0.498 (4)1.181 (3)0.018 (5)*
H60.5501 (7)0.527 (5)1.159 (3)0.024 (6)*
H70.5796 (8)0.242 (5)1.017 (3)0.024 (6)*
H80.5382 (8)0.073 (5)0.881 (3)0.040 (8)*
H90.4699 (8)0.095 (5)0.878 (3)0.033 (7)*
H10A0.3964 (7)0.086 (5)0.999 (3)0.032 (7)*
H10B0.3906 (7)0.083 (4)0.866 (3)0.024 (6)*
H11A0.3577 (7)0.155 (4)1.127 (3)0.016 (6)*
H11B0.3517 (7)0.341 (5)0.973 (3)0.015 (5)*
H120.3127 (7)0.076 (5)0.967 (3)0.024 (6)*
H16A0.2415 (7)0.147 (4)0.500 (3)0.016 (6)*
H16B0.2166 (7)0.205 (5)0.624 (3)0.026 (6)*
H180.1495 (8)0.084 (5)0.576 (3)0.033 (7)*
H190.0993 (10)0.188 (5)0.433 (3)0.037 (7)*
H200.1109 (10)0.512 (6)0.297 (4)0.047 (8)*
H210.1775 (7)0.597 (5)0.283 (3)0.028 (7)*
H220.2336 (8)0.353 (4)0.412 (3)0.026 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0281 (10)0.0213 (10)0.0267 (10)0.0045 (8)0.0061 (8)0.0075 (9)
C20.0258 (12)0.0206 (11)0.0221 (11)0.0015 (9)0.0067 (9)0.0007 (9)
C30.0239 (11)0.0188 (11)0.0201 (10)0.0019 (8)0.0023 (8)0.0004 (9)
C40.0230 (11)0.0166 (10)0.0181 (11)0.0013 (8)0.0039 (8)0.0030 (9)
C50.0230 (12)0.0199 (11)0.0194 (11)0.0015 (8)0.0015 (9)0.0000 (8)
C60.0271 (12)0.0231 (12)0.0238 (12)0.0058 (9)0.0001 (10)0.0001 (10)
C70.0230 (13)0.0260 (13)0.0308 (13)0.0004 (9)0.0051 (9)0.0044 (10)
C80.0247 (12)0.0238 (12)0.0267 (12)0.0035 (9)0.0052 (9)0.0014 (10)
C90.0217 (12)0.0209 (11)0.0219 (11)0.0005 (9)0.0009 (9)0.0005 (9)
C100.0221 (12)0.0214 (12)0.0216 (13)0.0001 (8)0.0027 (9)0.0003 (10)
C110.0234 (12)0.0223 (12)0.0204 (12)0.0001 (9)0.0031 (9)0.0006 (9)
N120.0216 (10)0.0238 (10)0.0215 (10)0.0003 (8)0.0069 (8)0.0037 (8)
C130.0199 (11)0.0208 (11)0.0194 (11)0.0050 (8)0.0069 (8)0.0015 (9)
S140.0290 (3)0.0189 (3)0.0217 (3)0.0002 (2)0.0043 (2)0.0010 (2)
S150.0224 (3)0.0210 (3)0.0213 (3)0.0007 (2)0.0029 (2)0.0029 (2)
C160.0220 (12)0.0203 (10)0.0216 (11)0.0019 (9)0.0046 (9)0.0006 (10)
C170.0227 (11)0.0197 (11)0.0174 (10)0.0015 (8)0.0031 (8)0.0042 (9)
C180.0244 (12)0.0252 (12)0.0305 (12)0.0041 (9)0.0081 (9)0.0020 (10)
C190.0183 (12)0.0314 (13)0.0422 (14)0.0011 (10)0.0058 (10)0.0043 (11)
C200.0291 (13)0.0241 (12)0.0304 (13)0.0045 (10)0.0008 (10)0.0028 (11)
C210.0345 (14)0.0211 (11)0.0229 (12)0.0015 (10)0.0046 (9)0.0015 (10)
C220.0276 (12)0.0220 (11)0.0202 (10)0.0018 (9)0.0057 (9)0.0020 (9)
Geometric parameters (Å, º) top
N1—C51.377 (3)C11—H11A1.06 (2)
N1—C21.382 (3)C11—H11B0.95 (3)
N1—H10.84 (3)N12—C131.335 (3)
C2—C31.366 (3)N12—H120.84 (3)
C2—H20.99 (3)C13—S141.670 (2)
C3—C41.434 (3)C13—S151.767 (2)
C3—C101.499 (3)S15—C161.822 (2)
C4—C91.408 (3)C16—C171.515 (3)
C4—C51.413 (3)C16—H16A1.00 (2)
C5—C61.402 (3)C16—H16B0.97 (3)
C6—C71.383 (3)C17—C221.394 (3)
C6—H60.96 (3)C17—C181.399 (3)
C7—C81.405 (3)C18—C191.388 (4)
C7—H71.04 (3)C18—H181.04 (3)
C8—C91.391 (3)C19—C201.383 (4)
C8—H80.95 (3)C19—H190.89 (3)
C9—H90.94 (3)C20—C211.388 (4)
C10—C111.526 (3)C20—H200.96 (3)
C10—H10A0.95 (3)C21—C221.399 (3)
C10—H10B0.90 (3)C21—H210.93 (3)
C11—N121.462 (3)C22—H221.10 (3)
C5—N1—C2109.01 (19)C10—C11—H11A107.8 (12)
C5—N1—H1124.7 (18)N12—C11—H11B105.6 (14)
C2—N1—H1126.2 (18)C10—C11—H11B108.8 (14)
C3—C2—N1109.9 (2)H11A—C11—H11B113.1 (19)
C3—C2—H2127.5 (13)C13—N12—C11124.4 (2)
N1—C2—H2122.6 (13)C13—N12—H12117.8 (17)
C2—C3—C4106.49 (19)C11—N12—H12117.6 (17)
C2—C3—C10128.1 (2)N12—C13—S14124.15 (17)
C4—C3—C10125.35 (19)N12—C13—S15111.41 (16)
C9—C4—C5118.86 (19)S14—C13—S15124.42 (13)
C9—C4—C3133.7 (2)C13—S15—C16103.47 (10)
C5—C4—C3107.44 (18)C17—C16—S15106.81 (15)
N1—C5—C6130.44 (19)C17—C16—H16A115.0 (13)
N1—C5—C4107.16 (18)S15—C16—H16A107.4 (13)
C6—C5—C4122.40 (19)C17—C16—H16B112.9 (14)
C7—C6—C5117.4 (2)S15—C16—H16B108.4 (14)
C7—C6—H6119.8 (14)H16A—C16—H16B106.1 (19)
C5—C6—H6122.7 (14)C22—C17—C18119.2 (2)
C6—C7—C8121.4 (2)C22—C17—C16120.64 (18)
C6—C7—H7119.0 (14)C18—C17—C16120.16 (19)
C8—C7—H7119.5 (14)C19—C18—C17120.2 (2)
C9—C8—C7121.1 (2)C19—C18—H18122.7 (15)
C9—C8—H8118.6 (17)C17—C18—H18117.0 (15)
C7—C8—H8120.0 (17)C20—C19—C18120.6 (2)
C8—C9—C4118.8 (2)C20—C19—H19117.8 (17)
C8—C9—H9122.9 (17)C18—C19—H19121.5 (17)
C4—C9—H9118.3 (17)C19—C20—C21119.7 (2)
C3—C10—C11113.23 (19)C19—C20—H20116.5 (19)
C3—C10—H10A112.7 (16)C21—C20—H20123.8 (19)
C11—C10—H10A107.0 (16)C20—C21—C22120.3 (2)
C3—C10—H10B110.8 (16)C20—C21—H21118.9 (16)
C11—C10—H10B107.0 (16)C22—C21—H21120.8 (16)
H10A—C10—H10B106 (2)C17—C22—C21120.1 (2)
N12—C11—C10112.22 (19)C17—C22—H22120.5 (13)
N12—C11—H11A109.5 (13)C21—C22—H22119.3 (13)
C5—N1—C2—C30.1 (2)C2—C3—C10—C113.0 (3)
N1—C2—C3—C40.7 (2)C4—C3—C10—C11175.5 (2)
N1—C2—C3—C10178.0 (2)C3—C10—C11—N12174.57 (19)
C2—C3—C4—C9179.8 (2)C10—C11—N12—C1390.3 (2)
C10—C3—C4—C91.4 (4)C11—N12—C13—S141.2 (3)
C2—C3—C4—C51.3 (2)C11—N12—C13—S15177.21 (16)
C10—C3—C4—C5177.5 (2)N12—C13—S15—C16158.35 (15)
C2—N1—C5—C6179.1 (2)S14—C13—S15—C1623.20 (17)
C2—N1—C5—C40.9 (2)C13—S15—C16—C17175.57 (14)
C9—C4—C5—N1179.51 (19)S15—C16—C17—C2262.1 (2)
C3—C4—C5—N11.4 (2)S15—C16—C17—C18119.77 (19)
C9—C4—C5—C60.5 (3)C22—C17—C18—C190.6 (3)
C3—C4—C5—C6178.6 (2)C16—C17—C18—C19177.6 (2)
N1—C5—C6—C7179.8 (2)C17—C18—C19—C200.2 (3)
C4—C5—C6—C70.2 (3)C18—C19—C20—C211.0 (4)
C5—C6—C7—C80.5 (3)C19—C20—C21—C221.0 (3)
C6—C7—C8—C90.0 (3)C18—C17—C22—C210.5 (3)
C7—C8—C9—C40.7 (3)C16—C17—C22—C21177.59 (19)
C5—C4—C9—C80.9 (3)C20—C21—C22—C170.2 (3)
C3—C4—C9—C8177.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···S140.95 (3)2.65 (2)3.103 (2)109.6 (17)
C16—H16A···S141.00 (2)2.80 (2)3.222 (2)106.1 (15)
N12—H12···S14i0.84 (3)2.50 (3)3.283 (2)156 (2)
C16—H16A···S15ii1.00 (2)2.78 (2)3.642 (3)144.8 (17)
N1—H1···Cg2iii0.84 (3)2.6583.373143.65
C8—H8···Cg2ii0.95 (3)3.2443.868124.79
C9—H9···Cg1ii0.94 (3)2.8073.574140.03
C18—H18···Cg3i1.04 (3)3.1744.053142.60
C21—H21···Cg3iv0.93 (3)3.2123.946136.93
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z1/2; (iii) x, y+1, z+1/2; (iv) x, y1, z1/2.

Experimental details

Crystal data
Chemical formulaC18H18N2S2
Mr326.46
Crystal system, space groupMonoclinic, Cc
Temperature (K)90
a, b, c (Å)34.554 (10), 5.459 (2), 8.875 (3)
β (°) 102.522 (18)
V3)1634.3 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.30 × 0.27 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer with an Oxford Cryosystems Cryostream cooler
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.909, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
14452, 3638, 2846
Rint0.013
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.083, 1.06
No. of reflections3638
No. of parameters271
No. of restraints2
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.28, 0.36
Absolute structureFlack (1983), 1615 Friedel pairs
Absolute structure parameter0.44 (6)

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···S140.95 (3)2.65 (2)3.103 (2)109.6 (17)
C16—H16A···S141.00 (2)2.80 (2)3.222 (2)106.1 (15)
N12—H12···S14i0.84 (3)2.50 (3)3.283 (2)156 (2)
C16—H16A···S15ii1.00 (2)2.78 (2)3.642 (3)144.8 (17)
N1—H1···Cg2iii0.84 (3)2.6583.373143.65
C8—H8···Cg2ii0.95 (3)3.2443.868124.79
C9—H9···Cg1ii0.94 (3)2.8073.574140.03
C18—H18···Cg3i1.04 (3)3.1744.053142.60
C21—H21···Cg3iv0.93 (3)3.2123.946136.93
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z1/2; (iii) x, y+1, z+1/2; (iv) x, y1, z1/2.
 

Acknowledgements

CP and MD thank the Irish Government under its `Programme for Research in Third Level Institutions' and the Research committee of the Royal College of Surgeons in Ireland for financial support. The purchase of the diffractometer was made possible by grant No. LEQSF(1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDesiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGaspari, P., Banerjee, T., Malachowski, W. P., Muller, A. J., Prendergast, G. C., DuHadaway, J., Bennett, S. & Donovan, A. M. (2006). J. Med. Chem. 49, 684–692.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds