organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2,4-Di­chloro­phen­yl)-3-[5-(3,5-di­methyl­phen­yl)-1,3,4-thia­diazol-2-yl]thia­zolidin-4-one

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
*Correspondence e-mail: jswanrong@163.com

(Received 26 September 2007; accepted 7 December 2007; online 12 December 2007)

The title compound, C19H15Cl2N3OS2, was synthesized by the reaction of N-(2,4-dichloro­phen­yl)-5-(3,5-dimethyl­phen­yl)-1,3,4-thia­diazol-2-amine and mercaptoacetic acid. The thia­zolidinone ring adopts a twist conformation. The 2,4-dichloro­phenyl ring is almost perpendicular to the thia­diazole ring, the dihedral angle being 82.8 (2)°. The 3,5-dimethyl­phenyl ring is nearly coplanar with the thia­diazole ring, the dihedral angle being 2.7 (2)°. An intramolecular C—H⋯N hydrogen bond is present.

Related literature

For general background, see: Arun et al. (1999[Arun, K. P., Nag, V. L. & Panda, C. S. (1999). Indian J. Chem. Sect. B, 38, 998-1001.]); Chen et al. (2000[Chen, H. S., Li, Z. M. & Han, Y. F. (2000). J. Agric. Food Chem. 48, 5312-5315.]); Kidwai et al. (2000[Kidwai, M., Negi, N. & Misra, P. (2000). J. Indian Chem. Soc. 77, 46-48.]); Vicentini et al. (1998[Vicentini, C. B., Manfrini, M., Veronese, A. C. & Guarneri, M. (1998). J. Heterocycl. Chem. 35, 29-36.]); Wasfy et al. (1996[Wasfy, A. A., Nassar, S. A. & Eissa, A. M. (1996). Indian J. Chem. Sect. B, 35, 1218-1220.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C19H15Cl2N3OS2

  • Mr = 436.36

  • Triclinic, [P \overline 1]

  • a = 8.1760 (16) Å

  • b = 9.1650 (18) Å

  • c = 14.483 (3) Å

  • α = 80.60 (3)°

  • β = 80.82 (3)°

  • γ = 63.92 (3)°

  • V = 956.9 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 298 (2) K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.803, Tmax = 0.894

  • 4042 measured reflections

  • 3761 independent reflections

  • 2824 reflections with I > 2σ(I)

  • Rint = 0.044

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.165

  • S = 1.03

  • 3761 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯N3 0.93 2.49 2.842 (6) 102

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Siemens, 1996[Siemens (1996). SHELXTL. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,3,4-Thiadiazole derivatives containing the thiazolidinone unit are of great interest because of their chemical and pharmaceutical properties. Some derivatives have fungicidal activities and exhibit certain herbicidal activities (Chen et al., 2000; Kidwai et al., 2000; Vicentini et al., 1998). Some show insecticidal activities (Arun et al., 1999; Wasfy et al., 1996). We report here the crystal structure of the titled compound, (I).

The molecular structure of (I) is shown in Fig.1. In this structure, the thiazolidinone adopts a twist conformation, the dihedral angle between the C11/S1/C12 and C11/N3/C12 is 24.4 (4)°. The thiadiazole ring (S2/C9/N1/N2/C10) is an aromatic heterocyclic ring, all atoms are in the same plane. The angle between the thiadiazole ring and the 3,5-dimethylphenyl ring is 2.7 (2)°. The other benzene ring (C14/C15/C16/C17/C18/C19) is nearly perpendicular to the thiadiazole ring, the dihedral angle is 82.8 (2)°. The molecule has a C—H···N intramolecular hydrogen bond.

Related literature top

For general background, see: Arun et al. (1999); Chen et al. (2000); Kidwai et al. (2000); Vicentini et al. (1998); Wasfy et al. (1996). For bond-length data, see: Allen et al. (1987).

Experimental top

N-(2,4-dichlorobenzylidene)-5-(3,5-dimethylphenyl)-1,3,4-thiadiazol -2-amine (5 mmol) and mercapto-acetic acid (5 mmol) were added in toluene (50 ml). The water was removed by distillation for 5 h. The reaction mixture was left to cool to room temperature, filtered, and the filter cake was crystallized from acetone to give pure compound (I) (m.p. 476–477 K). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

Refinement top

All H atoms bonded to the C atoms were placed geometrically at the distances of 0.93–0.97 Å and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for aromatic H and x = 1.5 for methyl H atoms. The methyl groups were allowed to rotate.

Structure description top

1,3,4-Thiadiazole derivatives containing the thiazolidinone unit are of great interest because of their chemical and pharmaceutical properties. Some derivatives have fungicidal activities and exhibit certain herbicidal activities (Chen et al., 2000; Kidwai et al., 2000; Vicentini et al., 1998). Some show insecticidal activities (Arun et al., 1999; Wasfy et al., 1996). We report here the crystal structure of the titled compound, (I).

The molecular structure of (I) is shown in Fig.1. In this structure, the thiazolidinone adopts a twist conformation, the dihedral angle between the C11/S1/C12 and C11/N3/C12 is 24.4 (4)°. The thiadiazole ring (S2/C9/N1/N2/C10) is an aromatic heterocyclic ring, all atoms are in the same plane. The angle between the thiadiazole ring and the 3,5-dimethylphenyl ring is 2.7 (2)°. The other benzene ring (C14/C15/C16/C17/C18/C19) is nearly perpendicular to the thiadiazole ring, the dihedral angle is 82.8 (2)°. The molecule has a C—H···N intramolecular hydrogen bond.

For general background, see: Arun et al. (1999); Chen et al. (2000); Kidwai et al. (2000); Vicentini et al. (1998); Wasfy et al. (1996). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens,1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The crystal structure of (I). Dashed lines indicate intramolecular C—H···N hydrogen bond.
2-(2,4-Dichlorophenyl)-3-[5-(3,5-dimethylphenyl)-1,3,4-thiadiazol-2- yl]thiazolidin-4-one top
Crystal data top
C19H15Cl2N3OS2Z = 2
Mr = 436.36F(000) = 448
Triclinic, P1Dx = 1.514 Mg m3
Hall symbol: -P 1Melting point = 476–477 K
a = 8.1760 (16) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.1650 (18) ÅCell parameters from 25 reflections
c = 14.483 (3) Åθ = 10–14°
α = 80.60 (3)°µ = 0.57 mm1
β = 80.82 (3)°T = 298 K
γ = 63.92 (3)°Block, light yellow
V = 956.9 (4) Å30.40 × 0.30 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2824 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
Graphite monochromatorθmax = 26.0°, θmin = 1.4°
ω/2θ scansh = 910
Absorption correction: ψ scan
(North et al., 1968)
k = 1111
Tmin = 0.803, Tmax = 0.894l = 017
4042 measured reflections3 standard reflections every 200 reflections
3761 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.05P)2 + 2.5P]
where P = (Fo2 + 2Fc2)/3
3761 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C19H15Cl2N3OS2γ = 63.92 (3)°
Mr = 436.36V = 956.9 (4) Å3
Triclinic, P1Z = 2
a = 8.1760 (16) ÅMo Kα radiation
b = 9.1650 (18) ŵ = 0.57 mm1
c = 14.483 (3) ÅT = 298 K
α = 80.60 (3)°0.40 × 0.30 × 0.20 mm
β = 80.82 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2824 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.044
Tmin = 0.803, Tmax = 0.8943 standard reflections every 200 reflections
4042 measured reflections intensity decay: none
3761 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.165H-atom parameters constrained
S = 1.04Δρmax = 0.42 e Å3
3761 reflectionsΔρmin = 0.45 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.6127 (2)0.7754 (2)0.14356 (11)0.0843 (5)
Cl21.25961 (17)0.62298 (16)0.02409 (9)0.0667 (4)
S11.13265 (18)0.90179 (17)0.12924 (9)0.0626 (4)
S20.80372 (16)0.67126 (13)0.42066 (7)0.0469 (3)
O0.7989 (6)0.9660 (4)0.3520 (3)0.0818 (12)
N10.9137 (5)0.4033 (4)0.3485 (2)0.0522 (9)
N20.9641 (5)0.5066 (4)0.2796 (2)0.0523 (9)
N30.9527 (5)0.7697 (4)0.2528 (2)0.0487 (8)
C10.7096 (8)0.0041 (6)0.5859 (4)0.0672 (13)
H1B0.66220.03770.64650.101*
H1C0.83480.07960.57270.101*
H1D0.63860.00230.53860.101*
C20.6989 (6)0.1640 (6)0.5861 (3)0.0514 (11)
C30.7698 (6)0.2378 (5)0.5073 (3)0.0469 (10)
H3A0.82610.18150.45470.056*
C40.7565 (6)0.3936 (5)0.5074 (3)0.0439 (9)
C50.6693 (6)0.4783 (6)0.5844 (3)0.0496 (10)
H5A0.66020.58310.58420.059*
C60.5944 (6)0.4091 (6)0.6629 (3)0.0486 (10)
C70.6134 (6)0.2527 (6)0.6616 (3)0.0527 (11)
H7A0.56640.20480.71400.063*
C80.4899 (7)0.5073 (7)0.7442 (3)0.0698 (14)
H8A0.44850.44180.79200.105*
H8B0.38630.60250.72260.105*
H8C0.56830.54020.76980.105*
C90.8307 (5)0.4717 (5)0.4236 (3)0.0409 (9)
C100.9149 (6)0.6481 (5)0.3094 (3)0.0443 (9)
C111.0540 (6)0.7385 (5)0.1604 (3)0.0480 (10)
H11A1.16020.63230.16510.058*
C120.9563 (9)1.0308 (7)0.2078 (4)0.0745 (16)
H12A1.00261.09010.23800.089*
H12B0.85461.10930.17380.089*
C130.8942 (7)0.9217 (6)0.2809 (3)0.0576 (12)
C140.9401 (6)0.7419 (5)0.0871 (3)0.0431 (9)
C150.7515 (6)0.7987 (5)0.1026 (3)0.0500 (10)
H15A0.69230.83140.16100.060*
C160.6505 (6)0.8074 (6)0.0324 (3)0.0532 (11)
H16A0.52390.84620.04310.064*
C170.7404 (7)0.7576 (5)0.0542 (3)0.0538 (11)
C180.9264 (6)0.6968 (5)0.0713 (3)0.0505 (10)
H18A0.98550.66040.12900.061*
C191.0239 (6)0.6911 (5)0.0003 (3)0.0461 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1062 (12)0.1000 (11)0.0749 (9)0.0627 (10)0.0278 (8)0.0105 (8)
Cl20.0586 (7)0.0700 (8)0.0645 (8)0.0285 (6)0.0135 (6)0.0046 (6)
S10.0718 (8)0.0738 (8)0.0616 (7)0.0531 (7)0.0053 (6)0.0051 (6)
S20.0603 (7)0.0507 (6)0.0407 (5)0.0345 (5)0.0035 (5)0.0034 (4)
O0.130 (3)0.067 (2)0.062 (2)0.061 (2)0.020 (2)0.0169 (18)
N10.071 (2)0.051 (2)0.0410 (19)0.0354 (19)0.0016 (17)0.0019 (16)
N20.064 (2)0.050 (2)0.046 (2)0.0316 (18)0.0043 (17)0.0019 (16)
N30.060 (2)0.049 (2)0.0456 (19)0.0339 (18)0.0029 (16)0.0006 (16)
C10.079 (3)0.058 (3)0.066 (3)0.037 (3)0.006 (3)0.000 (2)
C20.063 (3)0.065 (3)0.041 (2)0.042 (2)0.007 (2)0.003 (2)
C30.056 (2)0.055 (2)0.037 (2)0.032 (2)0.0002 (18)0.0044 (18)
C40.048 (2)0.053 (2)0.041 (2)0.0301 (19)0.0090 (17)0.0004 (18)
C50.057 (3)0.059 (3)0.047 (2)0.035 (2)0.0089 (19)0.006 (2)
C60.046 (2)0.070 (3)0.039 (2)0.032 (2)0.0046 (17)0.009 (2)
C70.061 (3)0.078 (3)0.038 (2)0.049 (2)0.0068 (19)0.005 (2)
C80.075 (3)0.095 (4)0.056 (3)0.049 (3)0.009 (2)0.028 (3)
C90.039 (2)0.048 (2)0.040 (2)0.0232 (18)0.0042 (16)0.0029 (17)
C100.058 (2)0.052 (2)0.034 (2)0.035 (2)0.0088 (17)0.0044 (17)
C110.053 (2)0.053 (2)0.043 (2)0.031 (2)0.0003 (18)0.0011 (18)
C120.114 (5)0.069 (3)0.062 (3)0.064 (3)0.001 (3)0.002 (3)
C130.080 (3)0.052 (3)0.053 (3)0.043 (2)0.001 (2)0.000 (2)
C140.051 (2)0.040 (2)0.042 (2)0.0264 (18)0.0002 (18)0.0020 (17)
C150.056 (3)0.059 (3)0.043 (2)0.035 (2)0.0004 (19)0.0006 (19)
C160.046 (2)0.058 (3)0.059 (3)0.027 (2)0.002 (2)0.004 (2)
C170.075 (3)0.052 (3)0.053 (3)0.043 (2)0.007 (2)0.004 (2)
C180.071 (3)0.040 (2)0.048 (2)0.033 (2)0.005 (2)0.0052 (18)
C190.055 (2)0.040 (2)0.047 (2)0.0287 (19)0.0016 (19)0.0013 (17)
Geometric parameters (Å, º) top
Cl1—C171.734 (5)C5—C61.398 (6)
Cl2—C191.739 (4)C5—H5A0.9300
S1—C121.786 (6)C6—C71.375 (6)
S1—C111.841 (4)C6—C81.509 (6)
S2—C101.716 (4)C7—H7A0.9300
S2—C91.738 (4)C8—H8A0.9600
O—C131.198 (6)C8—H8B0.9600
N1—C91.285 (5)C8—H8C0.9600
N1—N21.401 (5)C11—C141.507 (6)
N2—C101.303 (5)C11—H11A0.9800
N3—C131.368 (6)C12—C131.518 (6)
N3—C101.391 (5)C12—H12A0.9700
N3—C111.458 (5)C12—H12B0.9700
C1—C21.504 (6)C14—C151.386 (6)
C1—H1B0.9600C14—C191.388 (6)
C1—H1C0.9600C15—C161.380 (6)
C1—H1D0.9600C15—H15A0.9300
C2—C71.376 (6)C16—C171.385 (6)
C2—C31.406 (6)C16—H16A0.9300
C3—C41.383 (6)C17—C181.365 (6)
C3—H3A0.9300C18—C191.378 (6)
C4—C51.378 (6)C18—H18A0.9300
C4—C91.488 (5)
C12—S1—C1192.2 (2)N1—C9—S2114.6 (3)
C10—S2—C986.20 (19)C4—C9—S2120.6 (3)
C9—N1—N2112.7 (3)N2—C10—N3120.8 (4)
C10—N2—N1110.8 (3)N2—C10—S2115.7 (3)
C13—N3—C10121.6 (4)N3—C10—S2123.5 (3)
C13—N3—C11118.1 (3)N3—C11—C14113.4 (3)
C10—N3—C11120.2 (3)N3—C11—S1104.4 (3)
C2—C1—H1B109.5C14—C11—S1110.7 (3)
C2—C1—H1C109.5N3—C11—H11A109.4
H1B—C1—H1C109.5C14—C11—H11A109.4
C2—C1—H1D109.5S1—C11—H11A109.4
H1B—C1—H1D109.5C13—C12—S1107.3 (4)
H1C—C1—H1D109.5C13—C12—H12A110.3
C7—C2—C3117.9 (4)S1—C12—H12A110.3
C7—C2—C1121.2 (4)C13—C12—H12B110.3
C3—C2—C1120.9 (4)S1—C12—H12B110.3
C4—C3—C2120.5 (4)H12A—C12—H12B108.5
C4—C3—H3A119.8O—C13—N3124.4 (4)
C2—C3—H3A119.8O—C13—C12124.1 (4)
C5—C4—C3119.7 (4)N3—C13—C12111.5 (4)
C5—C4—C9120.0 (4)C15—C14—C19117.8 (4)
C3—C4—C9120.3 (4)C15—C14—C11122.4 (4)
C4—C5—C6121.0 (4)C19—C14—C11119.7 (4)
C4—C5—H5A119.5C16—C15—C14120.9 (4)
C6—C5—H5A119.5C16—C15—H15A119.6
C7—C6—C5117.9 (4)C14—C15—H15A119.6
C7—C6—C8121.8 (4)C15—C16—C17119.0 (4)
C5—C6—C8120.2 (4)C15—C16—H16A120.5
C6—C7—C2123.0 (4)C17—C16—H16A120.5
C6—C7—H7A118.5C18—C17—C16121.8 (4)
C2—C7—H7A118.5C18—C17—Cl1119.2 (4)
C6—C8—H8A109.5C16—C17—Cl1119.0 (4)
C6—C8—H8B109.5C17—C18—C19118.0 (4)
H8A—C8—H8B109.5C17—C18—H18A121.0
C6—C8—H8C109.5C19—C18—H18A121.0
H8A—C8—H8C109.5C18—C19—C14122.4 (4)
H8B—C8—H8C109.5C18—C19—Cl2117.9 (3)
N1—C9—C4124.8 (4)C14—C19—Cl2119.6 (3)
C9—N1—N2—C100.5 (5)C10—N3—C11—C1476.7 (5)
C7—C2—C3—C41.3 (6)C13—N3—C11—S118.4 (5)
C1—C2—C3—C4178.9 (4)C10—N3—C11—S1162.7 (3)
C2—C3—C4—C51.5 (6)C12—S1—C11—N322.7 (3)
C2—C3—C4—C9179.6 (4)C12—S1—C11—C1499.6 (3)
C3—C4—C5—C60.2 (6)C11—S1—C12—C1322.1 (4)
C9—C4—C5—C6178.4 (4)C10—N3—C13—O4.5 (8)
C4—C5—C6—C71.2 (6)C11—N3—C13—O174.4 (5)
C4—C5—C6—C8176.4 (4)C10—N3—C13—C12178.8 (4)
C5—C6—C7—C21.4 (7)C11—N3—C13—C122.4 (6)
C8—C6—C7—C2176.2 (4)S1—C12—C13—O167.6 (5)
C3—C2—C7—C60.2 (7)S1—C12—C13—N315.6 (6)
C1—C2—C7—C6177.4 (4)N3—C11—C14—C1511.2 (6)
N2—N1—C9—C4178.1 (4)S1—C11—C14—C15105.7 (4)
N2—N1—C9—S20.3 (5)N3—C11—C14—C19170.7 (3)
C5—C4—C9—N1179.9 (4)S1—C11—C14—C1972.4 (4)
C3—C4—C9—N11.8 (6)C19—C14—C15—C161.3 (6)
C5—C4—C9—S21.6 (5)C11—C14—C15—C16176.9 (4)
C3—C4—C9—S2176.5 (3)C14—C15—C16—C170.3 (7)
C10—S2—C9—N10.0 (3)C15—C16—C17—C181.4 (7)
C10—S2—C9—C4178.5 (3)C15—C16—C17—Cl1177.7 (3)
N1—N2—C10—N3179.3 (4)C16—C17—C18—C192.1 (6)
N1—N2—C10—S20.5 (5)Cl1—C17—C18—C19177.1 (3)
C13—N3—C10—N2176.7 (4)C17—C18—C19—C141.1 (6)
C11—N3—C10—N22.2 (6)C17—C18—C19—Cl2176.9 (3)
C13—N3—C10—S23.5 (6)C15—C14—C19—C180.6 (6)
C11—N3—C10—S2177.7 (3)C11—C14—C19—C18177.6 (4)
C9—S2—C10—N20.3 (3)C15—C14—C19—Cl2178.6 (3)
C9—S2—C10—N3179.6 (4)C11—C14—C19—Cl20.4 (5)
C13—N3—C11—C14102.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···N30.932.492.842 (6)102

Experimental details

Crystal data
Chemical formulaC19H15Cl2N3OS2
Mr436.36
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.1760 (16), 9.1650 (18), 14.483 (3)
α, β, γ (°)80.60 (3), 80.82 (3), 63.92 (3)
V3)956.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.57
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.803, 0.894
No. of measured, independent and
observed [I > 2σ(I)] reflections
4042, 3761, 2824
Rint0.044
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.165, 1.04
No. of reflections3761
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.45

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens,1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···N30.932.492.842 (6)102
 

Acknowledgements

The authors thank Professor Hua-qin Wang of Nanjing University for carrying out the X-ray crystallographic analysis.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationArun, K. P., Nag, V. L. & Panda, C. S. (1999). Indian J. Chem. Sect. B, 38, 998–1001.  Google Scholar
First citationChen, H. S., Li, Z. M. & Han, Y. F. (2000). J. Agric. Food Chem. 48, 5312–5315.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKidwai, M., Negi, N. & Misra, P. (2000). J. Indian Chem. Soc. 77, 46–48.  CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSiemens (1996). SHELXTL. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationVicentini, C. B., Manfrini, M., Veronese, A. C. & Guarneri, M. (1998). J. Heterocycl. Chem. 35, 29–36.  CrossRef CAS Google Scholar
First citationWasfy, A. A., Nassar, S. A. & Eissa, A. M. (1996). Indian J. Chem. Sect. B, 35, 1218–1220.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds