organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris[2-(pyrrol-2-ylmethyl­ene­amino)eth­yl]amine

aBeijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
*Correspondence e-mail: jnyao@iccas.ac.cn

(Received 5 November 2007; accepted 6 December 2007; online 27 February 2008)

The title compound, C21H27N7, was synthesized by reaction of tris­(2-amino­ethyl)amine and pyrrole-2-carbaldehyde in ethanol at room temperature. The structure is stabilized by intra- and inter­molecular C—H⋯N and N—H⋯N hydrogen-bonding inter­actions.

Related literature

For the self-assembly of pyrrole Schiff base–metal complexes, see: Wu et al. (2003[Wu, Z. K., Chen, Q. Q., Xiong, S. X., Xin, B., Zhao, Z. W., Jiang, L. J. & Ma, J. S. (2003). Angew. Chem. Int. Ed. 42, 3271-3274.], 2006[Wu, Z. K., Zhang, Y. F., Ma, J. S. & Yang, G. Q. (2006). Inorg. Chem. 45, 3140-3142.]); Yang, Chen et al. (2004[Yang, L. Y., Chen, Q. Q., Li, Y., Xiong, S. X., Li, G. P. & Ma, J. S. (2004). Eur. J. Inorg. Chem. 29, 1478-1487.]); Yang, Shan et al. (2004[Yang, L. Y., Shan, Q. F., Chen, Q. Q., Wang, Z. P. & Ma, J. S. (2004). Eur. J. Inorg. Chem. 32, 1474-1477.]).

[Scheme 1]

Experimental

Crystal data
  • C21H27N7

  • Mr = 377.50

  • Monoclinic, P 21 /n

  • a = 11.494 (2) Å

  • b = 9.4875 (19) Å

  • c = 20.232 (4) Å

  • β = 105.97 (3)°

  • V = 2121.1 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.80 × 0.08 × 0.05 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.943, Tmax = 0.995

  • 19300 measured reflections

  • 4832 independent reflections

  • 1905 reflections with I > 2σ(I)

  • Rint = 0.0685

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.142

  • S = 1.01

  • 4832 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15B⋯N2 0.97 2.59 3.246 (4) 125
N3—H3A⋯N6i 0.86 2.14 2.956 (3) 159
N5—H5A⋯N4ii 0.86 2.20 3.029 (3) 163
N7—H7A⋯N2i 0.86 2.13 2.940 (3) 158
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y, -z.

Data collection: RAPID-AUTO (Rigaku, 2001[Rigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL/PC (Sheldrick, 1994[Sheldrick, G. M. (1994). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The chemistry and crystal structure of Schiff base derivatives of pyrrole have been extensively studied for many years as these compounds represent the basic units of porphyrins. More recently, it has been pointed out that pyrrole Schiff bases are ideal building blocks for the self-assembly of metallosupramolecules (Wu et al., 2006; Wu et al., 2003; Yang, Chen et al., 2004; Yang, Shan et al., 2004) due to the presence of many hydrogen bond donors and acceptors. In view of its potential interest in this field, the title compound was synthesized and its crystal structure is reported here.

In the title compound, bond lengths and angles are as expected, with the N2—C3, N4—C10 and N6—C17 bond lengths (mean value 1.270 (3) Å) indicating a remarkable double-bond character. The molecular conformation is stabilized by an intramolecular C—H···N hydrogen bond (Table 1). In the crystal structure, the molecules are linked by intermolecular N—H···N hydrogen bonding interactions (Table 1).

Related literature top

For the self-assembly of pyrrole Schiff base–metal complexes, see: Wu et al. (2003, 2006); Yang, Chen et al. (2004); Yang, Shan et al. (2004).

Experimental top

The title compound was prepared by reaction of tris(2-aminoethyl)amine, (0.05 mol) and pyrrole-2-carbaldehyde (0.15 mol) in ethanol (40 ml) at room temperature. Single crystals suitable for X-ray measurements were obtained by slow evaporation of an ethanol/acetonitrile solution (1:1 v/v) at room temperature.

Refinement top

All H atoms were fixed geometrically and were treated as riding on the parent atoms, with C—H = 0.93–0.97 Å, N—H = 0.86 Å and with Uiso(H) = 1.2 Ueq(C, N).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2001); cell refinement: RAPID-AUTO (Rigaku, 2001); data reduction: RAPID-AUTO (Rigaku, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids and the atom-numbering scheme.
Tris[2-(pyrrol-2-ylmethyleneamino)ethyl]amine top
Crystal data top
C21H27N7F(000) = 808
Mr = 377.50Dx = 1.182 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 19300 reflections
a = 11.494 (2) Åθ = 1.9–27.5°
b = 9.4875 (19) ŵ = 0.08 mm1
c = 20.232 (4) ÅT = 293 K
β = 105.97 (3)°Needle, brown
V = 2121.1 (8) Å30.80 × 0.08 × 0.05 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4832 independent reflections
Radiation source: Rotating Anode1905 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
oscillation scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1414
Tmin = 0.943, Tmax = 0.995k = 012
19300 measured reflectionsl = 1326
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0318P)2]
where P = (Fo2 + 2Fc2)/3
4832 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C21H27N7V = 2121.1 (8) Å3
Mr = 377.50Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.494 (2) ŵ = 0.08 mm1
b = 9.4875 (19) ÅT = 293 K
c = 20.232 (4) Å0.80 × 0.08 × 0.05 mm
β = 105.97 (3)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4832 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1905 reflections with I > 2σ(I)
Tmin = 0.943, Tmax = 0.995Rint = 0.069
19300 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.01Δρmax = 0.20 e Å3
4832 reflectionsΔρmin = 0.19 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.32208 (19)0.2117 (2)0.04712 (11)0.0456 (6)
N20.3346 (2)0.3634 (2)0.17842 (11)0.0439 (6)
N30.47309 (19)0.6138 (3)0.18248 (11)0.0493 (7)
H3A0.43610.62130.15100.059*
N40.1461 (2)0.1199 (3)0.03356 (12)0.0477 (6)
N50.1051 (2)0.1779 (3)0.05915 (12)0.0523 (7)
H5A0.03880.14260.03390.063*
N60.6284 (2)0.2840 (2)0.07191 (11)0.0443 (6)
N70.8400 (2)0.4282 (2)0.15596 (12)0.0453 (6)
H7A0.77610.46880.16110.054*
C10.3214 (3)0.1456 (3)0.11191 (15)0.0520 (8)
H1A0.27440.05950.11590.062*
H1B0.40390.11830.10930.062*
C20.2728 (3)0.2291 (3)0.17799 (14)0.0503 (8)
H2B0.28100.17260.21640.060*
H2C0.18730.24690.18450.060*
C30.4025 (3)0.3753 (3)0.21867 (14)0.0470 (8)
H3B0.40800.29900.24650.056*
C40.4703 (3)0.4995 (3)0.22330 (15)0.0454 (7)
C50.5409 (3)0.5307 (4)0.26616 (17)0.0646 (10)
H5B0.55560.47140.29960.078*
C60.5863 (3)0.6656 (4)0.25109 (18)0.0690 (10)
H6B0.63660.71360.27250.083*
C70.5439 (3)0.7142 (4)0.19947 (16)0.0620 (9)
H7B0.56040.80230.17890.074*
C80.2084 (2)0.2788 (3)0.04489 (15)0.0553 (8)
H8A0.14230.23710.07990.066*
H8B0.21170.37820.05550.066*
C90.1833 (3)0.2634 (3)0.02435 (15)0.0536 (8)
H9A0.25560.28650.06060.064*
H9B0.11990.32850.02740.064*
C100.2245 (3)0.0402 (4)0.07166 (15)0.0513 (8)
H10A0.29930.08040.09290.062*
C110.2099 (3)0.1055 (3)0.08539 (15)0.0483 (8)
C120.2924 (3)0.2002 (4)0.12203 (16)0.0643 (10)
H12A0.37230.18020.14550.077*
C130.2371 (3)0.3313 (4)0.11832 (18)0.0688 (10)
H13A0.27240.41440.13880.083*
C140.1217 (3)0.3143 (4)0.07898 (17)0.0640 (9)
H14A0.06340.38490.06750.077*
C150.4299 (2)0.2945 (3)0.01526 (14)0.0475 (8)
H15A0.40980.36700.01350.057*
H15B0.45830.34050.05070.057*
C160.5290 (2)0.2023 (3)0.02762 (15)0.0508 (8)
H16A0.49520.14100.05600.061*
H16B0.56060.14330.00260.061*
C170.7349 (3)0.2535 (3)0.07048 (14)0.0448 (7)
H17A0.74450.18410.03990.054*
C180.8415 (2)0.3190 (3)0.11291 (13)0.0422 (7)
C190.9607 (3)0.2851 (4)0.12042 (15)0.0558 (9)
H19A0.98870.21420.09700.067*
C201.0321 (3)0.3751 (4)0.16917 (17)0.0640 (10)
H20A1.11610.37510.18480.077*
C210.9557 (3)0.4631 (4)0.18960 (16)0.0587 (9)
H21A0.97870.53550.22150.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0367 (14)0.0511 (15)0.0462 (14)0.0059 (12)0.0069 (11)0.0022 (14)
N20.0470 (15)0.0457 (15)0.0387 (14)0.0016 (13)0.0110 (11)0.0027 (13)
N30.0465 (15)0.0601 (17)0.0389 (14)0.0048 (14)0.0076 (12)0.0047 (15)
N40.0402 (14)0.0572 (17)0.0477 (15)0.0037 (13)0.0154 (12)0.0050 (14)
N50.0446 (16)0.0555 (17)0.0549 (16)0.0010 (13)0.0104 (12)0.0092 (15)
N60.0392 (15)0.0470 (14)0.0438 (14)0.0015 (12)0.0066 (11)0.0065 (13)
N70.0389 (14)0.0478 (15)0.0489 (15)0.0009 (12)0.0118 (11)0.0055 (14)
C10.0474 (18)0.0435 (18)0.061 (2)0.0076 (16)0.0084 (15)0.0023 (18)
C20.0528 (19)0.0506 (19)0.0442 (18)0.0093 (16)0.0080 (15)0.0090 (17)
C30.0523 (19)0.0499 (19)0.0377 (16)0.0076 (17)0.0103 (15)0.0031 (16)
C40.0474 (18)0.0479 (19)0.0404 (17)0.0032 (16)0.0110 (14)0.0010 (17)
C50.066 (2)0.076 (3)0.060 (2)0.006 (2)0.0314 (18)0.007 (2)
C60.063 (2)0.086 (3)0.061 (2)0.011 (2)0.0206 (18)0.018 (2)
C70.062 (2)0.060 (2)0.055 (2)0.0187 (19)0.0002 (17)0.010 (2)
C80.0402 (18)0.067 (2)0.0571 (19)0.0017 (17)0.0110 (15)0.0140 (19)
C90.0436 (18)0.064 (2)0.0541 (19)0.0028 (17)0.0150 (15)0.0061 (18)
C100.0402 (18)0.072 (2)0.0429 (18)0.0119 (18)0.0141 (14)0.0050 (19)
C110.0395 (18)0.062 (2)0.0438 (18)0.0033 (17)0.0114 (14)0.0017 (18)
C120.0400 (19)0.088 (3)0.059 (2)0.004 (2)0.0024 (16)0.012 (2)
C130.063 (2)0.067 (2)0.074 (2)0.014 (2)0.0140 (19)0.018 (2)
C140.058 (2)0.062 (2)0.070 (2)0.0003 (19)0.0128 (19)0.009 (2)
C150.0443 (18)0.0481 (18)0.0476 (17)0.0060 (15)0.0087 (14)0.0018 (16)
C160.0450 (18)0.0510 (19)0.0530 (18)0.0034 (16)0.0077 (14)0.0060 (17)
C170.0464 (19)0.0486 (18)0.0404 (16)0.0026 (16)0.0134 (14)0.0026 (16)
C180.0435 (19)0.0478 (19)0.0370 (16)0.0018 (15)0.0141 (14)0.0012 (16)
C190.0418 (19)0.075 (2)0.056 (2)0.0056 (18)0.0231 (15)0.007 (2)
C200.0361 (18)0.080 (3)0.073 (2)0.004 (2)0.0112 (17)0.013 (2)
C210.047 (2)0.058 (2)0.061 (2)0.0204 (18)0.0026 (16)0.0047 (19)
Geometric parameters (Å, º) top
N1—C11.451 (3)C6—H6B0.9300
N1—C151.460 (3)C7—H7B0.9300
N1—C81.465 (3)C8—C91.513 (4)
N2—C31.279 (3)C8—H8A0.9700
N2—C21.459 (3)C8—H8B0.9700
N3—C71.357 (4)C9—H9A0.9700
N3—C41.358 (3)C9—H9B0.9700
N3—H3A0.8600C10—C111.429 (4)
N4—C101.264 (3)C10—H10A0.9300
N4—C91.454 (4)C11—C121.368 (4)
N5—C141.352 (4)C12—C131.388 (4)
N5—C111.362 (3)C12—H12A0.9300
N5—H5A0.8600C13—C141.356 (4)
N6—C171.267 (3)C13—H13A0.9300
N6—C161.464 (3)C14—H14A0.9300
N7—C211.357 (3)C15—C161.506 (3)
N7—C181.357 (3)C15—H15A0.9700
N7—H7A0.8600C15—H15B0.9700
C1—C21.522 (4)C16—H16A0.9700
C1—H1A0.9700C16—H16B0.9700
C1—H1B0.9700C17—C181.430 (4)
C2—H2B0.9700C17—H17A0.9300
C2—H2C0.9700C18—C191.374 (4)
C3—C41.430 (4)C19—C201.389 (4)
C3—H3B0.9300C19—H19A0.9300
C4—C51.373 (4)C20—C211.356 (4)
C5—C61.385 (4)C20—H20A0.9300
C5—H5B0.9300C21—H21A0.9300
C6—C71.350 (4)
C1—N1—C15115.1 (2)N4—C9—C8110.3 (3)
C1—N1—C8115.6 (2)N4—C9—H9A109.6
C15—N1—C8114.1 (2)C8—C9—H9A109.6
C3—N2—C2117.7 (2)N4—C9—H9B109.6
C7—N3—C4108.8 (3)C8—C9—H9B109.6
C7—N3—H3A125.6H9A—C9—H9B108.1
C4—N3—H3A125.6N4—C10—C11126.5 (3)
C10—N4—C9117.0 (3)N4—C10—H10A116.7
C14—N5—C11109.3 (3)C11—C10—H10A116.7
C14—N5—H5A125.4N5—C11—C12106.6 (3)
C11—N5—H5A125.4N5—C11—C10123.5 (3)
C17—N6—C16117.5 (2)C12—C11—C10129.8 (3)
C21—N7—C18108.9 (3)C11—C12—C13108.7 (3)
C21—N7—H7A125.5C11—C12—H12A125.6
C18—N7—H7A125.5C13—C12—H12A125.6
N1—C1—C2118.6 (2)C14—C13—C12106.5 (3)
N1—C1—H1A107.7C14—C13—H13A126.7
C2—C1—H1A107.7C12—C13—H13A126.7
N1—C1—H1B107.7N5—C14—C13108.8 (3)
C2—C1—H1B107.7N5—C14—H14A125.6
H1A—C1—H1B107.1C13—C14—H14A125.6
N2—C2—C1113.5 (2)N1—C15—C16110.9 (2)
N2—C2—H2B108.9N1—C15—H15A109.5
C1—C2—H2B108.9C16—C15—H15A109.5
N2—C2—H2C108.9N1—C15—H15B109.5
C1—C2—H2C108.9C16—C15—H15B109.5
H2B—C2—H2C107.7H15A—C15—H15B108.0
N2—C3—C4123.7 (3)N6—C16—C15112.6 (2)
N2—C3—H3B118.2N6—C16—H16A109.1
C4—C3—H3B118.2C15—C16—H16A109.1
N3—C4—C5107.0 (3)N6—C16—H16B109.1
N3—C4—C3122.7 (3)C15—C16—H16B109.1
C5—C4—C3130.3 (3)H16A—C16—H16B107.8
C4—C5—C6108.2 (3)N6—C17—C18124.1 (3)
C4—C5—H5B125.9N6—C17—H17A117.9
C6—C5—H5B125.9C18—C17—H17A117.9
C7—C6—C5106.9 (3)N7—C18—C19107.2 (3)
C7—C6—H6B126.5N7—C18—C17123.8 (3)
C5—C6—H6B126.5C19—C18—C17128.9 (3)
C6—C7—N3109.0 (3)C18—C19—C20108.1 (3)
C6—C7—H7B125.5C18—C19—H19A125.9
N3—C7—H7B125.5C20—C19—H19A125.9
N1—C8—C9112.7 (2)C21—C20—C19106.8 (3)
N1—C8—H8A109.1C21—C20—H20A126.6
C9—C8—H8A109.1C19—C20—H20A126.6
N1—C8—H8B109.1C20—C21—N7108.9 (3)
C9—C8—H8B109.1C20—C21—H21A125.5
H8A—C8—H8B107.8N7—C21—H21A125.5
C15—N1—C1—C287.6 (3)N4—C10—C11—N51.3 (5)
C8—N1—C1—C248.9 (3)N4—C10—C11—C12175.1 (3)
C3—N2—C2—C1110.2 (3)N5—C11—C12—C130.3 (4)
N1—C1—C2—N256.6 (3)C10—C11—C12—C13177.2 (3)
C2—N2—C3—C4178.6 (3)C11—C12—C13—C140.4 (4)
C7—N3—C4—C50.0 (3)C11—N5—C14—C130.1 (4)
C7—N3—C4—C3179.5 (2)C12—C13—C14—N50.3 (4)
N2—C3—C4—N33.4 (4)C1—N1—C15—C1685.5 (3)
N2—C3—C4—C5175.9 (3)C8—N1—C15—C16137.4 (2)
N3—C4—C5—C60.2 (4)C17—N6—C16—C15129.8 (3)
C3—C4—C5—C6179.2 (3)N1—C15—C16—N6167.7 (2)
C4—C5—C6—C70.3 (4)C16—N6—C17—C18177.0 (3)
C5—C6—C7—N30.3 (4)C21—N7—C18—C190.4 (3)
C4—N3—C7—C60.2 (3)C21—N7—C18—C17178.7 (3)
C1—N1—C8—C9144.0 (3)N6—C17—C18—N74.9 (4)
C15—N1—C8—C979.1 (3)N6—C17—C18—C19173.0 (3)
C10—N4—C9—C8102.4 (3)N7—C18—C19—C200.3 (3)
N1—C8—C9—N473.9 (3)C17—C18—C19—C20177.9 (3)
C9—N4—C10—C11177.0 (3)C18—C19—C20—C210.9 (4)
C14—N5—C11—C120.1 (3)C19—C20—C21—N71.1 (4)
C14—N5—C11—C10177.3 (3)C18—N7—C21—C200.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15B···N20.972.593.246 (4)125
N3—H3A···N6i0.862.142.956 (3)159
N5—H5A···N4ii0.862.203.029 (3)163
N7—H7A···N2i0.862.132.940 (3)158
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z.

Experimental details

Crystal data
Chemical formulaC21H27N7
Mr377.50
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.494 (2), 9.4875 (19), 20.232 (4)
β (°) 105.97 (3)
V3)2121.1 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.80 × 0.08 × 0.05
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.943, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
19300, 4832, 1905
Rint0.069
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.142, 1.01
No. of reflections4832
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.19

Computer programs: RAPID-AUTO (Rigaku, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Sheldrick, 1994).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15B···N20.972.593.246 (4)124.8
N3—H3A···N6i0.862.142.956 (3)158.8
N5—H5A···N4ii0.862.203.029 (3)162.6
N7—H7A···N2i0.862.132.940 (3)157.5
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant Nos. 90301010, 50573084, 90606004).

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (1994). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationWu, Z. K., Chen, Q. Q., Xiong, S. X., Xin, B., Zhao, Z. W., Jiang, L. J. & Ma, J. S. (2003). Angew. Chem. Int. Ed. 42, 3271–3274.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, Z. K., Zhang, Y. F., Ma, J. S. & Yang, G. Q. (2006). Inorg. Chem. 45, 3140–3142.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYang, L. Y., Chen, Q. Q., Li, Y., Xiong, S. X., Li, G. P. & Ma, J. S. (2004). Eur. J. Inorg. Chem. 29, 1478–1487.  Web of Science CSD CrossRef Google Scholar
First citationYang, L. Y., Shan, Q. F., Chen, Q. Q., Wang, Z. P. & Ma, J. S. (2004). Eur. J. Inorg. Chem. 32, 1474–1477.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds