metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-carboxyl­ato­ethyl­phospho­nato)bis­­[aqua­(2,2′-bi­pyridine)manganese(II)]

aCollege of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
*Correspondence e-mail: yingshaoming@hotmail.com

(Received 31 October 2007; accepted 2 December 2007; online 12 December 2007)

The title compound, [Mn2(HO3PCH2CH2COO)2(C8H8N2)2(H2O)2], was obtained by hydro­thermal synthesis. The manganese(II) ions are six-coordinate and are linked by two 2-carboxy­ethyl­phospho­nate ligands, forming a centrosymmetric dimer. The Mn ions adopts a distorted octahedral coordination geometry. The dimers are further linked by O—H⋯O hydrogen bonds and ππ stacking inter­actions [centroid–centroid distance 4.2754 (4) Å].

Related literature

For related literature, see: Clearfield (1998[Clearfield, A. (1998). Progress in Inorganic Chemistry, Vol. 47, edited by K. D. Karlin, pp. 371-510. New York: John Wiley & Sons Inc.]); Cheetham et al. (1999[Cheetham, A. K., Férey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268-3292.]); Stock et al. (2000[Stock, N., Frey, S. A., Stucky, G. D. & Cheetham, A. K. (2000). J. Chem. Soc. Dalton Trans. pp. 4292-4296.]); Serpaggi & Férey (1999[Serpaggi, F. & Férey, G. (1999). Inorg. Chem. 38, 4741-4744.]); Ying & Mao et al. (2004[Ying, S.-M. & Mao, J.-G. (2004). Eur. J. Inorg. Chem. pp. 1270-1276.]); Ying et al. (2007[Ying, S.-M., Li, X.-F., Chen, W.-T., Liu, D.-S. & Liu, J.-H. (2007). Acta Cryst. E63, m555-m557.]). For the isostructural Zn(II) complex, see: Ying et al. (2006[Ying, S.-M., Zeng, X.-R., Fang, X.-N., Li, X.-F. & Liu, D.-S. (2006). Inorg. Chim. Acta, 359, 1589-1593.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn2(C5H5O5P)2(C8H8N2)2(H2O)2]

  • Mr = 762.36

  • Orthorhombic, P b c a

  • a = 8.7553 (13) Å

  • b = 18.060 (3) Å

  • c = 20.682 (3) Å

  • V = 3270.3 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 293 (2) K

  • 0.32 × 0.30 × 0.26 mm

Data collection
  • Bruker APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany.]) Tmin = 0.754, Tmax = 0.796

  • 23111 measured reflections

  • 4057 independent reflections

  • 2893 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.090

  • S = 0.99

  • 4057 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6B⋯O4i 0.93 2.13 2.6813 (18) 117
O1—H1B⋯O3ii 0.82 1.73 2.5385 (19) 167
Symmetry codes: (i) x-1, y, z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, metal phosphonates have been a rapid expansion research field due to their potential application in the area of catalysis, ion exchange, proton conductivity, intercalation chemistry, photochemistry and materials chemistry (Clearfield 1998). Many metal phosphonates have been reported (Cheetham et al., 1999; Stock et al., 2000; Serpaggi & Férey, 1999; Ying & Mao, 2004; Ying et al., 2006). Metal phosphonates can exhibit various kinds of structures. We report here the crystal structure of a new manganese(II) carboxyalkylphosphonate complex synthesized by the hydrothermal method.

The asymmetric unit of the title compound contains one manganese(II) ion, one doubly deprotonated 2-carboxyethylphosphonic acid ligand, one 2,2'-bipyridine and one coordinated water molecule. The manganese(II) ion is six-coordinated by one phosphonate oxygen atom, one water molecule, two carboxylate oxygen atoms and two N atoms from a 2,2'-bipyridine molecule. The Mn—O distances range from 2.0646 (12) to 2.3161 (14) Å and the Mn—N distances are 2.2437 (16) and 2.2890 (16) Å. Two manganese(II) ions are linked by two 2-carboxyethylphosphonic acid ligands forming a dimer (Fig. 1). The dimers are further interlinked by O—H···O hydrogen bonds and π-π stacking interactions to form a three-dimensional supermolecular structure (Fig. 2). The compound is isostructural with a zinc(II) complex which has been reported recently (Ying et al., 2007).

Related literature top

For related literature, see: Clearfield (1998); Cheetham et al. (1999); Stock et al. (2000); Serpaggi & Férey (1999); Ying & Mao et al. (2004); Ying et al. (2007). For the isostructural Zn(II)

complex, see: Ying et al. (2006).

Experimental top

A mixture of manganese(II) acetate (0.5 mmol, 0.120 g), 2-carboxyethylphosphonic acid (0.5 mmol, 0.076 g), and 2,2'-bipyridine (0.5 mmol, 0.079 g) in 10 ml of distilled water was sealed in an autoclave equipped with a Teflon liner (20 ml) and then heated at 150°C for 3 days. Crystals of the title compound were obtained.

Refinement top

All hydrogen atoms were geometrically positioned with C—H = 0.93–0.98 Å, O—H = 0.82 Å, and refined in the riding-model approximation, with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(O).

Structure description top

In recent years, metal phosphonates have been a rapid expansion research field due to their potential application in the area of catalysis, ion exchange, proton conductivity, intercalation chemistry, photochemistry and materials chemistry (Clearfield 1998). Many metal phosphonates have been reported (Cheetham et al., 1999; Stock et al., 2000; Serpaggi & Férey, 1999; Ying & Mao, 2004; Ying et al., 2006). Metal phosphonates can exhibit various kinds of structures. We report here the crystal structure of a new manganese(II) carboxyalkylphosphonate complex synthesized by the hydrothermal method.

The asymmetric unit of the title compound contains one manganese(II) ion, one doubly deprotonated 2-carboxyethylphosphonic acid ligand, one 2,2'-bipyridine and one coordinated water molecule. The manganese(II) ion is six-coordinated by one phosphonate oxygen atom, one water molecule, two carboxylate oxygen atoms and two N atoms from a 2,2'-bipyridine molecule. The Mn—O distances range from 2.0646 (12) to 2.3161 (14) Å and the Mn—N distances are 2.2437 (16) and 2.2890 (16) Å. Two manganese(II) ions are linked by two 2-carboxyethylphosphonic acid ligands forming a dimer (Fig. 1). The dimers are further interlinked by O—H···O hydrogen bonds and π-π stacking interactions to form a three-dimensional supermolecular structure (Fig. 2). The compound is isostructural with a zinc(II) complex which has been reported recently (Ying et al., 2007).

For related literature, see: Clearfield (1998); Cheetham et al. (1999); Stock et al. (2000); Serpaggi & Férey (1999); Ying & Mao et al. (2004); Ying et al. (2007). For the isostructural Zn(II)

complex, see: Ying et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Symmetry code: (i) 2 - x, -y, 1 - z.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the a axis. Hydrogen atoms are omitted for clarity.
Bis(µ-carboxylatoethylphosphonato)bis[aqua(2,2'-bipyridine)manganese(II)] top
Crystal data top
[Mn2(C5H5O5P)2(C8H8N2)2(H2O)2]F(000) = 1560
Mr = 762.36Dx = 1.548 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5461 reflections
a = 8.7553 (13) Åθ = 2.5–28.2°
b = 18.060 (3) ŵ = 0.94 mm1
c = 20.682 (3) ÅT = 293 K
V = 3270.3 (8) Å3Block, colourless
Z = 40.32 × 0.30 × 0.26 mm
Data collection top
Bruker APEX area-detector
diffractometer
4057 independent reflections
Radiation source: fine-focus sealed tube2893 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
φ and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1111
Tmin = 0.754, Tmax = 0.796k = 2424
23111 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0521P)2]
where P = (Fo2 + 2Fc2)/3
4057 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Mn2(C5H5O5P)2(C8H8N2)2(H2O)2]V = 3270.3 (8) Å3
Mr = 762.36Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 8.7553 (13) ŵ = 0.94 mm1
b = 18.060 (3) ÅT = 293 K
c = 20.682 (3) Å0.32 × 0.30 × 0.26 mm
Data collection top
Bruker APEX area-detector
diffractometer
4057 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
2893 reflections with I > 2σ(I)
Tmin = 0.754, Tmax = 0.796Rint = 0.038
23111 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 0.99Δρmax = 0.47 e Å3
4057 reflectionsΔρmin = 0.60 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.67540 (3)0.073021 (14)0.408219 (13)0.02994 (10)
P10.84779 (5)0.19961 (2)0.50438 (2)0.03026 (12)
N10.70029 (19)0.11228 (9)0.30583 (8)0.0409 (4)
N20.5539 (2)0.01013 (9)0.34242 (7)0.0427 (4)
O10.71646 (15)0.22186 (7)0.55235 (6)0.0417 (3)
H1B0.63530.22400.53270.062*
O20.78629 (14)0.16537 (7)0.44369 (6)0.0364 (3)
O30.94774 (14)0.26603 (7)0.49251 (7)0.0441 (3)
O41.29300 (14)0.01457 (7)0.51674 (6)0.0378 (3)
O51.11488 (16)0.00513 (7)0.59060 (6)0.0419 (3)
O60.45857 (14)0.10698 (7)0.44337 (6)0.0415 (3)
H6A0.44910.15140.46580.050*
H6B0.37310.07750.43630.050*
C10.7756 (3)0.17412 (12)0.29085 (11)0.0538 (6)
H1A0.81820.20230.32390.065*
C20.7923 (3)0.19769 (14)0.22728 (12)0.0667 (7)
H2A0.84570.24080.21770.080*
C30.7284 (3)0.15608 (16)0.17906 (12)0.0703 (8)
H3A0.73760.17090.13620.084*
C40.6509 (3)0.09242 (14)0.19413 (11)0.0600 (7)
H4A0.60780.06360.16160.072*
C50.6375 (2)0.07146 (11)0.25805 (9)0.0402 (5)
C60.5559 (2)0.00356 (11)0.27852 (9)0.0412 (5)
C70.4850 (3)0.04431 (14)0.23502 (10)0.0582 (6)
H7A0.48780.03450.19090.070*
C80.4116 (3)0.10562 (16)0.25773 (12)0.0758 (8)
H8A0.36340.13770.22910.091*
C90.4089 (3)0.12002 (14)0.32312 (12)0.0773 (9)
H9A0.35990.16160.33960.093*
C100.4818 (3)0.07028 (12)0.36322 (11)0.0632 (7)
H10A0.48030.07940.40750.076*
C111.0934 (2)0.10444 (10)0.51376 (9)0.0380 (4)
H11A1.06510.09300.46950.046*
H11B1.16710.14450.51230.046*
C121.1699 (2)0.03742 (10)0.54257 (9)0.0314 (4)
C130.9522 (2)0.13154 (10)0.54921 (9)0.0393 (4)
H13A0.98280.15260.59040.047*
H13B0.88600.08970.55800.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.03305 (17)0.02699 (15)0.02977 (16)0.00015 (11)0.00014 (11)0.00075 (11)
P10.0241 (2)0.0261 (2)0.0406 (3)0.00079 (18)0.0006 (2)0.00313 (19)
N10.0446 (10)0.0396 (9)0.0386 (9)0.0034 (7)0.0020 (8)0.0085 (7)
N20.0506 (11)0.0449 (10)0.0325 (9)0.0091 (8)0.0030 (8)0.0000 (7)
O10.0308 (7)0.0512 (8)0.0430 (8)0.0083 (6)0.0008 (6)0.0065 (6)
O20.0366 (7)0.0329 (7)0.0396 (7)0.0046 (5)0.0019 (6)0.0030 (6)
O30.0311 (7)0.0292 (7)0.0719 (10)0.0051 (5)0.0002 (7)0.0057 (6)
O40.0338 (7)0.0338 (7)0.0457 (8)0.0075 (6)0.0078 (6)0.0066 (6)
O50.0443 (8)0.0411 (8)0.0403 (8)0.0082 (6)0.0105 (7)0.0098 (6)
O60.0337 (7)0.0318 (7)0.0591 (8)0.0018 (6)0.0060 (6)0.0074 (6)
C10.0614 (15)0.0473 (13)0.0527 (13)0.0027 (11)0.0044 (12)0.0119 (11)
C20.0764 (19)0.0570 (15)0.0667 (17)0.0022 (13)0.0152 (14)0.0280 (13)
C30.092 (2)0.0752 (18)0.0435 (13)0.0132 (15)0.0154 (14)0.0201 (13)
C40.0825 (19)0.0638 (15)0.0337 (11)0.0127 (13)0.0043 (11)0.0085 (11)
C50.0437 (11)0.0464 (11)0.0305 (10)0.0134 (9)0.0009 (8)0.0031 (9)
C60.0420 (12)0.0462 (11)0.0354 (10)0.0080 (9)0.0041 (9)0.0008 (9)
C70.0699 (16)0.0699 (15)0.0348 (12)0.0029 (13)0.0109 (11)0.0052 (11)
C80.092 (2)0.0759 (18)0.0590 (16)0.0260 (17)0.0192 (16)0.0155 (14)
C90.102 (2)0.0702 (17)0.0596 (16)0.0440 (17)0.0095 (16)0.0037 (13)
C100.0830 (18)0.0629 (15)0.0437 (12)0.0296 (14)0.0059 (12)0.0006 (11)
C110.0330 (10)0.0335 (10)0.0475 (11)0.0045 (8)0.0011 (9)0.0085 (8)
C120.0310 (10)0.0264 (9)0.0367 (10)0.0005 (7)0.0034 (8)0.0027 (8)
C130.0378 (11)0.0378 (10)0.0422 (11)0.0106 (8)0.0002 (9)0.0008 (8)
Geometric parameters (Å, º) top
Mn1—O22.0646 (12)C1—H1A0.9300
Mn1—O62.1233 (13)C2—C31.368 (4)
Mn1—O4i2.2334 (13)C2—H2A0.9300
Mn1—N12.2437 (16)C3—C41.371 (4)
Mn1—N22.2890 (16)C3—H3A0.9300
Mn1—O5i2.3161 (14)C4—C51.380 (3)
Mn1—C12i2.6170 (18)C4—H4A0.9300
P1—O21.4993 (13)C5—C61.481 (3)
P1—O31.5050 (13)C6—C71.394 (3)
P1—O11.5710 (13)C7—C81.364 (3)
P1—C131.7909 (18)C7—H7A0.9300
N1—C11.334 (2)C8—C91.377 (3)
N1—C51.350 (3)C8—H8A0.9300
N2—C101.328 (2)C9—C101.379 (3)
N2—C61.345 (2)C9—H9A0.9300
O1—H1B0.8200C10—H10A0.9300
O4—C121.272 (2)C11—C121.506 (2)
O4—Mn1i2.2334 (13)C11—C131.518 (2)
O5—C121.248 (2)C11—H11A0.9700
O5—Mn1i2.3161 (14)C11—H11B0.9700
O6—H6A0.9300C12—Mn1i2.6170 (18)
O6—H6B0.9300C13—H13A0.9700
C1—C21.390 (3)C13—H13B0.9700
O2—Mn1—O693.75 (5)C3—C2—H2A120.7
O2—Mn1—O4i105.49 (5)C1—C2—H2A120.7
O6—Mn1—O4i94.44 (5)C2—C3—C4119.8 (2)
O2—Mn1—N191.97 (6)C2—C3—H3A120.1
O6—Mn1—N1108.58 (6)C4—C3—H3A120.1
O4i—Mn1—N1150.19 (5)C3—C4—C5119.3 (2)
O2—Mn1—N2163.71 (5)C3—C4—H4A120.3
O6—Mn1—N288.71 (6)C5—C4—H4A120.3
O4i—Mn1—N290.35 (6)N1—C5—C4121.1 (2)
N1—Mn1—N272.02 (6)N1—C5—C6116.05 (16)
O2—Mn1—O5i96.64 (5)C4—C5—C6122.8 (2)
O6—Mn1—O5i151.79 (5)N2—C6—C7120.96 (19)
O4i—Mn1—O5i57.51 (4)N2—C6—C5116.09 (17)
N1—Mn1—O5i97.21 (5)C7—C6—C5122.95 (18)
N2—Mn1—O5i88.57 (6)C8—C7—C6119.4 (2)
O2—Mn1—C12i103.54 (5)C8—C7—H7A120.3
O6—Mn1—C12i123.35 (6)C6—C7—H7A120.3
O4i—Mn1—C12i29.05 (5)C7—C8—C9120.0 (2)
N1—Mn1—C12i123.89 (6)C7—C8—H8A120.0
N2—Mn1—C12i88.38 (6)C9—C8—H8A120.0
O5i—Mn1—C12i28.49 (5)C8—C9—C10117.4 (2)
O2—P1—O3113.64 (8)C8—C9—H9A121.3
O2—P1—O1111.80 (8)C10—C9—H9A121.3
O3—P1—O1108.95 (8)N2—C10—C9123.9 (2)
O2—P1—C13109.49 (8)N2—C10—H10A118.0
O3—P1—C13109.55 (9)C9—C10—H10A118.0
O1—P1—C13102.85 (8)C12—C11—C13115.46 (16)
C1—N1—C5119.24 (18)C12—C11—H11A108.4
C1—N1—Mn1122.14 (15)C13—C11—H11A108.4
C5—N1—Mn1118.61 (13)C12—C11—H11B108.4
C10—N2—C6118.37 (18)C13—C11—H11B108.4
C10—N2—Mn1124.41 (14)H11A—C11—H11B107.5
C6—N2—Mn1117.22 (13)O5—C12—O4120.64 (17)
P1—O1—H1B109.5O5—C12—C11121.25 (16)
P1—O2—Mn1143.09 (8)O4—C12—C11118.11 (16)
C12—O4—Mn1i92.45 (11)O5—C12—Mn1i62.24 (10)
C12—O5—Mn1i89.27 (11)O4—C12—Mn1i58.50 (9)
Mn1—O6—H6A120.0C11—C12—Mn1i175.17 (13)
Mn1—O6—H6B120.0C11—C13—P1112.77 (13)
H6A—O6—H6B120.0C11—C13—H13A109.0
N1—C1—C2121.9 (2)P1—C13—H13A109.0
N1—C1—H1A119.1C11—C13—H13B109.0
C2—C1—H1A119.1P1—C13—H13B109.0
C3—C2—C1118.6 (2)H13A—C13—H13B107.8
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6B···O4ii0.932.132.6813 (18)117
O1—H1B···O3iii0.821.732.5385 (19)167
Symmetry codes: (ii) x1, y, z; (iii) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Mn2(C5H5O5P)2(C8H8N2)2(H2O)2]
Mr762.36
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)8.7553 (13), 18.060 (3), 20.682 (3)
V3)3270.3 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.32 × 0.30 × 0.26
Data collection
DiffractometerBruker APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.754, 0.796
No. of measured, independent and
observed [I > 2σ(I)] reflections
23111, 4057, 2893
Rint0.038
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.090, 0.99
No. of reflections4057
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.60

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6B···O4i0.932.132.6813 (18)116.6
O1—H1B···O3ii0.821.732.5385 (19)167.4
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1/2, z+1.
 

Acknowledgements

This work was supported by Jiangxi Provincial Department of Education's Project of Science and Technology (No. [2007]316).

References

First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheetham, A. K., Férey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268–3292.  Web of Science CrossRef CAS Google Scholar
First citationClearfield, A. (1998). Progress in Inorganic Chemistry, Vol. 47, edited by K. D. Karlin, pp. 371–510. New York: John Wiley & Sons Inc.  Google Scholar
First citationSerpaggi, F. & Férey, G. (1999). Inorg. Chem. 38, 4741–4744.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany.  Google Scholar
First citationStock, N., Frey, S. A., Stucky, G. D. & Cheetham, A. K. (2000). J. Chem. Soc. Dalton Trans. pp. 4292–4296.  Web of Science CrossRef Google Scholar
First citationYing, S.-M., Li, X.-F., Chen, W.-T., Liu, D.-S. & Liu, J.-H. (2007). Acta Cryst. E63, m555–m557.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYing, S.-M. & Mao, J.-G. (2004). Eur. J. Inorg. Chem. pp. 1270–1276.  Web of Science CSD CrossRef Google Scholar
First citationYing, S.-M., Zeng, X.-R., Fang, X.-N., Li, X.-F. & Liu, D.-S. (2006). Inorg. Chim. Acta, 359, 1589–1593.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds