organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Hydr­­oxy-1,1,3,3,3-penta­phenyl­disiloxane, [Si2O(OH)(Ph)5], at 100 K

aDepartment of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal, and bDepartment of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England
*Correspondence e-mail: filipe.paz@ua.pt

(Received 28 November 2007; accepted 1 December 2007; online 12 December 2007)

In the crystal structure of the title compound, C30H26O2Si2, one Si(Ph)3 residue is bound to another Si(OH)(Ph)2 residue via a non-linear Si—O—Si bridge. The asymmetric unit is composed of two such molecules which inter­act, on the one hand, via a strong and highly directional O—H⋯O hydrogen bond involving the two neighbouring Si—OH units and, on the other, via an O—H⋯π contact connecting the second hydroxyl group with an adjacent phenyl group.

Related literature

For the structure of the title compound at 150 (2) K, see the next paper: Amarante et al. (2008[Amarante, T. R., Coelho, A. C., Klinowski, J., Gonçalves, I. S. & Almeida Paz, F. A. (2008). Acta Cryst. E64, o239.]). For related structures of disiloxane compounds, see: Glidewell & Liles (1978[Glidewell, C. & Liles, D. C. (1978). Acta Cryst. B34, 124-128.]); Hönle et al. (1990[Hönle, W., Manríquez, V. & von Schnering, H. G. (1990). Acta Cryst. C46, 1982-1984.]); Morosin & Harrah (1981[Morosin, B. & Harrah, L. A. (1981). Acta Cryst. B37, 579-586.]); Suwińska et al. (1986[Suwińska, K., Palenik, G. J. & Gerdil, R. (1986). Acta Cryst. C42, 615-620.]); Wojnowski et al. (2004[Wojnowski, D. W., Becker, B., Peters, K., Peters, E.-M. & von Schnering, H. G. (2004). Z. Anorg. Allg. Chem. 563, 48-52.]). For literature relevant to this communication and published by our group, see: Abrantes et al. (2002[Abrantes, M., Valente, A. A., Pillinger, M., Gonçalves, I. S., Rocha, J. & Romão, C. C. (2002). Inorg. Chem. Commun. 5, 1069-1072.]); Bruno et al. (2006[Bruno, S. M., Monteiro, B., Balula, M. S., Lourenço, C., Valente, A. A., Pillinger, M., Ribeiro-Claro, P. & Gonçalves, I. S. (2006). Molecules, 11, 298-308.], 2007[Bruno, S. M., Pereira, C. C. L., Balula, M. S., Nolasco, M., Valente, A. A., Hazell, A., Pillinger, M., Ribeiro-Claro, P. & Gonçalves, I. S. (2007). J. Mol. Catal. A Chem. 261, 79-87.]); Nunes et al. (2003[Nunes, C. D., Valente, A. A., Pillinger, M., Rocha, J. & Gonçalves, I. S. (2003). Chem. Eur. J. 9, 4380-4390.]). For the Cambridge Structural Database (Version 5.28 with three updates, August 2007), see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C30H26O2Si2

  • Mr = 474.69

  • Triclinic, [P \overline 1]

  • a = 10.3611 (6) Å

  • b = 14.2844 (8) Å

  • c = 18.4367 (9) Å

  • α = 99.421 (4)°

  • β = 98.492 (4)°

  • γ = 107.415 (4)°

  • V = 2511.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 100 (2) K

  • 0.14 × 0.08 × 0.08 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Version 2.01. University of Göttingen, Germany.]) Tmin = 0.977, Tmax = 0.987

  • 33504 measured reflections

  • 9155 independent reflections

  • 4059 reflections with I > 2σ(I)

  • Rint = 0.140

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.185

  • S = 0.98

  • 9155 reflections

  • 615 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O2 0.84 1.94 2.742 (4) 160
O2—H2⋯Cg(C55–C60) 0.84 2.44 3.181 (2) 147

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Version 2.1-RC13. Bruker-Nonius, Delft, The Netherlands.]); cell refinement: APEX2; data reduction: SAINT-Plus (Bruker, 2005[Bruker (2005). SAINT-Plus. Version 7.23a. Bruker AXS Inc. Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Bruker 2001[Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Version 3.1e. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Even though derivatives of triphenylsilane, SiH(Ph)3, have been widely used in organometallic chemistry and chemistry in general for many years, disiloxanes (i.e., compounds having two Si centres bridged via an oxo group) in which one Si centre is bound to a hydroxyl group are unknown as revealed by a search of the literature in conjunction with another of the Cambridge Structural Database (CSD, Version 5.28 with three updates - August 2007; Allen, 2002). Moreover, disiloxanes having one of the two Si centres bound to three phenyl groups are scarce, with only a handful of compounds being available in the literature (Glidewell & Liles, 1978; Hönle et al., 1990; Morosin & Harrah, 1981; Suwińska et al., 1986; Wojnowski et al., 2004). Following our on-going research toward the synthesis, structural characterization and catalytic application of novel triphenylsiloxy derivatives (Abrantes et al., 2002; Bruno et al., 2006, 2007; Nunes et al., 2003), we have recently isolated the unprecedented [Si2O(OH)(Ph)5] disiloxane, in which one Si(Ph)3 residue is bound to another Si(OH)(Ph)2 residue via a non-linear Si—O—Si bridge.

The crystal structure of the title compound, (I), at the low temperature of 100 K is fully described in the triclinic P1 space group with the asymmetric unit being composed of two crystallographically independent [Si2O(OH)(Ph)5] molecular units, Fig. 1 & Table 1. Within each binuclear unit, the two Si centres exhibit distinct coordination environments, even though the µ2-bridging oxo group is common to the two Si centres. While one Si is coordinated to three phenyl groups, {SiC3O}, the other is bound to two phenyl groups plus a hydroxyl moiety,{SiC2O2}. For the two independent molecular units, the Si—C and Si—O bond lengths were found in the 1.841 (5)–1.861 (5) and 1.605 (3)–1.637 (3) Å ranges, respectively, in good agreement with those found in related materials.

It is of considerable importance to note that while for the disiloxanes which have identical coordination environments for the Si centres the internal Si—O—Si bridge is almost linear, such as for the compounds reported by Glidewell & Liles (1978), Hönle et al. (1990) and Suwińska et al. (1986), the presence of distinct coordinating chemical moieties and their interaction with adjacent species in (I) induces a kink in this µ2-bridge. Indeed, the Si—O—Si bond angles for (I) range from 147.7 (2)° to 166.0 (2)°, values which are consistent with that reported by Wojnowski et al. (2004) for [Si2O(H)(Ph)5] (ca 163°). We also note the markedly distinct nature of the bridging angles for the two molecular units, a structural feature which can be rationalized taking into consideration the strongest intermolecular interactions present. Indeed, besides the very strong and linear O—H···O hydrogen bonding interaction connecting adjacent [Si2O(OH)(Ph)5] units, the O2-hydroxyl group is further engaged in a O—H···π interaction with the neighbouring C55C60 phenyl group, Table 2. Consequently, in order to maximize these two interactions the Si3—O3—Si4 angle decreases, while the Si1—O1—Si2 approaches linearity so to minimize steric hindrance between coordinating moieties.

The two interactions described above (O—H···O and O—H···π) create a supramolecular entity (Fig. 1) which packs in a parallel fashion in the ab plane of the unit cell forming layers (Fig. 2). Adjacent layers alternate along the [001] direction of the unit cell with a number of C—H···π contacts mediating the interactions between adjacent phenyl groups (not shown).

Related literature top

For the structure of the title compound at 150 (2) K, seee: Amarante et al. (2008). For related structures of disiloxane compounds, see: Glidewell & Liles (1978); Hönle et al. (1990); Morosin & Harrah (1981); Suwińska et al. (1986); Wojnowski et al. (2004). For literature relevant to this communication and published by our group, see: Abrantes et al. (2002); Bruno et al. (2006, 2007); Nunes et al. (2003). For the Cambridge Structural Database, see: Allen (2002).

Experimental top

The title compound was isolated as a secondary product during our synthetic attempts to isolate organometallic vanadium(V) oxides from AgVO3 and triphenylchlorosilane (Ph3SiCl, 97.0%, Fluka). Standard Schlenk line techniques were employed.

AgVO3 was obtained in our laboratories by adding a solution (ca 10 ml) of silver nitrate (AgNO3, 0.77 g; 99.0%, Sigma-Aldrich) to another of ammonium metavanadate (NH4VO3, 0.51 g; 99%, Sigma-Aldrich) in ca 100 ml of distilled water. A yellow precipitate (AgVO3) was immediately isolated by vacuum filtering and in-vacuo drying.

To a solution of AgVO3 (0.31 g) in dried 1,2-dichloroethane, another solution of Ph3SiCl (0.44 g) was added dropwise, and the resulting mixture was allowed to react over a period of 87 h under reflux in an oil bath at 263 K. After reacting, the obtained precipitate was separated from the yellow mother liquor by using dried Celite 545 (Aldrich). The isolated solution was then concentrated to an oil by slowly evaporating 1,2-dichloroethane in a water bath, under vacuum for 5 h. The title compound (a secondary product) was separated from the desired synthesized product by washing with ca 10 ml of n-hexane (HPLC grade, 95%, Aldrich). Well formed prismatic colourless crystals of [Si2O(OH)(Ph)5] were thus obtained from the total evaporation of the n-hexane in open air for about 24 h.

Refinement top

Crystals of the title compound were manually harvested from the crystallization vial and mounted on CryoLoops purchased from Hampton Research using FOMBLIN Y perfluoropolyether vacuum oil (LVAC 25/6) purchased from Aldrich, with the help of a Stemi 2000 stereomicroscope equipped with Carl Zeiss lenses. Different crystals from the same batch systematically diffracted very weakly at high angle. A full data set was collected at the low temperature of 100 (2) K with a long exposure time per frame, revealing the existence of a poorly defined spot shape which ultimately had a strong influence in the high value of Rint. Nevertheless, the structure was readily solved using Patterson synthesis which allowed the immediate location of the four crystallographically unique Si centres. All remaining non-H atoms were located from difference Fourier maps calculated from successive least-squares refinements cycles. Non-H atoms were successfully refined using anisotropic displacement parameters. H atoms bound to C and the terminal Si—OH groups were located at their idealized positions and allowed to ride on their parent atoms with C—H = 0.95Å and O—H = 0.84 Å, and with Uiso = 1.2 or 1.5×Ueq of the parent atoms (C and O, respectively).

It is of considerable importance to emphasize that a minor amount of the isolated crystals was instead indexed with a larger triclinic unit cell, with this being particularly apparent when the temperature of the data collection was increased to 150 (2) K. This procedure increases the thermal motion associated with the phenyl groups, reducing overall symmetry and increasing the number of crystallographically independent [Si2O(OH)(Ph)5] molecular units. The structure of the title compound at 150 (2) K will be the subject of a different crystallographic communication (Amarante et al., 2008).

Structure description top

Even though derivatives of triphenylsilane, SiH(Ph)3, have been widely used in organometallic chemistry and chemistry in general for many years, disiloxanes (i.e., compounds having two Si centres bridged via an oxo group) in which one Si centre is bound to a hydroxyl group are unknown as revealed by a search of the literature in conjunction with another of the Cambridge Structural Database (CSD, Version 5.28 with three updates - August 2007; Allen, 2002). Moreover, disiloxanes having one of the two Si centres bound to three phenyl groups are scarce, with only a handful of compounds being available in the literature (Glidewell & Liles, 1978; Hönle et al., 1990; Morosin & Harrah, 1981; Suwińska et al., 1986; Wojnowski et al., 2004). Following our on-going research toward the synthesis, structural characterization and catalytic application of novel triphenylsiloxy derivatives (Abrantes et al., 2002; Bruno et al., 2006, 2007; Nunes et al., 2003), we have recently isolated the unprecedented [Si2O(OH)(Ph)5] disiloxane, in which one Si(Ph)3 residue is bound to another Si(OH)(Ph)2 residue via a non-linear Si—O—Si bridge.

The crystal structure of the title compound, (I), at the low temperature of 100 K is fully described in the triclinic P1 space group with the asymmetric unit being composed of two crystallographically independent [Si2O(OH)(Ph)5] molecular units, Fig. 1 & Table 1. Within each binuclear unit, the two Si centres exhibit distinct coordination environments, even though the µ2-bridging oxo group is common to the two Si centres. While one Si is coordinated to three phenyl groups, {SiC3O}, the other is bound to two phenyl groups plus a hydroxyl moiety,{SiC2O2}. For the two independent molecular units, the Si—C and Si—O bond lengths were found in the 1.841 (5)–1.861 (5) and 1.605 (3)–1.637 (3) Å ranges, respectively, in good agreement with those found in related materials.

It is of considerable importance to note that while for the disiloxanes which have identical coordination environments for the Si centres the internal Si—O—Si bridge is almost linear, such as for the compounds reported by Glidewell & Liles (1978), Hönle et al. (1990) and Suwińska et al. (1986), the presence of distinct coordinating chemical moieties and their interaction with adjacent species in (I) induces a kink in this µ2-bridge. Indeed, the Si—O—Si bond angles for (I) range from 147.7 (2)° to 166.0 (2)°, values which are consistent with that reported by Wojnowski et al. (2004) for [Si2O(H)(Ph)5] (ca 163°). We also note the markedly distinct nature of the bridging angles for the two molecular units, a structural feature which can be rationalized taking into consideration the strongest intermolecular interactions present. Indeed, besides the very strong and linear O—H···O hydrogen bonding interaction connecting adjacent [Si2O(OH)(Ph)5] units, the O2-hydroxyl group is further engaged in a O—H···π interaction with the neighbouring C55C60 phenyl group, Table 2. Consequently, in order to maximize these two interactions the Si3—O3—Si4 angle decreases, while the Si1—O1—Si2 approaches linearity so to minimize steric hindrance between coordinating moieties.

The two interactions described above (O—H···O and O—H···π) create a supramolecular entity (Fig. 1) which packs in a parallel fashion in the ab plane of the unit cell forming layers (Fig. 2). Adjacent layers alternate along the [001] direction of the unit cell with a number of C—H···π contacts mediating the interactions between adjacent phenyl groups (not shown).

For the structure of the title compound at 150 (2) K, seee: Amarante et al. (2008). For related structures of disiloxane compounds, see: Glidewell & Liles (1978); Hönle et al. (1990); Morosin & Harrah (1981); Suwińska et al. (1986); Wojnowski et al. (2004). For literature relevant to this communication and published by our group, see: Abrantes et al. (2002); Bruno et al. (2006, 2007); Nunes et al. (2003). For the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXTL (Bruker 2001); program(s) used to refine structure: SHELXTL (Bruker 2001); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Bruker 2001).

Figures top
[Figure 1] Fig. 1. Schematic representation of the two crystallographically independent [Si2O(OH)(Ph)5] molecular units comprising the asymmetric unit of (I) showing the labelling scheme for all non-H atoms. Displacement ellipsoids are drawn at the 50% probability level and H atoms associated with the hydroxyl groups are represented as small spheres with arbitrary radii. All H-atoms bound to carbon were omitted for clarity. The O—H···O hydrogen bond and O—H···π contact connecting neighbouring binuclear units are represented as green and orange dashed lines, respectively.
[Figure 2] Fig. 2. Crystal packing of (I) viewed along the (a) [010] and (c) [001] directions of the unit cell. The O—H···O hydrogen bonding interactions are represented as dashed green lines and all H atoms have been omitted for clarity.
1-hydroxy-1,1,3,3,3-pentaphenyldisiloxane top
Crystal data top
C30H26O2Si2Z = 4
Mr = 474.69F(000) = 1000
Triclinic, P1Dx = 1.255 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.3611 (6) ÅCell parameters from 1283 reflections
b = 14.2844 (8) Åθ = 2.8–17.4°
c = 18.4367 (9) ŵ = 0.17 mm1
α = 99.421 (4)°T = 100 K
β = 98.492 (4)°Prism, colourless
γ = 107.415 (4)°0.14 × 0.08 × 0.08 mm
V = 2511.8 (3) Å3
Data collection top
Bruker X8 KappaCCD APEXII
diffractometer
9155 independent reflections
Radiation source: fine-focus sealed tube4059 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.140
ω/φ scansθmax = 25.4°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1212
Tmin = 0.977, Tmax = 0.987k = 1717
33504 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: mixed
wR(F2) = 0.185H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0681P)2]
where P = (Fo2 + 2Fc2)/3
9155 reflections(Δ/σ)max < 0.001
615 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C30H26O2Si2γ = 107.415 (4)°
Mr = 474.69V = 2511.8 (3) Å3
Triclinic, P1Z = 4
a = 10.3611 (6) ÅMo Kα radiation
b = 14.2844 (8) ŵ = 0.17 mm1
c = 18.4367 (9) ÅT = 100 K
α = 99.421 (4)°0.14 × 0.08 × 0.08 mm
β = 98.492 (4)°
Data collection top
Bruker X8 KappaCCD APEXII
diffractometer
9155 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
4059 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.987Rint = 0.140
33504 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.185H-atom parameters constrained
S = 0.98Δρmax = 0.38 e Å3
9155 reflectionsΔρmin = 0.37 e Å3
615 parameters
Special details top

Experimental. See dedicated section in the main paper

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.65378 (14)0.38772 (10)0.22723 (7)0.0325 (4)
Si20.37645 (15)0.20240 (10)0.20581 (7)0.0349 (4)
O10.5137 (3)0.3003 (2)0.22680 (16)0.0353 (8)
O20.6412 (3)0.4896 (2)0.27676 (17)0.0373 (8)
H20.71880.52460.30400.056*
C10.6626 (5)0.4060 (4)0.1306 (3)0.0321 (12)
C20.6737 (5)0.3310 (4)0.0760 (3)0.0404 (14)
H2A0.67780.26990.08850.049*
C30.6790 (5)0.3443 (4)0.0033 (3)0.0447 (14)
H30.68800.29290.03340.054*
C40.6711 (5)0.4324 (4)0.0152 (3)0.0380 (13)
H4A0.67220.44070.06520.046*
C50.6617 (5)0.5071 (4)0.0371 (3)0.0388 (13)
H50.65700.56770.02400.047*
C60.6591 (5)0.4946 (4)0.1097 (3)0.0355 (12)
H60.65470.54810.14640.043*
C70.8033 (5)0.3584 (4)0.2723 (3)0.0380 (13)
C80.7915 (6)0.2950 (4)0.3225 (3)0.0559 (16)
H80.70440.26610.33470.067*
C90.9063 (7)0.2736 (5)0.3551 (3)0.074 (2)
H90.89710.22850.38810.089*
C101.0333 (7)0.3181 (6)0.3394 (4)0.083 (2)
H101.11250.30530.36270.100*
C111.0457 (6)0.3805 (5)0.2903 (3)0.076 (2)
H111.13370.41080.27960.091*
C120.9337 (6)0.4001 (4)0.2563 (3)0.0573 (17)
H120.94420.44250.22140.069*
C130.2320 (5)0.2360 (4)0.1589 (3)0.0391 (13)
C140.2492 (5)0.3110 (4)0.1194 (3)0.0403 (13)
H140.34030.35010.11780.048*
C150.1392 (5)0.3315 (4)0.0820 (3)0.0382 (13)
H150.15470.38350.05490.046*
C160.0087 (6)0.2768 (4)0.0841 (3)0.0556 (16)
H160.06770.28930.05720.067*
C180.0978 (6)0.1848 (4)0.1625 (3)0.0569 (17)
H180.08160.13510.19170.068*
C170.0138 (6)0.2042 (4)0.1247 (3)0.0649 (18)
H170.10540.16700.12700.078*
C190.3412 (5)0.1655 (4)0.2950 (3)0.0367 (13)
C200.3761 (5)0.2357 (4)0.3611 (3)0.0446 (14)
H200.41990.30440.36130.054*
C210.3497 (6)0.2096 (4)0.4268 (3)0.0567 (16)
H210.37620.26000.47180.068*
C220.2853 (6)0.1111 (4)0.4281 (3)0.0539 (16)
H220.26530.09340.47370.065*
C230.2503 (6)0.0392 (4)0.3640 (3)0.0548 (16)
H230.20610.02930.36450.066*
C240.2791 (5)0.0656 (4)0.2979 (3)0.0500 (15)
H240.25600.01450.25350.060*
C250.4074 (5)0.0972 (4)0.1459 (3)0.0381 (13)
C260.3073 (6)0.0290 (4)0.0873 (3)0.0505 (15)
H260.22120.03930.07420.061*
C270.3288 (7)0.0545 (4)0.0470 (3)0.0582 (17)
H270.25800.10180.00790.070*
C280.4551 (7)0.0662 (4)0.0655 (3)0.0577 (16)
H280.47150.12220.03780.069*
C290.5557 (7)0.0022 (4)0.1208 (3)0.0612 (17)
H290.64250.01230.13190.073*
C300.5324 (6)0.0794 (4)0.1623 (3)0.0567 (16)
H300.60330.12400.20270.068*
Si30.41436 (14)0.65882 (10)0.26844 (7)0.0326 (4)
Si40.70163 (14)0.82551 (10)0.29771 (7)0.0350 (4)
O30.5376 (3)0.7660 (2)0.28621 (16)0.0375 (9)
O40.4511 (3)0.5704 (2)0.21842 (16)0.0371 (8)
H40.50290.54950.24620.056*
C310.2633 (5)0.6726 (3)0.2105 (2)0.0300 (12)
C320.2548 (5)0.7665 (4)0.2015 (3)0.0448 (14)
H320.33000.82590.22550.054*
C330.1395 (5)0.7738 (4)0.1585 (3)0.0456 (14)
H330.13550.83800.15340.055*
C340.0307 (5)0.6891 (4)0.1231 (3)0.0443 (14)
H340.04930.69490.09410.053*
C350.0364 (5)0.5960 (4)0.1291 (3)0.0416 (14)
H350.03850.53710.10370.050*
C360.1517 (5)0.5887 (4)0.1722 (2)0.0350 (12)
H360.15500.52380.17580.042*
C370.3804 (5)0.6264 (3)0.3589 (3)0.0324 (12)
C380.3412 (6)0.6867 (4)0.4095 (3)0.0473 (15)
H380.33410.74790.39870.057*
C390.3109 (6)0.6628 (4)0.4766 (3)0.0507 (15)
H390.28460.70760.51080.061*
C400.3191 (5)0.5752 (4)0.4931 (3)0.0447 (14)
H400.29530.55690.53790.054*
C410.3619 (6)0.5143 (4)0.4449 (3)0.0608 (17)
H410.37230.45450.45690.073*
C420.3904 (6)0.5393 (4)0.3776 (3)0.0549 (16)
H420.41770.49480.34370.066*
C430.7384 (5)0.9429 (3)0.3686 (3)0.0349 (12)
C440.6351 (6)0.9785 (4)0.3864 (3)0.0467 (14)
H440.54310.94490.35870.056*
C450.6613 (6)1.0623 (4)0.4440 (3)0.0555 (16)
H450.58801.08530.45530.067*
C460.7932 (6)1.1110 (4)0.4839 (3)0.0496 (15)
H460.81111.16700.52430.060*
C470.8996 (6)1.0802 (4)0.4665 (3)0.0473 (15)
H470.99171.11590.49340.057*
C480.8725 (5)0.9964 (3)0.4094 (3)0.0378 (13)
H480.94680.97490.39780.045*
C490.7447 (5)0.8425 (4)0.2052 (3)0.0358 (13)
C500.6623 (5)0.7799 (4)0.1391 (3)0.0387 (13)
H500.57920.72980.14100.046*
C510.6962 (6)0.7872 (4)0.0707 (3)0.0437 (14)
H510.63510.74430.02600.052*
C520.8162 (6)0.8554 (4)0.0663 (3)0.0497 (15)
H520.84050.85860.01890.060*
C530.9022 (6)0.9195 (4)0.1298 (3)0.0523 (15)
H530.98560.96820.12680.063*
C540.8669 (6)0.9130 (4)0.1991 (3)0.0501 (15)
H540.92740.95760.24330.060*
C550.8023 (5)0.7503 (3)0.3357 (2)0.0300 (12)
C560.7791 (5)0.7161 (3)0.4014 (3)0.0356 (12)
H560.71150.73210.42590.043*
C570.8516 (5)0.6599 (4)0.4314 (3)0.0396 (13)
H570.83410.63810.47610.048*
C580.9489 (5)0.6354 (4)0.3967 (3)0.0426 (14)
H580.99810.59580.41690.051*
C590.9754 (5)0.6686 (4)0.3325 (3)0.0460 (14)
H591.04320.65210.30840.055*
C600.9029 (5)0.7258 (3)0.3031 (3)0.0384 (13)
H600.92310.74900.25920.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0309 (9)0.0326 (8)0.0341 (8)0.0114 (7)0.0055 (6)0.0069 (6)
Si20.0357 (9)0.0306 (8)0.0364 (8)0.0085 (7)0.0069 (7)0.0074 (6)
O10.032 (2)0.0321 (19)0.0375 (19)0.0036 (16)0.0082 (15)0.0070 (15)
O20.038 (2)0.0311 (19)0.041 (2)0.0124 (17)0.0058 (16)0.0031 (16)
C10.023 (3)0.040 (3)0.037 (3)0.013 (2)0.008 (2)0.011 (3)
C20.047 (4)0.039 (3)0.037 (3)0.014 (3)0.007 (3)0.014 (3)
C30.046 (4)0.044 (3)0.040 (3)0.013 (3)0.010 (3)0.001 (3)
C40.036 (3)0.040 (3)0.040 (3)0.012 (3)0.008 (2)0.015 (3)
C50.037 (3)0.043 (3)0.042 (3)0.015 (3)0.014 (3)0.017 (3)
C60.033 (3)0.038 (3)0.039 (3)0.016 (3)0.009 (2)0.008 (2)
C70.037 (3)0.049 (3)0.036 (3)0.023 (3)0.008 (2)0.016 (3)
C80.053 (4)0.079 (4)0.053 (4)0.032 (4)0.020 (3)0.034 (3)
C90.069 (5)0.115 (6)0.067 (4)0.049 (5)0.015 (4)0.059 (4)
C100.064 (5)0.129 (6)0.083 (5)0.059 (5)0.010 (4)0.054 (5)
C110.040 (4)0.127 (6)0.082 (5)0.043 (4)0.008 (3)0.053 (5)
C120.043 (4)0.075 (4)0.067 (4)0.024 (3)0.014 (3)0.042 (3)
C130.029 (3)0.036 (3)0.041 (3)0.000 (3)0.001 (2)0.007 (3)
C140.037 (3)0.041 (3)0.040 (3)0.011 (3)0.005 (3)0.005 (3)
C150.041 (4)0.039 (3)0.037 (3)0.017 (3)0.009 (3)0.011 (2)
C160.036 (4)0.058 (4)0.072 (4)0.016 (3)0.001 (3)0.021 (3)
C180.043 (4)0.050 (4)0.076 (4)0.010 (3)0.001 (3)0.030 (3)
C170.035 (4)0.072 (4)0.087 (5)0.012 (3)0.004 (3)0.034 (4)
C190.031 (3)0.029 (3)0.045 (3)0.003 (2)0.004 (2)0.011 (3)
C200.055 (4)0.031 (3)0.047 (3)0.009 (3)0.020 (3)0.007 (3)
C210.076 (5)0.046 (4)0.043 (3)0.014 (3)0.018 (3)0.004 (3)
C220.063 (4)0.056 (4)0.046 (4)0.017 (3)0.021 (3)0.017 (3)
C230.064 (4)0.045 (4)0.049 (4)0.001 (3)0.020 (3)0.018 (3)
C240.058 (4)0.043 (3)0.041 (3)0.007 (3)0.012 (3)0.004 (3)
C250.042 (3)0.037 (3)0.036 (3)0.017 (3)0.006 (3)0.009 (2)
C260.059 (4)0.050 (4)0.045 (3)0.023 (3)0.007 (3)0.013 (3)
C270.070 (5)0.051 (4)0.041 (3)0.015 (4)0.000 (3)0.005 (3)
C280.072 (5)0.039 (4)0.063 (4)0.022 (4)0.014 (4)0.009 (3)
C290.070 (5)0.049 (4)0.067 (4)0.031 (4)0.007 (4)0.003 (3)
C300.059 (4)0.051 (4)0.053 (4)0.023 (3)0.004 (3)0.002 (3)
Si30.0279 (8)0.0310 (8)0.0360 (8)0.0087 (7)0.0040 (6)0.0033 (6)
Si40.0293 (9)0.0328 (8)0.0387 (8)0.0071 (7)0.0017 (7)0.0072 (7)
O30.028 (2)0.0314 (19)0.044 (2)0.0030 (16)0.0026 (16)0.0028 (15)
O40.038 (2)0.040 (2)0.0366 (19)0.0191 (17)0.0068 (16)0.0061 (16)
C310.027 (3)0.031 (3)0.030 (3)0.009 (2)0.006 (2)0.004 (2)
C320.034 (3)0.043 (3)0.050 (3)0.007 (3)0.002 (3)0.005 (3)
C330.038 (4)0.044 (3)0.057 (4)0.019 (3)0.000 (3)0.018 (3)
C340.032 (3)0.063 (4)0.046 (3)0.024 (3)0.004 (3)0.023 (3)
C350.030 (3)0.048 (3)0.041 (3)0.010 (3)0.001 (2)0.005 (3)
C360.036 (3)0.034 (3)0.036 (3)0.014 (3)0.009 (2)0.007 (2)
C370.029 (3)0.025 (3)0.041 (3)0.011 (2)0.002 (2)0.001 (2)
C380.071 (4)0.038 (3)0.039 (3)0.026 (3)0.012 (3)0.011 (3)
C390.072 (4)0.046 (4)0.042 (3)0.032 (3)0.013 (3)0.006 (3)
C400.053 (4)0.041 (3)0.042 (3)0.014 (3)0.015 (3)0.010 (3)
C410.094 (5)0.044 (4)0.064 (4)0.036 (4)0.035 (4)0.023 (3)
C420.077 (5)0.046 (4)0.053 (4)0.030 (3)0.025 (3)0.010 (3)
C430.033 (3)0.029 (3)0.044 (3)0.012 (3)0.002 (3)0.014 (2)
C440.037 (4)0.029 (3)0.066 (4)0.011 (3)0.001 (3)0.001 (3)
C450.053 (4)0.047 (4)0.072 (4)0.025 (3)0.015 (3)0.009 (3)
C460.062 (4)0.030 (3)0.046 (3)0.009 (3)0.001 (3)0.003 (3)
C470.049 (4)0.029 (3)0.055 (4)0.010 (3)0.009 (3)0.010 (3)
C480.044 (3)0.028 (3)0.041 (3)0.014 (3)0.001 (3)0.011 (2)
C490.034 (3)0.036 (3)0.039 (3)0.010 (3)0.008 (3)0.014 (2)
C500.033 (3)0.034 (3)0.049 (3)0.012 (3)0.008 (3)0.008 (3)
C510.047 (4)0.045 (3)0.040 (3)0.016 (3)0.007 (3)0.012 (3)
C520.057 (4)0.046 (3)0.052 (4)0.021 (3)0.011 (3)0.019 (3)
C530.057 (4)0.043 (3)0.056 (4)0.010 (3)0.019 (3)0.016 (3)
C540.050 (4)0.049 (4)0.051 (4)0.014 (3)0.008 (3)0.018 (3)
C550.027 (3)0.025 (3)0.031 (3)0.003 (2)0.002 (2)0.001 (2)
C560.029 (3)0.032 (3)0.039 (3)0.007 (3)0.000 (2)0.001 (2)
C570.045 (4)0.034 (3)0.039 (3)0.014 (3)0.008 (3)0.008 (2)
C580.041 (4)0.030 (3)0.050 (3)0.011 (3)0.005 (3)0.008 (3)
C590.041 (4)0.050 (4)0.053 (4)0.020 (3)0.019 (3)0.009 (3)
C600.030 (3)0.038 (3)0.041 (3)0.005 (3)0.002 (3)0.010 (3)
Geometric parameters (Å, º) top
Si1—O11.605 (3)Si3—O41.612 (3)
Si1—O21.637 (3)Si3—O31.620 (3)
Si1—C71.841 (5)Si3—C311.841 (5)
Si1—C11.854 (5)Si3—C371.858 (5)
Si2—O11.612 (3)Si4—O31.620 (3)
Si2—C131.844 (5)Si4—C431.848 (5)
Si2—C251.852 (5)Si4—C551.854 (5)
Si2—C191.861 (5)Si4—C491.861 (5)
O2—H20.8400O4—H40.8400
C1—C21.389 (6)C31—C361.387 (6)
C1—C61.390 (6)C31—C321.405 (6)
C2—C31.391 (6)C32—C331.374 (6)
C2—H2A0.9500C32—H320.9500
C3—C41.379 (6)C33—C341.367 (6)
C3—H30.9500C33—H330.9500
C4—C51.353 (6)C34—C351.371 (6)
C4—H4A0.9500C34—H340.9500
C5—C61.382 (6)C35—C361.375 (6)
C5—H50.9500C35—H350.9500
C6—H60.9500C36—H360.9500
C7—C81.391 (6)C37—C381.355 (6)
C7—C121.400 (7)C37—C421.372 (6)
C8—C91.391 (7)C38—C391.390 (6)
C8—H80.9500C38—H380.9500
C9—C101.375 (8)C39—C401.359 (6)
C9—H90.9500C39—H390.9500
C10—C111.365 (8)C40—C411.356 (7)
C10—H100.9500C40—H400.9500
C11—C121.361 (7)C41—C421.394 (7)
C11—H110.9500C41—H410.9500
C12—H120.9500C42—H420.9500
C13—C141.375 (6)C43—C441.374 (7)
C13—C181.381 (7)C43—C481.396 (6)
C14—C151.376 (6)C44—C451.391 (7)
C14—H140.9500C44—H440.9500
C15—C161.354 (6)C45—C461.364 (7)
C15—H150.9500C45—H450.9500
C16—C171.360 (7)C46—C471.365 (7)
C16—H160.9500C46—H460.9500
C18—C171.384 (7)C47—C481.385 (7)
C18—H180.9500C47—H470.9500
C17—H170.9500C48—H480.9500
C19—C201.369 (6)C49—C501.376 (6)
C19—C241.393 (6)C49—C541.395 (6)
C20—C211.365 (6)C50—C511.371 (6)
C20—H200.9500C50—H500.9500
C21—C221.371 (7)C51—C521.353 (7)
C21—H210.9500C51—H510.9500
C22—C231.356 (7)C52—C531.362 (7)
C22—H220.9500C52—H520.9500
C23—C241.380 (6)C53—C541.388 (7)
C23—H230.9500C53—H530.9500
C24—H240.9500C54—H540.9500
C25—C261.382 (6)C55—C601.380 (6)
C25—C301.393 (7)C55—C561.404 (6)
C26—C271.393 (7)C56—C571.377 (6)
C26—H260.9500C56—H560.9500
C27—C281.369 (8)C57—C581.369 (7)
C27—H270.9500C57—H570.9500
C28—C291.332 (7)C58—C591.380 (6)
C28—H280.9500C58—H580.9500
C29—C301.391 (7)C59—C601.386 (6)
C29—H290.9500C59—H590.9500
C30—H300.9500C60—H600.9500
O1—Si1—O2104.71 (18)O4—Si3—O3112.18 (18)
O1—Si1—C7109.5 (2)O4—Si3—C31105.99 (19)
O2—Si1—C7110.8 (2)O3—Si3—C31107.02 (19)
O1—Si1—C1110.52 (19)O4—Si3—C37110.2 (2)
O2—Si1—C1108.2 (2)O3—Si3—C37108.71 (19)
C7—Si1—C1112.7 (2)C31—Si3—C37112.7 (2)
O1—Si2—C13108.3 (2)O3—Si4—C43105.9 (2)
O1—Si2—C25109.7 (2)O3—Si4—C55109.85 (19)
C13—Si2—C25112.2 (2)C43—Si4—C55108.6 (2)
O1—Si2—C19107.69 (19)O3—Si4—C49109.6 (2)
C13—Si2—C19110.5 (2)C43—Si4—C49115.4 (2)
C25—Si2—C19108.3 (2)C55—Si4—C49107.5 (2)
Si1—O1—Si2166.0 (2)Si3—O3—Si4147.7 (2)
Si1—O2—H2109.5Si3—O4—H4109.5
C2—C1—C6117.3 (4)C36—C31—C32116.5 (4)
C2—C1—Si1120.8 (4)C36—C31—Si3120.7 (4)
C6—C1—Si1121.9 (4)C32—C31—Si3122.8 (4)
C1—C2—C3120.9 (5)C33—C32—C31121.1 (5)
C1—C2—H2A119.6C33—C32—H32119.5
C3—C2—H2A119.6C31—C32—H32119.5
C4—C3—C2119.6 (5)C34—C33—C32120.4 (5)
C4—C3—H3120.2C34—C33—H33119.8
C2—C3—H3120.2C32—C33—H33119.8
C5—C4—C3120.7 (5)C33—C34—C35120.3 (5)
C5—C4—H4A119.6C33—C34—H34119.8
C3—C4—H4A119.6C35—C34—H34119.8
C4—C5—C6119.6 (5)C34—C35—C36119.3 (5)
C4—C5—H5120.2C34—C35—H35120.3
C6—C5—H5120.2C36—C35—H35120.3
C5—C6—C1121.8 (5)C35—C36—C31122.4 (5)
C5—C6—H6119.1C35—C36—H36118.8
C1—C6—H6119.1C31—C36—H36118.8
C8—C7—C12117.9 (5)C38—C37—C42116.3 (5)
C8—C7—Si1121.9 (4)C38—C37—Si3121.6 (4)
C12—C7—Si1120.2 (4)C42—C37—Si3122.1 (4)
C7—C8—C9120.5 (5)C37—C38—C39122.9 (5)
C7—C8—H8119.7C37—C38—H38118.6
C9—C8—H8119.7C39—C38—H38118.6
C10—C9—C8119.7 (5)C40—C39—C38119.7 (5)
C10—C9—H9120.1C40—C39—H39120.1
C8—C9—H9120.1C38—C39—H39120.1
C11—C10—C9120.0 (6)C41—C40—C39119.1 (5)
C11—C10—H10120.0C41—C40—H40120.5
C9—C10—H10120.0C39—C40—H40120.5
C12—C11—C10121.0 (6)C40—C41—C42120.2 (5)
C12—C11—H11119.5C40—C41—H41119.9
C10—C11—H11119.5C42—C41—H41119.9
C11—C12—C7120.8 (5)C37—C42—C41121.8 (5)
C11—C12—H12119.6C37—C42—H42119.1
C7—C12—H12119.6C41—C42—H42119.1
C14—C13—C18116.4 (5)C44—C43—C48116.9 (5)
C14—C13—Si2123.6 (4)C44—C43—Si4121.9 (4)
C18—C13—Si2120.0 (4)C48—C43—Si4121.0 (4)
C13—C14—C15122.4 (5)C43—C44—C45122.0 (5)
C13—C14—H14118.8C43—C44—H44119.0
C15—C14—H14118.8C45—C44—H44119.0
C16—C15—C14119.5 (5)C46—C45—C44119.4 (6)
C16—C15—H15120.3C46—C45—H45120.3
C14—C15—H15120.3C44—C45—H45120.3
C15—C16—C17120.4 (5)C45—C46—C47120.6 (5)
C15—C16—H16119.8C45—C46—H46119.7
C17—C16—H16119.8C47—C46—H46119.7
C13—C18—C17121.6 (5)C46—C47—C48119.6 (5)
C13—C18—H18119.2C46—C47—H47120.2
C17—C18—H18119.2C48—C47—H47120.2
C16—C17—C18119.5 (5)C47—C48—C43121.5 (5)
C16—C17—H17120.2C47—C48—H48119.3
C18—C17—H17120.2C43—C48—H48119.3
C20—C19—C24116.9 (5)C50—C49—C54116.3 (5)
C20—C19—Si2121.3 (4)C50—C49—Si4121.2 (4)
C24—C19—Si2121.8 (4)C54—C49—Si4122.3 (4)
C21—C20—C19121.8 (5)C51—C50—C49122.2 (5)
C21—C20—H20119.1C51—C50—H50118.9
C19—C20—H20119.1C49—C50—H50118.9
C20—C21—C22120.4 (5)C52—C51—C50120.3 (5)
C20—C21—H21119.8C52—C51—H51119.8
C22—C21—H21119.8C50—C51—H51119.8
C23—C22—C21119.5 (5)C51—C52—C53120.2 (5)
C23—C22—H22120.2C51—C52—H52119.9
C21—C22—H22120.2C53—C52—H52119.9
C22—C23—C24119.9 (5)C52—C53—C54119.5 (5)
C22—C23—H23120.0C52—C53—H53120.2
C24—C23—H23120.0C54—C53—H53120.2
C23—C24—C19121.4 (5)C53—C54—C49121.5 (5)
C23—C24—H24119.3C53—C54—H54119.3
C19—C24—H24119.3C49—C54—H54119.3
C26—C25—C30116.8 (5)C60—C55—C56116.6 (4)
C26—C25—Si2122.9 (4)C60—C55—Si4123.3 (4)
C30—C25—Si2120.1 (4)C56—C55—Si4120.1 (4)
C25—C26—C27122.0 (5)C57—C56—C55121.9 (5)
C25—C26—H26119.0C57—C56—H56119.1
C27—C26—H26119.0C55—C56—H56119.1
C28—C27—C26118.0 (6)C58—C57—C56120.0 (5)
C28—C27—H27121.0C58—C57—H57120.0
C26—C27—H27121.0C56—C57—H57120.0
C29—C28—C27122.5 (6)C57—C58—C59119.8 (5)
C29—C28—H28118.7C57—C58—H58120.1
C27—C28—H28118.7C59—C58—H58120.1
C28—C29—C30119.3 (6)C58—C59—C60119.9 (5)
C28—C29—H29120.4C58—C59—H59120.0
C30—C29—H29120.4C60—C59—H59120.0
C29—C30—C25121.4 (5)C55—C60—C59121.8 (5)
C29—C30—H30119.3C55—C60—H60119.1
C25—C30—H30119.3C59—C60—H60119.1
O2—Si1—O1—Si2144.4 (9)O4—Si3—O3—Si427.6 (4)
C7—Si1—O1—Si296.7 (9)C31—Si3—O3—Si4143.4 (4)
C1—Si1—O1—Si228.1 (10)C37—Si3—O3—Si494.6 (4)
C13—Si2—O1—Si187.0 (9)C43—Si4—O3—Si3146.9 (4)
C25—Si2—O1—Si135.8 (10)C55—Si4—O3—Si329.8 (5)
C19—Si2—O1—Si1153.5 (9)C49—Si4—O3—Si388.1 (4)
O1—Si1—C1—C265.9 (4)O4—Si3—C31—C3645.6 (4)
O2—Si1—C1—C2180.0 (4)O3—Si3—C31—C36165.5 (3)
C7—Si1—C1—C257.0 (5)C37—Si3—C31—C3675.1 (4)
O1—Si1—C1—C6114.5 (4)O4—Si3—C31—C32133.3 (4)
O2—Si1—C1—C60.3 (4)O3—Si3—C31—C3213.4 (5)
C7—Si1—C1—C6122.6 (4)C37—Si3—C31—C32106.1 (4)
C6—C1—C2—C30.9 (7)C36—C31—C32—C331.9 (7)
Si1—C1—C2—C3179.4 (4)Si3—C31—C32—C33179.2 (4)
C1—C2—C3—C40.9 (7)C31—C32—C33—C340.5 (8)
C2—C3—C4—C51.7 (7)C32—C33—C34—C351.1 (8)
C3—C4—C5—C60.5 (7)C33—C34—C35—C361.1 (8)
C4—C5—C6—C11.5 (7)C34—C35—C36—C310.3 (7)
C2—C1—C6—C52.2 (7)C32—C31—C36—C351.8 (7)
Si1—C1—C6—C5178.2 (4)Si3—C31—C36—C35179.3 (4)
O1—Si1—C7—C823.1 (5)O4—Si3—C37—C38177.1 (4)
O2—Si1—C7—C891.9 (5)O3—Si3—C37—C3859.6 (5)
C1—Si1—C7—C8146.6 (4)C31—Si3—C37—C3858.9 (5)
O1—Si1—C7—C12156.8 (4)O4—Si3—C37—C421.5 (5)
O2—Si1—C7—C1288.2 (5)O3—Si3—C37—C42121.8 (4)
C1—Si1—C7—C1233.3 (5)C31—Si3—C37—C42119.7 (4)
C12—C7—C8—C90.5 (8)C42—C37—C38—C390.7 (8)
Si1—C7—C8—C9179.4 (5)Si3—C37—C38—C39178.0 (4)
C7—C8—C9—C102.1 (10)C37—C38—C39—C400.5 (8)
C8—C9—C10—C111.9 (11)C38—C39—C40—C412.4 (8)
C9—C10—C11—C120.1 (11)C39—C40—C41—C423.0 (8)
C10—C11—C12—C71.5 (10)C38—C37—C42—C410.0 (8)
C8—C7—C12—C111.3 (9)Si3—C37—C42—C41178.6 (4)
Si1—C7—C12—C11178.8 (5)C40—C41—C42—C371.8 (9)
O1—Si2—C13—C1426.6 (5)O3—Si4—C43—C4417.0 (4)
C25—Si2—C13—C1494.7 (5)C55—Si4—C43—C44134.9 (4)
C19—Si2—C13—C14144.3 (4)C49—Si4—C43—C44104.4 (4)
O1—Si2—C13—C18153.2 (4)O3—Si4—C43—C48159.4 (3)
C25—Si2—C13—C1885.5 (5)C55—Si4—C43—C4841.5 (4)
C19—Si2—C13—C1835.5 (5)C49—Si4—C43—C4879.2 (4)
C18—C13—C14—C153.2 (8)C48—C43—C44—C451.8 (7)
Si2—C13—C14—C15177.0 (4)Si4—C43—C44—C45174.7 (4)
C13—C14—C15—C160.5 (8)C43—C44—C45—C460.1 (8)
C14—C15—C16—C171.9 (8)C44—C45—C46—C471.9 (8)
C14—C13—C18—C173.7 (8)C45—C46—C47—C482.3 (8)
Si2—C13—C18—C17176.5 (5)C46—C47—C48—C430.6 (7)
C15—C16—C17—C181.4 (9)C44—C43—C48—C471.4 (7)
C13—C18—C17—C161.5 (10)Si4—C43—C48—C47175.1 (4)
O1—Si2—C19—C2031.0 (5)O3—Si4—C49—C5023.3 (5)
C13—Si2—C19—C2087.1 (5)C43—Si4—C49—C50142.7 (4)
C25—Si2—C19—C20149.6 (4)C55—Si4—C49—C5096.0 (4)
O1—Si2—C19—C24148.6 (4)O3—Si4—C49—C54162.3 (4)
C13—Si2—C19—C2493.3 (5)C43—Si4—C49—C5442.9 (5)
C25—Si2—C19—C2430.0 (5)C55—Si4—C49—C5478.4 (4)
C24—C19—C20—C210.9 (8)C54—C49—C50—C511.4 (7)
Si2—C19—C20—C21179.5 (4)Si4—C49—C50—C51176.1 (4)
C19—C20—C21—C220.7 (9)C49—C50—C51—C522.3 (8)
C20—C21—C22—C231.4 (9)C50—C51—C52—C532.1 (8)
C21—C22—C23—C240.3 (9)C51—C52—C53—C541.2 (8)
C22—C23—C24—C191.4 (9)C52—C53—C54—C490.3 (8)
C20—C19—C24—C232.0 (8)C50—C49—C54—C530.4 (7)
Si2—C19—C24—C23178.4 (4)Si4—C49—C54—C53175.1 (4)
O1—Si2—C25—C26142.9 (4)O3—Si4—C55—C60126.9 (4)
C13—Si2—C25—C2622.4 (5)C43—Si4—C55—C60117.7 (4)
C19—Si2—C25—C2699.8 (4)C49—Si4—C55—C607.8 (4)
O1—Si2—C25—C3042.0 (5)O3—Si4—C55—C5653.8 (4)
C13—Si2—C25—C30162.5 (4)C43—Si4—C55—C5661.6 (4)
C19—Si2—C25—C3075.3 (5)C49—Si4—C55—C56172.9 (3)
C30—C25—C26—C270.8 (7)C60—C55—C56—C570.8 (6)
Si2—C25—C26—C27174.4 (4)Si4—C55—C56—C57179.9 (3)
C25—C26—C27—C281.9 (8)C55—C56—C57—C580.4 (7)
C26—C27—C28—C291.2 (9)C56—C57—C58—C591.0 (7)
C27—C28—C29—C300.6 (9)C57—C58—C59—C600.4 (7)
C28—C29—C30—C251.8 (9)C56—C55—C60—C591.4 (7)
C26—C25—C30—C291.0 (8)Si4—C55—C60—C59179.3 (4)
Si2—C25—C30—C29176.4 (4)C58—C59—C60—C550.9 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O20.841.942.742 (4)160
O2—H2···Cg(C55–C60)0.842.443.181 (2)147

Experimental details

Crystal data
Chemical formulaC30H26O2Si2
Mr474.69
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.3611 (6), 14.2844 (8), 18.4367 (9)
α, β, γ (°)99.421 (4), 98.492 (4), 107.415 (4)
V3)2511.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.14 × 0.08 × 0.08
Data collection
DiffractometerBruker X8 KappaCCD APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.977, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
33504, 9155, 4059
Rint0.140
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.185, 0.98
No. of reflections9155
No. of parameters615
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.37

Computer programs: APEX2 (Bruker, 2006), SAINT-Plus (Bruker, 2005), SHELXTL (Bruker 2001), DIAMOND (Brandenburg, 2006).

Selected geometric parameters (Å, º) top
Si1—O11.605 (3)Si3—O41.612 (3)
Si1—O21.637 (3)Si3—O31.620 (3)
Si1—C71.841 (5)Si3—C311.841 (5)
Si1—C11.854 (5)Si3—C371.858 (5)
Si2—O11.612 (3)Si4—O31.620 (3)
Si2—C131.844 (5)Si4—C431.848 (5)
Si2—C251.852 (5)Si4—C551.854 (5)
Si2—C191.861 (5)Si4—C491.861 (5)
O1—Si1—O2104.71 (18)O4—Si3—O3112.18 (18)
O1—Si1—C7109.5 (2)O4—Si3—C31105.99 (19)
O2—Si1—C7110.8 (2)O3—Si3—C31107.02 (19)
O1—Si1—C1110.52 (19)O4—Si3—C37110.2 (2)
O2—Si1—C1108.2 (2)O3—Si3—C37108.71 (19)
C7—Si1—C1112.7 (2)C31—Si3—C37112.7 (2)
O1—Si2—C13108.3 (2)O3—Si4—C43105.9 (2)
O1—Si2—C25109.7 (2)O3—Si4—C55109.85 (19)
C13—Si2—C25112.2 (2)C43—Si4—C55108.6 (2)
O1—Si2—C19107.69 (19)O3—Si4—C49109.6 (2)
C13—Si2—C19110.5 (2)C43—Si4—C49115.4 (2)
C25—Si2—C19108.3 (2)C55—Si4—C49107.5 (2)
Si1—O1—Si2166.0 (2)Si3—O3—Si4147.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O20.841.942.742 (4)160
O2—H2···Cg(C55–C60)0.842.443.181 (2)147
 

Acknowledgements

We are grateful to Fundação para a Ciência e a Tecnologia (FCT, Portugal) for their general financial support and also for specific funding toward the purchase of the single-crystal diffractometer.

References

First citationAbrantes, M., Valente, A. A., Pillinger, M., Gonçalves, I. S., Rocha, J. & Romão, C. C. (2002). Inorg. Chem. Commun. 5, 1069–1072.  Web of Science CrossRef CAS Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAmarante, T. R., Coelho, A. C., Klinowski, J., Gonçalves, I. S. & Almeida Paz, F. A. (2008). Acta Cryst. E64, o239.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Version 3.1e. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). SAINT-Plus. Version 7.23a. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Version 2.1-RC13. Bruker–Nonius, Delft, The Netherlands.  Google Scholar
First citationBruno, S. M., Monteiro, B., Balula, M. S., Lourenço, C., Valente, A. A., Pillinger, M., Ribeiro-Claro, P. & Gonçalves, I. S. (2006). Molecules, 11, 298–308.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruno, S. M., Pereira, C. C. L., Balula, M. S., Nolasco, M., Valente, A. A., Hazell, A., Pillinger, M., Ribeiro-Claro, P. & Gonçalves, I. S. (2007). J. Mol. Catal. A Chem. 261, 79–87.  Web of Science CSD CrossRef CAS Google Scholar
First citationGlidewell, C. & Liles, D. C. (1978). Acta Cryst. B34, 124–128.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHönle, W., Manríquez, V. & von Schnering, H. G. (1990). Acta Cryst. C46, 1982–1984.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationMorosin, B. & Harrah, L. A. (1981). Acta Cryst. B37, 579–586.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNunes, C. D., Valente, A. A., Pillinger, M., Rocha, J. & Gonçalves, I. S. (2003). Chem. Eur. J. 9, 4380–4390.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Version 2.01. University of Göttingen, Germany.  Google Scholar
First citationSuwińska, K., Palenik, G. J. & Gerdil, R. (1986). Acta Cryst. C42, 615–620.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationWojnowski, D. W., Becker, B., Peters, K., Peters, E.-M. & von Schnering, H. G. (2004). Z. Anorg. Allg. Chem. 563, 48–52.  CSD CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds