metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(6-Methyl-2-pyridylmeth­yl)(2-pyridylmeth­yl)amine][(2-pyridylmeth­yl)amine]copper(II) bis­­(perchlorate)

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 21 November 2007; accepted 24 November 2007; online 6 December 2007)

The title compound, [Cu(C6H8N2)(C13H15N3)](ClO4)2, is a mixed ligand complex with the CuII atom coordinated by (6-methyl-2-pyridylmeth­yl)(2-pyridylmeth­yl)amine, acting as a tridentate ligand, and 2-(2-amino­meth­yl)pyridine, as a bidentate ligand, leading to an N5 square-pyramidal geometry. The amine H atoms are involved in hydrogen bonding to the perchlorate O atoms and there are extensive but weak inter­molecular C—H⋯O inter­actions in the crystal structure. The perchlorate ions are each disordered over two positions, with site occupancies of 0.601 (8):0.399 (8) and 0.659 (11):0.341 (11).

Related literature

For related literature, see: Cho et al. (2006[Cho, J., Furutachi, H., Fujinami, S., Tosha, T., Ohtsu, H., Ikeda, O., Suzuki, A., Nomura, M., Uruga, T., Tanida, H., Kawai, T., Tanaka, K., Kitagawa, T. & Suzuki, M. (2006). Inorg. Chem. 45, 2873-2885.]); Gultneh et al. (2003[Gultneh, Y., Yisgedu, T. B., Tesema, Y. T. & Butcher, R. J. (2003). Inorg. Chem. 42, 1857-1867.]); Hetterscheid et al. (2004[Hetterscheid, D. G. H., Smits, J. M. M. & Bruin, B. (2004). Organometallics, 23, 4236-4246.]); Mizuno et al. (2003[Mizuno, M., Hayashi, H., Fujinami, S., Furutachi, H., Nagatomo, S., Otakes, S., Uozumi, K., Suzuki, M. & Kitagawa, T. (2003). Inorg. Chem. 42, 8534-8544.]); Ohtsu et al. (2001[Ohtsu, H., Itoh, S., Nagamtomo, S., Kitagawa, T., Ogo, S., Watanabe, Y. & Fukuzumi, S. (2001). Inorg. Chem. 40, 3200-3207.]); Oki et al. (1990[Oki, A. R., Glerup, J. & Hodgson, D. J. (1990). Inorg. Chem. 29, 2435-2441.]); Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C6H8N2)(C13H15N3)](ClO4)2

  • Mr = 583.86

  • Monoclinic, P 21 /n

  • a = 9.3178 (10) Å

  • b = 13.9691 (19) Å

  • c = 19.223 (3) Å

  • β = 99.931 (11)°

  • V = 2464.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.16 mm−1

  • T = 293 (2) K

  • 0.45 × 0.22 × 0.17 mm

Data collection
  • Bruker P4S diffractometer

  • Absorption correction: ψ-scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.444, Tmax = 0.505 (expected range = 0.722–0.821)

  • 5832 measured reflections

  • 5494 independent reflections

  • 3410 reflections with I > 2σ(I)

  • Rint = 0.023

  • 3 standard reflections every 97 reflections intensity decay: < 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.145

  • S = 1.02

  • 5494 reflections

  • 394 parameters

  • 118 restraints

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O12A 0.90 2.21 3.080 (17) 161
N2—H2B⋯O13 0.90 2.27 3.103 (12) 154
N2—H2C⋯O24 0.90 2.22 3.064 (9) 157
N2—H2C⋯O22A 0.90 2.27 3.158 (19) 169
N2—H2C⋯O21 0.90 2.64 3.374 (17) 139
N—H0A⋯O12i 0.91 2.44 3.301 (10) 158
N—H0A⋯O11Ai 0.91 2.40 3.291 (19) 165
C3—H3A⋯O23ii 0.93 2.54 3.456 (10) 169
C4—H4A⋯O12iii 0.93 2.45 3.374 (10) 172
C1A—H1AA⋯O14A 0.93 2.57 3.438 (18) 156
C2A—H2AA⋯O22iv 0.93 2.56 3.475 (13) 167
C2A—H2AA⋯O22Aiv 0.93 2.46 3.199 (14) 136
C6A—H6AB⋯O22v 0.97 2.35 3.294 (10) 164
C11B—H11B⋯O14A 0.96 2.32 3.180 (12) 148
C6B—H6BA⋯O22v 0.97 2.53 3.433 (10) 154
C6B—H6BA⋯O23Av 0.97 2.47 3.433 (17) 172
C6B—H6BB⋯O23vi 0.97 2.54 3.375 (10) 144
Symmetry codes: (i) x+1, y, z; (ii) -x+2, -y+1, -z; (iii) -x+1, -y+1, -z; (iv) -x+1, -y+2, -z; (v) -x+2, -y+2, -z; (vi) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: XSCANS (Bruker, 1997[Bruker (1997). XSCANS. Version 2.20. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: SHELXTL (Bruker, 2000[Bruker (2000). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990[Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The geometry around the CuII ion in (I), Fig. 1, is best described as a distorted square-pyramid (τ = 0.224; Addison et al., 1984), with an amine-N2 atom and three pyridine-N atoms (N1A, N1B, and N1) defining the basal plane. The Cu—Npyridyl bond distances are in the range of 1.993 (3)–2.039 (3) Å, and a Cu—Namine bond distance of 1.998 (3) Å. The axial position is occupied by the amine-N atom of the tridentate (6-methyl-2-pyridylmethyl)(2-pyridylmethyl)amine ligand with a bond distance of 2.195 (3) Å consistent with a Jahn–Teller elongation. In (I), the Cu—Npyridyl and Cu—Namine bond distances of 1.993 (3) and 1.998 (3) Å, respectively, are shorter for the 2-(2-aminomethyl)pyridine ligand. The amine H atoms are involved in hydrogen bonding to the perchlorate-O atoms and there are extensive but weak intermolecular C—H···O interactions in the crystal structure (Fig. 2 & Table 1).

Related literature top

For related literature, see: Cho et al. (2006); Gultneh et al. (2003); Hetterscheid et al. (2004); Mizuno et al. (2003); Ohtsu et al. (2001); Oki et al. (1990); Addison et al. (1984).

Experimental top

Complex (I) was synthesized by reacting one equivalent each of the ligands (6-methyl-2-pyridylmethyl)(2-pyridylmethyl)amine and 2-(2-aminomethyl)pyridine with Cu(ClO4)2.6H2O and triethylamine in methanol solution. After stirring the mixture for 12 h, the resulting precipitate was isolated and re-dissolved in acetonitrile solution. Dark-blue crystals suitable for X-ray diffraction analysis were obtained by layering this solution with diethyl ether.

Refinement top

The two perchlorate anions are disordered over two conformations with occupancy factors of 0.601 (8), 0.399 (8) for the Cl1-perchlorate anion, and 0.659 (11), 0.341 (11) for the Cl2-perchlorate. Each of the perchlorates was constrained to adopt a tetrahedral geometry. The H atoms were included in the riding model approximation with N—H = 0.90–0.91 Å and C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C, N) (1.5Ueq(C) for methyl-H).

Structure description top

The geometry around the CuII ion in (I), Fig. 1, is best described as a distorted square-pyramid (τ = 0.224; Addison et al., 1984), with an amine-N2 atom and three pyridine-N atoms (N1A, N1B, and N1) defining the basal plane. The Cu—Npyridyl bond distances are in the range of 1.993 (3)–2.039 (3) Å, and a Cu—Namine bond distance of 1.998 (3) Å. The axial position is occupied by the amine-N atom of the tridentate (6-methyl-2-pyridylmethyl)(2-pyridylmethyl)amine ligand with a bond distance of 2.195 (3) Å consistent with a Jahn–Teller elongation. In (I), the Cu—Npyridyl and Cu—Namine bond distances of 1.993 (3) and 1.998 (3) Å, respectively, are shorter for the 2-(2-aminomethyl)pyridine ligand. The amine H atoms are involved in hydrogen bonding to the perchlorate-O atoms and there are extensive but weak intermolecular C—H···O interactions in the crystal structure (Fig. 2 & Table 1).

For related literature, see: Cho et al. (2006); Gultneh et al. (2003); Hetterscheid et al. (2004); Mizuno et al. (2003); Ohtsu et al. (2001); Oki et al. (1990); Addison et al. (1984).

Computing details top

Data collection: XSCANS (Bruker, 1997); cell refinement: XSCANS (Bruker, 1997); data reduction: SHELXTL (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering scheme and displacement ellipsoids drawn at the 20% probabilty level.
[Figure 2] Fig. 2. The packing arrangement in (I) viewed down the a axis showing the N—H···O and C—H···O interactions as dashed bonds.
[(6-Methyl-2-pyridylmethyl)(2-pyridylmethyl)amine][(2- pyridylmethyl)amine]copper(II) bis(perchlorate) top
Crystal data top
[Cu(C6H8N2)(C13H15N3)](ClO4)2F(000) = 1196
Mr = 583.86Dx = 1.574 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 40 reflections
a = 9.3178 (10) Åθ = 5.1–12.5°
b = 13.9691 (19) ŵ = 1.16 mm1
c = 19.223 (3) ÅT = 293 K
β = 99.931 (11)°Needle, dark blue
V = 2464.6 (6) Å30.45 × 0.22 × 0.17 mm
Z = 4
Data collection top
Bruker P4S
diffractometer
3410 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 27.5°, θmin = 2.6°
ω scansh = 010
Absorption correction: empirical (using intensity measurements)
ψ-scan (North et al., 1968)
k = 018
Tmin = 0.444, Tmax = 0.505l = 2424
5832 measured reflections3 standard reflections every 97 reflections
5494 independent reflections intensity decay: <2
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0609P)2 + 0.9236P]
where P = (Fo2 + 2Fc2)/3
5494 reflections(Δ/σ)max < 0.001
394 parametersΔρmax = 0.40 e Å3
118 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Cu(C6H8N2)(C13H15N3)](ClO4)2V = 2464.6 (6) Å3
Mr = 583.86Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.3178 (10) ŵ = 1.16 mm1
b = 13.9691 (19) ÅT = 293 K
c = 19.223 (3) Å0.45 × 0.22 × 0.17 mm
β = 99.931 (11)°
Data collection top
Bruker P4S
diffractometer
3410 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
ψ-scan (North et al., 1968)
Rint = 0.023
Tmin = 0.444, Tmax = 0.5053 standard reflections every 97 reflections
5832 measured reflections intensity decay: <2
5494 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.054118 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.02Δρmax = 0.40 e Å3
5494 reflectionsΔρmin = 0.25 e Å3
394 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu0.82061 (5)0.75715 (3)0.13019 (2)0.05120 (17)
Cl10.31446 (13)0.67766 (9)0.06898 (6)0.0720 (3)
Cl20.79982 (12)0.81545 (7)0.12730 (6)0.0641 (3)
O110.3166 (9)0.7331 (9)0.1286 (5)0.152 (4)0.601 (8)
O120.1675 (7)0.6764 (9)0.0381 (6)0.153 (4)0.601 (8)
O130.3873 (12)0.7307 (8)0.0218 (5)0.159 (4)0.601 (8)
O140.3776 (16)0.5943 (7)0.0733 (8)0.209 (5)0.601 (8)
O11A0.256 (2)0.7538 (10)0.0342 (10)0.183 (6)0.399 (8)
O12A0.4019 (17)0.6278 (13)0.0278 (9)0.175 (5)0.399 (8)
O13A0.2181 (16)0.6067 (10)0.0823 (9)0.155 (5)0.399 (8)
O14A0.4133 (19)0.6940 (15)0.1287 (7)0.194 (7)0.399 (8)
O210.9137 (13)0.7800 (12)0.0783 (7)0.115 (4)0.659 (11)
O220.7988 (12)0.9139 (5)0.1336 (7)0.135 (4)0.659 (11)
O230.7929 (11)0.7683 (7)0.1931 (3)0.111 (3)0.659 (11)
O240.6647 (8)0.7921 (7)0.1036 (5)0.124 (3)0.659 (11)
O21A0.941 (2)0.780 (2)0.0915 (13)0.114 (7)0.341 (11)
O22A0.735 (2)0.8536 (14)0.0741 (7)0.130 (5)0.341 (11)
O23A0.840 (3)0.8895 (13)0.1687 (11)0.152 (8)0.341 (11)
O24A0.728 (2)0.7459 (10)0.1643 (11)0.128 (6)0.341 (11)
N10.9081 (4)0.6274 (2)0.14801 (18)0.0582 (8)
N20.7204 (4)0.6948 (3)0.04142 (19)0.0711 (10)
H2B0.62560.68700.04390.085*
H2C0.72610.73360.00460.085*
N1.0124 (4)0.8442 (3)0.1207 (2)0.0676 (10)
H0A1.07780.80880.10150.081*
N1A0.7231 (4)0.8851 (2)0.10460 (16)0.0528 (8)
C10.9991 (6)0.5995 (4)0.2061 (3)0.0838 (15)
H1A1.02000.64190.24380.101*
C21.0625 (6)0.5108 (4)0.2119 (3)0.0928 (17)
H2A1.12390.49280.25320.111*
C31.0343 (6)0.4493 (4)0.1563 (3)0.0893 (16)
H3A1.07730.38900.15910.107*
C40.9423 (5)0.4767 (3)0.0963 (3)0.0747 (13)
H4A0.92130.43520.05810.090*
C50.8813 (5)0.5668 (3)0.0934 (2)0.0586 (10)
C60.7826 (7)0.6032 (4)0.0292 (3)0.0898 (16)
H6A0.83710.60900.00930.108*
H6B0.70480.55740.01510.108*
C1A0.5863 (5)0.9080 (3)0.1121 (2)0.0678 (12)
H1AA0.52720.86090.12640.081*
C2A0.5311 (6)0.9987 (4)0.0992 (3)0.0824 (15)
H2AA0.43621.01280.10480.099*
C3A0.6177 (7)1.0677 (4)0.0780 (3)0.0912 (17)
H3AA0.58201.12940.06880.109*
C4A0.7575 (6)1.0460 (3)0.0703 (2)0.0750 (13)
H4AA0.81791.09270.05650.090*
C5A0.8077 (5)0.9526 (3)0.0835 (2)0.0591 (10)
C6A0.9570 (5)0.9222 (3)0.0733 (2)0.0691 (12)
H6AA0.95350.90190.02480.083*
H6AB1.02280.97640.08190.083*
N1B0.8682 (4)0.8030 (2)0.23229 (17)0.0591 (9)
C1B0.7839 (6)0.7840 (4)0.2815 (3)0.0811 (16)
C11B0.6648 (6)0.7120 (5)0.2627 (3)0.105 (2)
H11A0.70630.65100.25460.158*
H11B0.60070.73220.22070.158*
H11C0.61080.70660.30080.158*
C2B0.8124 (8)0.8284 (6)0.3461 (3)0.120 (3)
H2BA0.75820.81310.38080.145*
C3B0.9221 (11)0.8958 (7)0.3591 (4)0.146 (4)
H3BA0.93950.92810.40200.175*
C4B1.0036 (8)0.9143 (4)0.3092 (4)0.116 (3)
H4BA1.07680.96020.31740.139*
C5B0.9783 (6)0.8648 (3)0.2458 (3)0.0728 (14)
C6B1.0765 (6)0.8746 (4)0.1921 (3)0.0904 (17)
H6BA1.10560.94110.19040.108*
H6BB1.16380.83720.20760.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0506 (3)0.0457 (3)0.0560 (3)0.0023 (2)0.0057 (2)0.0030 (2)
Cl10.0659 (7)0.0798 (8)0.0700 (7)0.0029 (6)0.0109 (6)0.0066 (6)
Cl20.0725 (7)0.0507 (6)0.0661 (6)0.0027 (5)0.0036 (5)0.0019 (5)
O110.095 (6)0.257 (12)0.103 (6)0.002 (7)0.011 (5)0.087 (7)
O120.062 (4)0.198 (10)0.191 (9)0.012 (5)0.003 (5)0.065 (8)
O130.164 (8)0.168 (8)0.166 (7)0.005 (7)0.083 (7)0.047 (7)
O140.248 (11)0.127 (7)0.258 (12)0.083 (8)0.063 (10)0.051 (8)
O11A0.175 (12)0.153 (11)0.226 (12)0.070 (9)0.045 (11)0.080 (9)
O12A0.165 (9)0.185 (12)0.205 (12)0.053 (10)0.115 (9)0.029 (11)
O13A0.127 (10)0.128 (10)0.227 (12)0.046 (8)0.076 (9)0.015 (9)
O14A0.164 (13)0.270 (17)0.116 (10)0.105 (13)0.059 (10)0.006 (11)
O210.113 (7)0.134 (7)0.084 (5)0.029 (6)0.019 (5)0.004 (5)
O220.132 (7)0.053 (4)0.210 (11)0.012 (4)0.000 (7)0.003 (5)
O230.129 (7)0.125 (7)0.073 (4)0.017 (5)0.001 (4)0.024 (4)
O240.098 (5)0.107 (6)0.175 (8)0.004 (4)0.052 (5)0.021 (5)
O21A0.072 (9)0.133 (12)0.122 (14)0.042 (9)0.021 (9)0.038 (11)
O22A0.128 (11)0.127 (11)0.140 (10)0.051 (9)0.042 (8)0.022 (9)
O23A0.200 (16)0.091 (12)0.168 (16)0.026 (11)0.037 (12)0.051 (11)
O24A0.111 (11)0.092 (8)0.167 (13)0.025 (8)0.019 (9)0.045 (9)
N10.058 (2)0.0481 (19)0.067 (2)0.0039 (16)0.0069 (17)0.0052 (16)
N20.075 (2)0.071 (2)0.063 (2)0.005 (2)0.0003 (19)0.0083 (19)
N0.051 (2)0.057 (2)0.097 (3)0.0004 (17)0.020 (2)0.001 (2)
N1A0.051 (2)0.0505 (18)0.0553 (19)0.0033 (16)0.0048 (15)0.0013 (15)
C10.084 (4)0.069 (3)0.088 (3)0.026 (3)0.015 (3)0.013 (3)
C20.092 (4)0.077 (4)0.100 (4)0.029 (3)0.009 (3)0.001 (3)
C30.082 (4)0.053 (3)0.136 (5)0.014 (3)0.027 (4)0.001 (3)
C40.072 (3)0.055 (3)0.099 (4)0.000 (2)0.023 (3)0.019 (3)
C50.054 (2)0.051 (2)0.072 (3)0.0076 (19)0.016 (2)0.010 (2)
C60.115 (4)0.071 (3)0.077 (3)0.012 (3)0.001 (3)0.020 (3)
C1A0.061 (3)0.070 (3)0.069 (3)0.014 (2)0.002 (2)0.001 (2)
C2A0.076 (3)0.086 (4)0.080 (3)0.032 (3)0.001 (3)0.004 (3)
C3A0.120 (5)0.061 (3)0.085 (4)0.029 (3)0.004 (3)0.001 (3)
C4A0.100 (4)0.054 (3)0.066 (3)0.002 (3)0.000 (3)0.005 (2)
C5A0.074 (3)0.053 (2)0.047 (2)0.001 (2)0.001 (2)0.0026 (18)
C6A0.069 (3)0.068 (3)0.073 (3)0.013 (2)0.017 (2)0.001 (2)
N1B0.065 (2)0.054 (2)0.056 (2)0.0133 (18)0.0019 (17)0.0060 (16)
C1B0.082 (4)0.100 (4)0.060 (3)0.047 (3)0.008 (3)0.001 (3)
C11B0.087 (4)0.142 (6)0.095 (4)0.010 (4)0.037 (3)0.025 (4)
C2B0.125 (6)0.174 (8)0.061 (4)0.084 (6)0.012 (4)0.008 (4)
C3B0.157 (8)0.168 (8)0.093 (5)0.090 (7)0.029 (5)0.067 (6)
C4B0.114 (5)0.085 (4)0.125 (5)0.029 (4)0.048 (4)0.044 (4)
C5B0.077 (3)0.054 (3)0.076 (3)0.020 (2)0.021 (3)0.010 (2)
C6B0.066 (3)0.079 (4)0.113 (4)0.016 (3)0.019 (3)0.022 (3)
Geometric parameters (Å, º) top
Cu—N11.993 (3)C3—C41.367 (7)
Cu—N21.998 (3)C3—H3A0.9300
Cu—N1A2.027 (3)C4—C51.378 (6)
Cu—N1B2.039 (3)C4—H4A0.9300
Cu—N2.195 (3)C5—C61.496 (7)
Cl1—O141.301 (9)C6—H6A0.9700
Cl1—O11A1.321 (10)C6—H6B0.9700
Cl1—O14A1.362 (10)C1A—C2A1.374 (6)
Cl1—O111.381 (7)C1A—H1AA0.9300
Cl1—O13A1.391 (9)C2A—C3A1.364 (8)
Cl1—O121.396 (7)C2A—H2AA0.9300
Cl1—O12A1.414 (11)C3A—C4A1.370 (7)
Cl1—O131.430 (7)C3A—H3AA0.9300
Cl2—O24A1.315 (11)C4A—C5A1.394 (6)
Cl2—O22A1.380 (10)C4A—H4AA0.9300
Cl2—O221.381 (7)C5A—C6A1.499 (6)
Cl2—O211.383 (8)C6A—H6AA0.9700
Cl2—O23A1.396 (12)C6A—H6AB0.9700
Cl2—O231.417 (6)N1B—C5B1.332 (6)
Cl2—O241.448 (6)N1B—C1B1.356 (6)
Cl2—O21A1.461 (13)C1B—C2B1.371 (8)
N1—C51.337 (5)C1B—C11B1.495 (8)
N1—C11.337 (6)C11B—H11A0.9600
N2—C61.440 (6)C11B—H11B0.9600
N2—H2B0.9000C11B—H11C0.9600
N2—H2C0.9000C2B—C3B1.380 (11)
N—C6A1.456 (6)C2B—H2BA0.9300
N—C6B1.462 (6)C3B—C4B1.347 (11)
N—H0A0.9100C3B—H3BA0.9300
N1A—C5A1.336 (5)C4B—C5B1.386 (7)
N1A—C1A1.346 (5)C4B—H4BA0.9300
C1—C21.369 (7)C5B—C6B1.499 (7)
C1—H1A0.9300C6B—H6BA0.9700
C2—C31.361 (7)C6B—H6BB0.9700
C2—H2A0.9300
N1—Cu—N282.37 (15)C3—C4—C5118.9 (5)
N1—Cu—N1A175.43 (13)C3—C4—H4A120.5
N2—Cu—N1A93.06 (14)C5—C4—H4A120.5
N1—Cu—N1B96.05 (14)N1—C5—C4121.8 (4)
N2—Cu—N1B161.97 (16)N1—C5—C6116.0 (4)
N1A—Cu—N1B88.33 (13)C4—C5—C6122.3 (4)
N1—Cu—N101.74 (14)N2—C6—C5112.0 (4)
N2—Cu—N115.93 (16)N2—C6—H6A109.2
N1A—Cu—N80.11 (13)C5—C6—H6A109.2
N1B—Cu—N82.03 (15)N2—C6—H6B109.2
O11A—Cl1—O14A116.7 (11)C5—C6—H6B109.2
O14—Cl1—O11120.5 (8)H6A—C6—H6B107.9
O11A—Cl1—O13A116.5 (10)N1A—C1A—C2A122.2 (5)
O14A—Cl1—O13A109.2 (9)N1A—C1A—H1AA118.9
O14—Cl1—O12114.6 (8)C2A—C1A—H1AA118.9
O11—Cl1—O12103.5 (5)C3A—C2A—C1A118.9 (5)
O11A—Cl1—O12A109.8 (10)C3A—C2A—H2AA120.6
O14A—Cl1—O12A100.6 (10)C1A—C2A—H2AA120.6
O13A—Cl1—O12A101.9 (9)C2A—C3A—C4A119.9 (5)
O12—Cl1—O12A111.9 (9)C2A—C3A—H3AA120.1
O14—Cl1—O13104.2 (7)C4A—C3A—H3AA120.1
O11—Cl1—O13107.2 (7)C3A—C4A—C5A118.9 (5)
O12—Cl1—O13105.9 (7)C3A—C4A—H4AA120.6
O24A—Cl2—O22A116.2 (10)C5A—C4A—H4AA120.6
O24A—Cl2—O21111.1 (12)N1A—C5A—C4A121.2 (4)
O22—Cl2—O21114.2 (7)N1A—C5A—C6A116.7 (4)
O24A—Cl2—O23A113.6 (11)C4A—C5A—C6A122.0 (4)
O22A—Cl2—O23A109.3 (9)N—C6A—C5A111.5 (4)
O22—Cl2—O23112.7 (6)N—C6A—H6AA109.3
O21—Cl2—O23110.6 (7)C5A—C6A—H6AA109.3
O22—Cl2—O24105.0 (5)N—C6A—H6AB109.3
O21—Cl2—O24108.2 (7)C5A—C6A—H6AB109.3
O23—Cl2—O24105.5 (5)H6AA—C6A—H6AB108.0
O24A—Cl2—O21A109.3 (12)C5B—N1B—C1B120.6 (4)
O22A—Cl2—O21A104.7 (11)C5B—N1B—Cu115.1 (3)
O23A—Cl2—O21A102.4 (12)C1B—N1B—Cu123.7 (3)
C5—N1—C1118.4 (4)N1B—C1B—C2B119.9 (6)
C5—N1—Cu115.2 (3)N1B—C1B—C11B117.3 (4)
C1—N1—Cu126.1 (3)C2B—C1B—C11B122.8 (6)
C6—N2—Cu112.6 (3)C1B—C11B—H11A109.5
C6—N2—H2B109.1C1B—C11B—H11B109.5
Cu—N2—H2B109.1H11A—C11B—H11B109.5
C6—N2—H2C109.1C1B—C11B—H11C109.5
Cu—N2—H2C109.1H11A—C11B—H11C109.5
H2B—N2—H2C107.8H11B—C11B—H11C109.5
C6A—N—C6B114.4 (4)C1B—C2B—C3B119.6 (7)
C6A—N—Cu105.1 (3)C1B—C2B—H2BA120.2
C6B—N—Cu106.8 (3)C3B—C2B—H2BA120.2
C6A—N—H0A110.1C4B—C3B—C2B119.5 (7)
C6B—N—H0A110.1C4B—C3B—H3BA120.3
Cu—N—H0A110.1C2B—C3B—H3BA120.3
C5A—N1A—C1A118.9 (4)C3B—C4B—C5B119.9 (7)
C5A—N1A—Cu115.6 (3)C3B—C4B—H4BA120.0
C1A—N1A—Cu125.3 (3)C5B—C4B—H4BA120.0
N1—C1—C2122.3 (5)N1B—C5B—C4B120.2 (6)
N1—C1—H1A118.9N1B—C5B—C6B117.8 (4)
C2—C1—H1A118.9C4B—C5B—C6B121.9 (6)
C3—C2—C1119.0 (5)N—C6B—C5B114.9 (4)
C3—C2—H2A120.5N—C6B—H6BA108.5
C1—C2—H2A120.5C5B—C6B—H6BA108.5
C2—C3—C4119.6 (5)N—C6B—H6BB108.5
C2—C3—H3A120.2C5B—C6B—H6BB108.5
C4—C3—H3A120.2H6BA—C6B—H6BB107.5
N2—Cu—N1—C59.1 (3)C5A—N1A—C1A—C2A0.4 (6)
N1A—Cu—N1—C57.6 (19)Cu—N1A—C1A—C2A174.5 (3)
N1B—Cu—N1—C5171.0 (3)N1A—C1A—C2A—C3A0.1 (7)
N—Cu—N1—C5105.9 (3)C1A—C2A—C3A—C4A0.4 (8)
N2—Cu—N1—C1177.1 (4)C2A—C3A—C4A—C5A0.9 (7)
N1A—Cu—N1—C1179 (36)C1A—N1A—C5A—C4A1.0 (6)
N1B—Cu—N1—C115.1 (4)Cu—N1A—C5A—C4A174.4 (3)
N—Cu—N1—C167.9 (4)C1A—N1A—C5A—C6A177.6 (4)
N1—Cu—N2—C612.6 (4)Cu—N1A—C5A—C6A7.0 (4)
N1A—Cu—N2—C6167.3 (4)C3A—C4A—C5A—N1A1.2 (7)
N1B—Cu—N2—C698.7 (6)C3A—C4A—C5A—C6A177.3 (4)
N—Cu—N2—C686.8 (4)C6B—N—C6A—C5A81.9 (5)
N1—Cu—N—C6A150.8 (3)Cu—N—C6A—C5A34.9 (4)
N2—Cu—N—C6A63.7 (3)N1A—C5A—C6A—N30.2 (5)
N1A—Cu—N—C6A24.9 (3)C4A—C5A—C6A—N151.2 (4)
N1B—Cu—N—C6A114.6 (3)N1—Cu—N1B—C5B105.0 (3)
N1—Cu—N—C6B87.2 (3)N2—Cu—N1B—C5B171.0 (4)
N2—Cu—N—C6B174.4 (3)N1A—Cu—N1B—C5B76.3 (3)
N1A—Cu—N—C6B97.0 (3)N—Cu—N1B—C5B4.0 (3)
N1B—Cu—N—C6B7.3 (3)N1—Cu—N1B—C1B84.0 (4)
N1—Cu—N1A—C5A103.9 (17)N2—Cu—N1B—C1B0.0 (7)
N2—Cu—N1A—C5A105.4 (3)N1A—Cu—N1B—C1B94.7 (3)
N1B—Cu—N1A—C5A92.6 (3)N—Cu—N1B—C1B174.9 (4)
N—Cu—N1A—C5A10.4 (3)C5B—N1B—C1B—C2B0.4 (7)
N1—Cu—N1A—C1A81.0 (18)Cu—N1B—C1B—C2B170.9 (4)
N2—Cu—N1A—C1A79.6 (3)C5B—N1B—C1B—C11B178.6 (4)
N1B—Cu—N1A—C1A82.4 (3)Cu—N1B—C1B—C11B10.9 (6)
N—Cu—N1A—C1A164.6 (3)N1B—C1B—C2B—C3B3.4 (9)
C5—N1—C1—C21.5 (8)C11B—C1B—C2B—C3B178.5 (6)
Cu—N1—C1—C2175.2 (4)C1B—C2B—C3B—C4B2.7 (11)
N1—C1—C2—C31.2 (9)C2B—C3B—C4B—C5B0.9 (11)
C1—C2—C3—C40.8 (9)C1B—N1B—C5B—C4B3.2 (6)
C2—C3—C4—C50.6 (8)Cu—N1B—C5B—C4B168.1 (4)
C1—N1—C5—C41.4 (6)C1B—N1B—C5B—C6B173.7 (4)
Cu—N1—C5—C4175.7 (3)Cu—N1B—C5B—C6B15.0 (5)
C1—N1—C5—C6178.1 (5)C3B—C4B—C5B—N1B3.9 (8)
Cu—N1—C5—C63.7 (5)C3B—C4B—C5B—C6B172.9 (6)
C3—C4—C5—N10.9 (7)C6A—N—C6B—C5B99.2 (5)
C3—C4—C5—C6178.5 (5)Cu—N—C6B—C5B16.7 (5)
Cu—N2—C6—C513.8 (6)N1B—C5B—C6B—N22.1 (6)
N1—C5—C6—N26.8 (7)C4B—C5B—C6B—N161.0 (4)
C4—C5—C6—N2173.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O12A0.902.213.080 (17)161
N2—H2B···O130.902.273.103 (12)154
N2—H2C···O240.902.223.064 (9)157
N2—H2C···O22A0.902.273.158 (19)169
N2—H2C···O210.902.643.374 (17)139
N—H0A···O12i0.912.443.301 (10)158
N—H0A···O11Ai0.912.403.291 (19)165
C3—H3A···O23ii0.932.543.456 (10)169
C4—H4A···O12iii0.932.453.374 (10)172
C1A—H1AA···O14A0.932.573.438 (18)156
C2A—H2AA···O22iv0.932.563.475 (13)167
C2A—H2AA···O22Aiv0.932.463.199 (14)136
C6A—H6AB···O22v0.972.353.294 (10)164
C11B—H11B···O14A0.962.323.180 (12)148
C6B—H6BA···O22v0.972.533.433 (10)154
C6B—H6BA···O23Av0.972.473.433 (17)172
C6B—H6BB···O23vi0.972.543.375 (10)144
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z; (iii) x+1, y+1, z; (iv) x+1, y+2, z; (v) x+2, y+2, z; (vi) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C6H8N2)(C13H15N3)](ClO4)2
Mr583.86
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.3178 (10), 13.9691 (19), 19.223 (3)
β (°) 99.931 (11)
V3)2464.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.45 × 0.22 × 0.17
Data collection
DiffractometerBruker P4S
Absorption correctionEmpirical (using intensity measurements)
ψ-scan (North et al., 1968)
Tmin, Tmax0.444, 0.505
No. of measured, independent and
observed [I > 2σ(I)] reflections
5832, 5494, 3410
Rint0.023
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.145, 1.02
No. of reflections5494
No. of parameters394
No. of restraints118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.25

Computer programs: XSCANS (Bruker, 1997), SHELXTL (Bruker, 2000), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O12A0.902.213.080 (17)161
N2—H2B···O130.902.273.103 (12)154
N2—H2C···O240.902.223.064 (9)157
N2—H2C···O22A0.902.273.158 (19)169
N2—H2C···O210.902.643.374 (17)139
N—H0A···O12i0.912.443.301 (10)158
N—H0A···O11Ai0.912.403.291 (19)165
C3—H3A···O23ii0.932.543.456 (10)169
C4—H4A···O12iii0.932.453.374 (10)172
C1A—H1AA···O14A0.932.573.438 (18)156
C2A—H2AA···O22iv0.932.563.475 (13)167
C2A—H2AA···O22Aiv0.932.463.199 (14)136
C6A—H6AB···O22v0.972.353.294 (10)164
C11B—H11B···O14A0.962.323.180 (12)148
C6B—H6BA···O22v0.972.533.433 (10)154
C6B—H6BA···O23Av0.972.473.433 (17)172
C6B—H6BB···O23vi0.972.543.375 (10)144
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z; (iii) x+1, y+1, z; (iv) x+1, y+2, z; (v) x+2, y+2, z; (vi) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

RJB acknowledges the Laboratory for the Structure of Matter at the Naval Research Laboratory, Washington DC, USA, for access to their diffractometers.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBruker (1997). XSCANS. Version 2.20. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2000). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCho, J., Furutachi, H., Fujinami, S., Tosha, T., Ohtsu, H., Ikeda, O., Suzuki, A., Nomura, M., Uruga, T., Tanida, H., Kawai, T., Tanaka, K., Kitagawa, T. & Suzuki, M. (2006). Inorg. Chem. 45, 2873–2885.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGultneh, Y., Yisgedu, T. B., Tesema, Y. T. & Butcher, R. J. (2003). Inorg. Chem. 42, 1857–1867.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHetterscheid, D. G. H., Smits, J. M. M. & Bruin, B. (2004). Organometallics, 23, 4236–4246.  Web of Science CSD CrossRef CAS Google Scholar
First citationMizuno, M., Hayashi, H., Fujinami, S., Furutachi, H., Nagatomo, S., Otakes, S., Uozumi, K., Suzuki, M. & Kitagawa, T. (2003). Inorg. Chem. 42, 8534–8544.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationOhtsu, H., Itoh, S., Nagamtomo, S., Kitagawa, T., Ogo, S., Watanabe, Y. & Fukuzumi, S. (2001). Inorg. Chem. 40, 3200–3207.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOki, A. R., Glerup, J. & Hodgson, D. J. (1990). Inorg. Chem. 29, 2435–2441.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1990). Acta Cryst. A46, 467–473.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds