organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2R*,3R*,4aS*,6aR*,11aS*,11bS*)-Methyl 2-acet­­oxy-11b-hydr­­oxy-3,7-di­methyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b-dodeca­hydro­phenanthro[3,2-b]furan-3-carboxyl­ate

aSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and bDepartment of Post-Graduate Studies and Research in Botany, Gulbarga University, Gulbarga 585 106, Karnataka, India
*Correspondence e-mail: ssctng@sscu.iisc.ernet.in

(Received 13 November 2007; accepted 21 November 2007; online 6 December 2007)

In the title compound, C22H30O6, the conformation of the mol­ecule is dictated by an intra­molecular C—H⋯O contact. The crystal structure is stabilized via inter­molecular C—H⋯O, O—H⋯O and C—H⋯π contacts.

Related literature

For related literature see: Ruggiero et al. (1997[Ruggiero, S. G., Rodrigues, B. L., Fernandes, N. G., Stefani, G. M. & Veloso, D. P. (1997). Acta Cryst. C53, 982-984.]); Chopra et al. (1992[Chopra, R. N., Chopra, I. C. & Verma, B. S. (1992). Supplement to Glossary of Indian Medicinal Plants, p. 19. New Delhi: CSIR.]); Pullaih (2006[Pullaih, T. (2006). Encyclopedia of World Medicinal Plants, Vol. 1. New Delhi: Regency Publications.]); Kirtikar & Basu (1993[Kirtikar, K. R. & Basu, B. D. (1993). Indian Medicinal Plants, Vol. 2, pp. 849-850. New Delhi: Sri Satguru Publication.]); Parrota (2000[Parrota, J. A. (2000). Healing Plants of Peninsular India, p. 328. Wallingford: CABI Publishing.]); Boeyens (1978[Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C22H30O6

  • Mr = 390.46

  • Orthorhombic, P 21 21 21

  • a = 12.2339 (14) Å

  • b = 12.8744 (15) Å

  • c = 12.8783 (15) Å

  • V = 2028.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.25 × 0.21 × 0.14 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.918, Tmax = 0.987

  • 15340 measured reflections

  • 2160 independent reflections

  • 1875 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.094

  • S = 1.08

  • 2160 reflections

  • 258 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the furan ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O6i 0.82 2.11 2.929 (3) 173
C11—H11B⋯O5 0.97 2.47 3.092 (3) 122
C15—H15B⋯O4ii 0.97 2.56 3.460 (3) 154
C22—H22ACgiii 0.96 2.70 3.54 (3) 147
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART (Version 5.628) and SAINT (Version 6.45a). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 2004[Bruker (2004). SMART (Version 5.628) and SAINT (Version 6.45a). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and CAMERON (Watkin et al., 1993[Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The title compound was isolated from the mature seed kernels of Caesalpinia decapetala (Roth.) Alston., which belongs to the family Fabaceae (Caesalpinioideae), a thorny woody climbing shrub, native to tropical and subtropical Asia and distributed in India, China, Sri Lanka, Malaysia, Korea, Vietnam and Japan(Parrota, 2000). In India, the plant is popularly known as Mysore thorn and locally as "Kurudu gajjuga". Its leaves and seeds are known to have anthelmintic, antipyretic, astringent, purgative, emmenagogue, febrifuge, and analgesic properties, and are thus used in the indegenous system of medicine for the treatment of dysentery and malarial fever (Kirtikar & Basu, 1993; Pullaih, 2006). The stem bark of the plant is widely used in the tanning industry and as a laxative (Chopra et al., 1992).

The title compound is a tetracyclic molecule, consisting of a furan ring fused to a syn,anti,anti-perhydrophenanthrene system. The molecular conformation of the compound(I) leads to the formation of a C—H···O intra molecular hydrogen bond. The puckering parameters (Cremer & Pople,1975) for the cyclohexane ring A [q2 = 0.0612 (3) Å, q3 = 0.540 (3) Å, φ2 = 96 (2)°, QT = 0.543 (3) Å and θ2 = 6.46 (2)°] describe a distorted chair conformation.The total puckering amplitude QT is only slightly smaller than that for ideal chair (0.63 Å). φ2 is close to 90°, which corresponds to a twist-boat conformation. Because of the 1,3 diaxial interactions, the cyclohexane ring A is distorted from an ideal chair conformation. This is most evident in the twisting of the six-membered ring at C17, which allows the C12—C17—C16 angle to increse to 113.01°. As evident from its puckering parameters [q2 = 0.023 (3) Å, q3 = 0.568 (2) Å, φ2 = -82.4 (3)°, QT = 0.568 (2) Å and θ2 = 2.34 (3)°], the conformation of the cyclohexane ring B can also be best described as chair, distorted in the same manner as ring A due to 1,3 diaxial interaction. On account of its fusion with the furan ring, ring C has the expected half chair conformation of a cyclohexene ring [q2 = 0.328 (3) Å, q3 = 0.269 (3) Å, φ2 = -124.68 (1)°, QT = 0.424 (2) Å and θ2 = 50.63 (3)°].(Boeyens, 1978)

The crystal structure of (I)is generated by intermolecular O—H···O and C—H···O contacts forming a zig zag pattern parallel to the b axis. An intermolecular C—H···π interaction between H22A and the furan ring further stabilizes the packing.

Related literature top

For related literature see: Ruggiero et al. (1997); Chopra et al. (1992); Pullaih (2006); Kirtikar & Basu (1993); Parrota (2000); Boeyens (1978); Cremer & Pople (1975).

Experimental top

Mature seed kernels of Caesalpinia decapetala were collected from Bhalki, Bidar District, Karnataka. A specimen is deposited in the herbarium Department of Botany, Gulbarga University, Gulbarga, Karnataka, India. with voucher specimen No.HGUG-209. Seeds were finely ground (particle size 2 mm) and extracted with soxhlet extractor with n-hexane for 20 h and maintaining the Temperature at 333 K Oil recovered was weighed (29/100 g ms) and stored in air tight container for further analysis. The oil obtained was taken in glass test tube covered with aluminium foil and kept in refrigerator, after 15 days of storage granular particles were setteed at the bottom of the test tube. These particles were separated and washed with n-hexane and then it was repeatedly washed with petroleum ether and dried at the room temperature, these fine powdered particles were re-dissolved in double distilled alcohol and kept for 4–8 days for crystallization. After 24 h formation of pointed colorless crystals were formed at the bottom of the container.

Refinement top

All hydrogen atoms were initially located in a difference Fourier map. The methine (CH) and methylene (CH2) H atoms were then placed in geometrically idealized positions and allowed to ride on their parent atoms with C—H distances in the range 0.97–0.98 Å and Uiso(H) = 1.2Ueq(C). The CH3 and OH hydrogen atoms were constrained to an ideal geometry with C—H distances as 0.96 Å and Uiso(H) = 1.5Ueq(C), and O—H distances fixed at 0.82 Å and Uiso(H) = 1.5Ueq(O). During refinement, each methyl and hydroxyl group was however allowed to rotate freely about its C—C and C—O bond respectively.

The absolute configuration could not be determined from the diffraction data, and the configuration shown is arbitary.

Structure description top

The title compound was isolated from the mature seed kernels of Caesalpinia decapetala (Roth.) Alston., which belongs to the family Fabaceae (Caesalpinioideae), a thorny woody climbing shrub, native to tropical and subtropical Asia and distributed in India, China, Sri Lanka, Malaysia, Korea, Vietnam and Japan(Parrota, 2000). In India, the plant is popularly known as Mysore thorn and locally as "Kurudu gajjuga". Its leaves and seeds are known to have anthelmintic, antipyretic, astringent, purgative, emmenagogue, febrifuge, and analgesic properties, and are thus used in the indegenous system of medicine for the treatment of dysentery and malarial fever (Kirtikar & Basu, 1993; Pullaih, 2006). The stem bark of the plant is widely used in the tanning industry and as a laxative (Chopra et al., 1992).

The title compound is a tetracyclic molecule, consisting of a furan ring fused to a syn,anti,anti-perhydrophenanthrene system. The molecular conformation of the compound(I) leads to the formation of a C—H···O intra molecular hydrogen bond. The puckering parameters (Cremer & Pople,1975) for the cyclohexane ring A [q2 = 0.0612 (3) Å, q3 = 0.540 (3) Å, φ2 = 96 (2)°, QT = 0.543 (3) Å and θ2 = 6.46 (2)°] describe a distorted chair conformation.The total puckering amplitude QT is only slightly smaller than that for ideal chair (0.63 Å). φ2 is close to 90°, which corresponds to a twist-boat conformation. Because of the 1,3 diaxial interactions, the cyclohexane ring A is distorted from an ideal chair conformation. This is most evident in the twisting of the six-membered ring at C17, which allows the C12—C17—C16 angle to increse to 113.01°. As evident from its puckering parameters [q2 = 0.023 (3) Å, q3 = 0.568 (2) Å, φ2 = -82.4 (3)°, QT = 0.568 (2) Å and θ2 = 2.34 (3)°], the conformation of the cyclohexane ring B can also be best described as chair, distorted in the same manner as ring A due to 1,3 diaxial interaction. On account of its fusion with the furan ring, ring C has the expected half chair conformation of a cyclohexene ring [q2 = 0.328 (3) Å, q3 = 0.269 (3) Å, φ2 = -124.68 (1)°, QT = 0.424 (2) Å and θ2 = 50.63 (3)°].(Boeyens, 1978)

The crystal structure of (I)is generated by intermolecular O—H···O and C—H···O contacts forming a zig zag pattern parallel to the b axis. An intermolecular C—H···π interaction between H22A and the furan ring further stabilizes the packing.

For related literature see: Ruggiero et al. (1997); Chopra et al. (1992); Pullaih (2006); Kirtikar & Basu (1993); Parrota (2000); Boeyens (1978); Cremer & Pople (1975).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SMART (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. ORTEP diagram with 50% probability ellipsoids. The dotted lines show the intramolecular C—H···O contact.
[Figure 2] Fig. 2. Packing diagram of (I). The dotted lines indicate intermolecular contacts.
(2R,3R,4aS,6aR,11aS,11bS)-Methyl 2-acetoxy-11b-hydroxy-3,7-dimethyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b- dodecahydrophenanthro[3,2-b]furan-3-carboxylate top
Crystal data top
C22H30O6F(000) = 840
Mr = 390.46Dx = 1.279 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 729 reflections
a = 12.2339 (14) Åθ = 2.2–22.9°
b = 12.8744 (15) ŵ = 0.09 mm1
c = 12.8783 (15) ÅT = 293 K
V = 2028.4 (4) Å3Block, colorless
Z = 40.25 × 0.21 × 0.14 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2160 independent reflections
Radiation source: fine-focus sealed tube1875 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
φ and ω scansθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1413
Tmin = 0.918, Tmax = 0.987k = 1515
15340 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0464P)2 + 0.3619P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2160 reflectionsΔρmax = 0.22 e Å3
258 parametersΔρmin = 0.14 e Å3
0 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.9 (15)
Crystal data top
C22H30O6V = 2028.4 (4) Å3
Mr = 390.46Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 12.2339 (14) ŵ = 0.09 mm1
b = 12.8744 (15) ÅT = 293 K
c = 12.8783 (15) Å0.25 × 0.21 × 0.14 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2160 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1875 reflections with I > 2σ(I)
Tmin = 0.918, Tmax = 0.987Rint = 0.037
15340 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.094Δρmax = 0.22 e Å3
S = 1.08Δρmin = 0.14 e Å3
2160 reflectionsAbsolute structure: Flack (1983)
258 parametersAbsolute structure parameter: 0.9 (15)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C90.3474 (3)0.7674 (2)0.3974 (3)0.0652 (10)
H9A0.41080.81050.40590.098*
H9B0.29290.78690.44740.098*
H9C0.31860.77610.32870.098*
C220.0003 (3)0.2087 (3)0.5937 (3)0.0731 (11)
H22A0.04290.25430.63660.110*
H22B0.07570.22600.60010.110*
H22C0.01160.13820.61540.110*
C190.1573 (3)0.5306 (3)0.0682 (2)0.0616 (9)
H19A0.10780.50620.01580.092*
H19B0.17650.60150.05430.092*
H19C0.22200.48850.06790.092*
C200.1288 (2)0.4491 (2)0.3766 (2)0.0503 (7)
H20A0.14610.52160.37110.075*
H20B0.11140.43260.44740.075*
H20C0.19050.40860.35470.075*
C210.0350 (3)0.2205 (2)0.4829 (2)0.0517 (8)
O60.1078 (2)0.1728 (2)0.4426 (2)0.0828 (8)
O50.02457 (17)0.29224 (15)0.43436 (15)0.0500 (5)
O20.14299 (15)0.46942 (13)0.15370 (12)0.0366 (4)
H20.13430.52870.13190.055*
C120.0648 (2)0.50420 (18)0.32357 (18)0.0301 (5)
H120.03990.57050.29450.036*
C60.2613 (2)0.5535 (2)0.27923 (19)0.0337 (6)
H60.23440.61910.25050.040*
O40.10551 (16)0.52378 (14)0.16832 (15)0.0461 (5)
O10.56112 (16)0.55596 (18)0.21108 (18)0.0565 (6)
C130.1683 (2)0.47287 (19)0.26309 (18)0.0297 (5)
C110.0915 (2)0.5238 (2)0.43841 (19)0.0369 (6)
H11A0.02620.54730.47410.044*
H11B0.11510.45940.47050.044*
C170.0302 (2)0.4242 (2)0.3072 (2)0.0362 (6)
C140.2016 (2)0.3619 (2)0.2903 (2)0.0375 (6)
H14A0.26600.34310.25070.045*
H14B0.22020.35840.36350.045*
C70.2860 (2)0.5744 (2)0.39496 (19)0.0324 (6)
H70.30960.50830.42530.039*
C100.1810 (2)0.6052 (2)0.4498 (2)0.0356 (6)
H10A0.15520.67060.42160.043*
H10B0.19620.61560.52300.043*
O30.08866 (18)0.35433 (16)0.14050 (16)0.0563 (6)
C80.3792 (2)0.6534 (2)0.4140 (2)0.0407 (7)
H80.40270.64590.48630.049*
C160.0060 (2)0.3107 (2)0.3240 (2)0.0413 (7)
H160.05200.26420.29960.050*
C150.1106 (2)0.2847 (2)0.2674 (2)0.0437 (7)
H15A0.09660.28390.19330.052*
H15B0.13440.21570.28760.052*
C50.3634 (2)0.5242 (3)0.2148 (2)0.0548 (8)
H5A0.37070.44920.21270.066*
H5B0.35440.54890.14420.066*
C30.4741 (2)0.6255 (2)0.3464 (2)0.0404 (6)
C180.0742 (2)0.4278 (2)0.1953 (2)0.0384 (6)
C40.4630 (2)0.5699 (2)0.2598 (2)0.0428 (7)
C10.6359 (3)0.6066 (3)0.2721 (3)0.0648 (10)
H10.71040.60990.25820.078*
C20.5880 (3)0.6503 (3)0.3537 (3)0.0569 (8)
H2A0.62180.68920.40540.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C90.056 (2)0.0416 (17)0.098 (3)0.0105 (15)0.007 (2)0.0149 (17)
C220.106 (3)0.061 (2)0.052 (2)0.014 (2)0.017 (2)0.0037 (17)
C190.072 (2)0.0600 (19)0.0530 (19)0.0043 (18)0.0258 (18)0.0001 (16)
C200.0325 (15)0.0645 (19)0.0538 (17)0.0025 (14)0.0042 (14)0.0057 (16)
C210.064 (2)0.0372 (15)0.0538 (18)0.0114 (16)0.0164 (17)0.0016 (13)
O60.104 (2)0.0746 (16)0.0696 (16)0.0517 (16)0.0108 (16)0.0020 (13)
O50.0554 (12)0.0465 (11)0.0480 (12)0.0137 (10)0.0006 (11)0.0090 (9)
O20.0452 (11)0.0382 (9)0.0266 (9)0.0011 (9)0.0021 (8)0.0024 (7)
C120.0298 (13)0.0295 (12)0.0312 (12)0.0017 (10)0.0000 (10)0.0010 (10)
C60.0348 (13)0.0363 (13)0.0301 (13)0.0047 (11)0.0004 (11)0.0009 (11)
O40.0492 (11)0.0427 (10)0.0463 (11)0.0064 (9)0.0158 (10)0.0059 (9)
O10.0363 (11)0.0690 (14)0.0642 (13)0.0013 (10)0.0135 (10)0.0010 (12)
C130.0301 (12)0.0341 (12)0.0249 (12)0.0001 (11)0.0029 (10)0.0009 (10)
C110.0349 (14)0.0439 (14)0.0319 (13)0.0005 (12)0.0018 (12)0.0028 (12)
C170.0298 (13)0.0397 (14)0.0390 (14)0.0019 (12)0.0009 (12)0.0026 (12)
C140.0338 (14)0.0401 (14)0.0385 (15)0.0058 (12)0.0037 (12)0.0019 (12)
C70.0333 (13)0.0348 (13)0.0291 (13)0.0003 (11)0.0022 (11)0.0024 (11)
C100.0442 (15)0.0370 (13)0.0257 (13)0.0005 (12)0.0026 (12)0.0029 (11)
O30.0641 (14)0.0463 (11)0.0586 (13)0.0059 (11)0.0183 (12)0.0121 (10)
C80.0375 (15)0.0475 (16)0.0370 (15)0.0064 (13)0.0054 (13)0.0027 (12)
C160.0400 (15)0.0395 (14)0.0445 (16)0.0069 (12)0.0020 (13)0.0027 (12)
C150.0496 (16)0.0302 (13)0.0512 (17)0.0026 (13)0.0000 (15)0.0032 (12)
C50.0432 (17)0.077 (2)0.0444 (16)0.0173 (16)0.0143 (14)0.0112 (16)
C30.0329 (14)0.0425 (14)0.0458 (17)0.0036 (12)0.0079 (13)0.0083 (13)
C180.0284 (13)0.0395 (14)0.0473 (16)0.0052 (11)0.0039 (12)0.0035 (13)
C40.0335 (15)0.0516 (16)0.0434 (16)0.0037 (13)0.0065 (13)0.0046 (13)
C10.0292 (16)0.083 (2)0.082 (3)0.0071 (16)0.0034 (18)0.012 (2)
C20.0401 (17)0.069 (2)0.061 (2)0.0079 (16)0.0107 (17)0.0060 (17)
Geometric parameters (Å, º) top
C9—C81.532 (4)O1—C11.370 (4)
C9—H9A0.9600C13—C141.526 (3)
C9—H9B0.9600C11—C101.523 (4)
C9—H9C0.9600C11—H11A0.9700
C22—C211.496 (5)C11—H11B0.9700
C22—H22A0.9600C17—C181.539 (4)
C22—H22B0.9600C17—C161.543 (4)
C22—H22C0.9600C14—C151.521 (4)
C19—O41.439 (3)C14—H14A0.9700
C19—H19A0.9600C14—H14B0.9700
C19—H19B0.9600C7—C101.519 (4)
C19—H19C0.9600C7—C81.547 (3)
C20—C171.536 (4)C7—H70.9800
C20—H20A0.9600C10—H10A0.9700
C20—H20B0.9600C10—H10B0.9700
C20—H20C0.9600O3—C181.193 (3)
C21—O61.200 (4)C8—C31.495 (4)
C21—O51.333 (3)C8—H80.9800
O5—C161.459 (3)C16—C151.509 (4)
O2—C131.443 (3)C16—H160.9800
O2—H20.8200C15—H15A0.9700
C12—C111.535 (3)C15—H15B0.9700
C12—C131.541 (3)C5—C41.472 (4)
C12—C171.567 (3)C5—H5A0.9700
C12—H120.9800C5—H5B0.9700
C6—C71.544 (3)C3—C41.332 (4)
C6—C51.545 (4)C3—C21.433 (4)
C6—C131.553 (3)C1—C21.328 (5)
C6—H60.9800C1—H10.9300
O4—C181.340 (3)C2—H2A0.9300
O1—C41.367 (3)
C8—C9—H9A109.5C18—C17—C12111.5 (2)
C8—C9—H9B109.5C16—C17—C12113.0 (2)
H9A—C9—H9B109.5C15—C14—C13111.9 (2)
C8—C9—H9C109.5C15—C14—H14A109.2
H9A—C9—H9C109.5C13—C14—H14A109.2
H9B—C9—H9C109.5C15—C14—H14B109.2
C21—C22—H22A109.5C13—C14—H14B109.2
C21—C22—H22B109.5H14A—C14—H14B107.9
H22A—C22—H22B109.5C10—C7—C6109.2 (2)
C21—C22—H22C109.5C10—C7—C8112.2 (2)
H22A—C22—H22C109.5C6—C7—C8114.3 (2)
H22B—C22—H22C109.5C10—C7—H7106.9
O4—C19—H19A109.5C6—C7—H7106.9
O4—C19—H19B109.5C8—C7—H7106.9
H19A—C19—H19B109.5C7—C10—C11112.6 (2)
O4—C19—H19C109.5C7—C10—H10A109.1
H19A—C19—H19C109.5C11—C10—H10A109.1
H19B—C19—H19C109.5C7—C10—H10B109.1
C17—C20—H20A109.5C11—C10—H10B109.1
C17—C20—H20B109.5H10A—C10—H10B107.8
H20A—C20—H20B109.5C3—C8—C9110.3 (2)
C17—C20—H20C109.5C3—C8—C7108.8 (2)
H20A—C20—H20C109.5C9—C8—C7114.9 (2)
H20B—C20—H20C109.5C3—C8—H8107.5
O6—C21—O5123.9 (3)C9—C8—H8107.5
O6—C21—C22124.9 (3)C7—C8—H8107.5
O5—C21—C22111.3 (3)O5—C16—C15107.6 (2)
C21—O5—C16119.0 (2)O5—C16—C17109.6 (2)
C13—O2—H2109.5C15—C16—C17112.7 (2)
C11—C12—C13110.8 (2)O5—C16—H16109.0
C11—C12—C17113.3 (2)C15—C16—H16109.0
C13—C12—C17111.69 (19)C17—C16—H16109.0
C11—C12—H12106.9C16—C15—C14112.5 (2)
C13—C12—H12106.9C16—C15—H15A109.1
C17—C12—H12106.9C14—C15—H15A109.1
C7—C6—C5113.7 (2)C16—C15—H15B109.1
C7—C6—C13112.88 (19)C14—C15—H15B109.1
C5—C6—C13110.9 (2)H15A—C15—H15B107.8
C7—C6—H6106.2C4—C5—C6111.1 (2)
C5—C6—H6106.2C4—C5—H5A109.4
C13—C6—H6106.2C6—C5—H5A109.4
C18—O4—C19114.5 (2)C4—C5—H5B109.4
C4—O1—C1105.1 (2)C6—C5—H5B109.4
O2—C13—C14104.64 (19)H5A—C5—H5B108.0
O2—C13—C12108.96 (19)C4—C3—C2105.9 (3)
C14—C13—C12110.4 (2)C4—C3—C8122.5 (2)
O2—C13—C6107.97 (18)C2—C3—C8131.6 (3)
C14—C13—C6113.5 (2)O3—C18—O4122.4 (3)
C12—C13—C6111.06 (19)O3—C18—C17125.6 (3)
C10—C11—C12111.1 (2)O4—C18—C17111.7 (2)
C10—C11—H11A109.4C3—C4—O1111.4 (2)
C12—C11—H11A109.4C3—C4—C5129.0 (3)
C10—C11—H11B109.4O1—C4—C5119.6 (2)
C12—C11—H11B109.4C2—C1—O1111.2 (3)
H11A—C11—H11B108.0C2—C1—H1124.4
C20—C17—C18105.3 (2)O1—C1—H1124.4
C20—C17—C16110.0 (2)C1—C2—C3106.4 (3)
C18—C17—C16105.0 (2)C1—C2—H2A126.8
C20—C17—C12111.5 (2)C3—C2—H2A126.8
O6—C21—O5—C163.9 (4)C21—O5—C16—C17119.3 (3)
C22—C21—O5—C16176.9 (3)C20—C17—C16—O553.6 (3)
C11—C12—C13—O2172.05 (19)C18—C17—C16—O5166.4 (2)
C17—C12—C13—O260.6 (3)C12—C17—C16—O571.8 (3)
C11—C12—C13—C1473.6 (2)C20—C17—C16—C15173.3 (2)
C17—C12—C13—C1453.8 (3)C18—C17—C16—C1573.8 (3)
C11—C12—C13—C653.2 (3)C12—C17—C16—C1548.0 (3)
C17—C12—C13—C6179.41 (19)O5—C16—C15—C1469.3 (3)
C7—C6—C13—O2172.8 (2)C17—C16—C15—C1451.6 (3)
C5—C6—C13—O258.2 (3)C13—C14—C15—C1657.2 (3)
C7—C6—C13—C1471.6 (3)C7—C6—C5—C427.6 (4)
C5—C6—C13—C1457.3 (3)C13—C6—C5—C4156.2 (2)
C7—C6—C13—C1253.4 (3)C9—C8—C3—C4103.6 (3)
C5—C6—C13—C12177.6 (2)C7—C8—C3—C423.2 (4)
C13—C12—C11—C1055.8 (3)C9—C8—C3—C274.5 (4)
C17—C12—C11—C10177.7 (2)C7—C8—C3—C2158.7 (3)
C11—C12—C17—C2047.8 (3)C19—O4—C18—O30.2 (4)
C13—C12—C17—C20173.8 (2)C19—O4—C18—C17174.3 (2)
C11—C12—C17—C18165.3 (2)C20—C17—C18—O3107.8 (3)
C13—C12—C17—C1868.8 (3)C16—C17—C18—O38.3 (4)
C11—C12—C17—C1676.7 (3)C12—C17—C18—O3131.1 (3)
C13—C12—C17—C1649.3 (3)C20—C17—C18—O466.1 (3)
O2—C13—C14—C1559.1 (3)C16—C17—C18—O4177.8 (2)
C12—C13—C14—C1557.9 (3)C12—C17—C18—O455.1 (3)
C6—C13—C14—C15176.6 (2)C2—C3—C4—O10.6 (3)
C5—C6—C7—C10178.4 (2)C8—C3—C4—O1179.1 (2)
C13—C6—C7—C1054.1 (3)C2—C3—C4—C5180.0 (3)
C5—C6—C7—C851.8 (3)C8—C3—C4—C51.5 (5)
C13—C6—C7—C8179.3 (2)C1—O1—C4—C30.1 (3)
C6—C7—C10—C1156.6 (3)C1—O1—C4—C5179.6 (3)
C8—C7—C10—C11175.6 (2)C6—C5—C4—C33.3 (5)
C12—C11—C10—C758.6 (3)C6—C5—C4—O1177.4 (3)
C10—C7—C8—C3172.5 (2)C4—O1—C1—C20.4 (4)
C6—C7—C8—C347.4 (3)O1—C1—C2—C30.7 (4)
C10—C7—C8—C948.3 (3)C4—C3—C2—C10.8 (4)
C6—C7—C8—C976.7 (3)C8—C3—C2—C1179.1 (3)
C21—O5—C16—C15117.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O6i0.822.112.929 (3)173
C11—H11B···O50.972.473.092 (3)122
C15—H15B···O4ii0.972.563.460 (3)154
C22—H22A···Cgiii0.962.703.54 (3)147
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x+1/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H30O6
Mr390.46
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)12.2339 (14), 12.8744 (15), 12.8783 (15)
V3)2028.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.21 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.918, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
15340, 2160, 1875
Rint0.037
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.094, 1.08
No. of reflections2160
No. of parameters258
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.14
Absolute structureFlack (1983)
Absolute structure parameter0.9 (15)

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1999) and CAMERON (Watkin et al., 1993), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O6i0.82002.11002.929 (3)173
C11—H11B···O50.97002.47003.092 (3)122
C15—H15B···O4ii0.97002.56003.460 (3)154
C22—H22A···Cgiii0.96002.7003.54 (3)147
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x+1/2, y+1, z+1/2.
 

Acknowledgements

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the IRHPA–DST program at IISc. We thank Mr Saikat Sen for helpful discussions.

References

First citationBoeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.  CrossRef Web of Science Google Scholar
First citationBruker (2004). SMART (Version 5.628) and SAINT (Version 6.45a). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChopra, R. N., Chopra, I. C. & Verma, B. S. (1992). Supplement to Glossary of Indian Medicinal Plants, p. 19. New Delhi: CSIR.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKirtikar, K. R. & Basu, B. D. (1993). Indian Medicinal Plants, Vol. 2, pp. 849–850. New Delhi: Sri Satguru Publication.  Google Scholar
First citationParrota, J. A. (2000). Healing Plants of Peninsular India, p. 328. Wallingford: CABI Publishing.  Google Scholar
First citationPullaih, T. (2006). Encyclopedia of World Medicinal Plants, Vol. 1. New Delhi: Regency Publications.  Google Scholar
First citationRuggiero, S. G., Rodrigues, B. L., Fernandes, N. G., Stefani, G. M. & Veloso, D. P. (1997). Acta Cryst. C53, 982–984.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds