Download citation
Download citation
link to html
In the title mol­ecule, C14H19ClF3NO, an intra­molecular O—H...N hydrogen bond influences the mol­ecular conformation; the two benzene rings make a dihedral angle of 47.7 (3)°. The crystal packing exhibits no classical inter­molecular hydrogen bonds. One CF~3~ group is disordered over two positions; the site occupancy factors are 0.7 and 0.3.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807057017/cv2348sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807057017/cv2348Isup2.hkl
Contains datablock I

CCDC reference: 672918

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.003 Å
  • Disorder in main residue
  • R factor = 0.030
  • wR factor = 0.070
  • Data-to-parameter ratio = 11.0

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for C13'
Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.98 PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C13 PLAT301_ALERT_3_C Main Residue Disorder ......................... 17.00 Perc.
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 69
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Schiff base ligands have significant importance in chemistry, especially in the development of Schiff base complexes (Johnson et al., 1996; Alizadeh et al., 1999; Wang & Zheng, 2007). Schiff bases that have solvent-dependent UV/vis spectra (solvatochromicity) can be suitable NLO (non-linear optically active) materials (Alemi & Shaabani, 2000). They are also useful in the asymmetric oxidation of methyl phenyl sulfide and are enantioselective (Kim & Shin, 1999). In this paper, we report the synthesis and crystal structure of the title compound, (I).

The molecular structure of the title compound is ramification of Schiff base (Fig. 1) The C7—N1 bond length is 1.283 (2) Å, indicative of a CN double bond. The C—Cl, C—O and C—C distances are unremarkable. The dihedral angle between the two benzene rings is 47.7 (3) Å.

Related literature top

For related literature, see: Alemi & Shaabani (2000); Alizadeh et al. (1999); Johnson et al. (1996); Kim & Shin (1999); Wang & Zheng (2007).

Experimental top

Under nitrogen, a mixture of 2-chloro-5-(trifluoromethyl)aniline (1.95 g, 10 mmol), Na2SO4 (3.0 g) and 2-hydroxybenzaldehyde (1.22 g, 10 mmol) in absolute ethanol (20 ml) was refluxed for about 12 h to yield a yellow precipitate. The product was collected by vacuum filtration and washed with ethanol. The crude solid was redissolved in CH2Cl2 (100 ml) and washed with water (2 x 15 ml) and brine (8 ml). After drying over Na2SO4, the solvent was removed under vacuum, and a yellow solid was isolated in 90% yield (2.70 g). Colourless single crystals of the Schiff base, (I), suitable for X-ray analysis were grown from CH2Cl2 and absolute ethanol (4:1) by slow evaporation of the solvents at room temperature over a period of about three weeks.

Refinement top

All H atoms were placed in calculated positions [Csp2—H = 0.93 Å, O—H = 0.82 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C, O). One trifluoromethyl group (at C13) was treated as disordered between two orientations with the refined occupancies of 0.70 (3) and 0.30 (3), respectively. A number of bond restraints has been applied for this group in the refinement.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2004); software used to prepare material for publication: SHELXTL (Bruker, 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atomic numbering scheme, disordered CF3 group and 30% probability displacement ellipsoids.
2-{[2-Chloro-5-(trifluoromethyl)phenyl]iminomethyl]phenol top
Crystal data top
C14H9ClF3NOF(000) = 608
Mr = 299.67Dx = 1.518 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2303 reflections
a = 12.979 (6) Åθ = 3.0–25.2°
b = 7.418 (3) ŵ = 0.32 mm1
c = 13.881 (6) ÅT = 298 K
β = 101.064 (7)°Block, colourless
V = 1311.6 (10) Å30.28 × 0.22 × 0.15 mm
Z = 4
Data collection top
Bruker APEX-II area-detector
diffractometer
2303 independent reflections
Radiation source: fine-focus sealed tube1411 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scanθmax = 25.2°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1514
Tmin = 0.916, Tmax = 0.954k = 88
7694 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0314P)2]
where P = (Fo2 + 2Fc2)/3
2303 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.12 e Å3
69 restraintsΔρmin = 0.16 e Å3
Crystal data top
C14H9ClF3NOV = 1311.6 (10) Å3
Mr = 299.67Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.979 (6) ŵ = 0.32 mm1
b = 7.418 (3) ÅT = 298 K
c = 13.881 (6) Å0.28 × 0.22 × 0.15 mm
β = 101.064 (7)°
Data collection top
Bruker APEX-II area-detector
diffractometer
2303 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1411 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.954Rint = 0.029
7694 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03069 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 0.96Δρmax = 0.12 e Å3
2303 reflectionsΔρmin = 0.16 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.63136 (4)0.08790 (6)0.59424 (3)0.0854 (2)
O10.40859 (9)0.40057 (17)0.42934 (8)0.0778 (3)
H10.47060.37210.44510.117*
N10.58895 (10)0.27658 (15)0.40482 (9)0.0545 (3)
C80.69623 (12)0.24343 (18)0.44034 (10)0.0519 (4)
C70.54804 (12)0.24459 (18)0.31476 (11)0.0528 (4)
H70.58960.19560.27380.063*
C60.43864 (12)0.28297 (19)0.27537 (10)0.0512 (4)
C50.39664 (14)0.2422 (2)0.17731 (11)0.0652 (4)
H50.43970.19340.13760.078*
C10.37309 (13)0.3581 (2)0.33403 (12)0.0592 (4)
C140.77401 (13)0.29778 (19)0.39131 (11)0.0565 (4)
H140.75580.35530.33090.068*
C90.72630 (14)0.15890 (19)0.53128 (11)0.0604 (4)
C120.87901 (13)0.2676 (2)0.43115 (12)0.0614 (4)
C110.90654 (15)0.1808 (2)0.52090 (13)0.0745 (5)
H110.97680.15940.54760.089*
C40.29257 (17)0.2735 (2)0.13898 (14)0.0813 (5)
H40.26490.24480.07390.098*
C20.26852 (15)0.3908 (2)0.29453 (15)0.0773 (5)
H20.22480.44150.33300.093*
C30.22978 (16)0.3476 (2)0.19782 (17)0.0866 (6)
H30.15940.36910.17170.104*
C100.82995 (16)0.1266 (2)0.57015 (12)0.0741 (5)
H100.84830.06780.63020.089*
C130.96069 (17)0.3228 (3)0.37635 (16)0.0797 (5)0.70 (3)
F30.9374 (6)0.4774 (8)0.3282 (6)0.1087 (17)0.70 (3)
F11.0542 (5)0.3515 (13)0.4326 (4)0.1155 (19)0.70 (3)
F20.9751 (7)0.2058 (7)0.3093 (5)0.1148 (16)0.70 (3)
C13'0.96069 (17)0.3228 (3)0.37635 (16)0.0797 (5)0.30 (3)
F1'1.0556 (10)0.290 (4)0.4232 (15)0.146 (6)0.30 (3)
F2'0.951 (2)0.231 (3)0.2911 (15)0.170 (7)0.30 (3)
F3'0.957 (2)0.4929 (17)0.350 (2)0.131 (6)0.30 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0968 (4)0.0917 (4)0.0741 (3)0.0008 (3)0.0328 (3)0.0167 (2)
O10.0701 (8)0.0978 (9)0.0688 (7)0.0127 (7)0.0216 (6)0.0104 (6)
N10.0546 (9)0.0567 (8)0.0526 (8)0.0022 (6)0.0110 (6)0.0008 (6)
C80.0556 (11)0.0490 (9)0.0510 (9)0.0032 (8)0.0102 (8)0.0045 (7)
C70.0571 (11)0.0469 (9)0.0583 (10)0.0016 (8)0.0209 (8)0.0001 (7)
C60.0509 (10)0.0478 (9)0.0552 (9)0.0044 (7)0.0108 (8)0.0043 (7)
C50.0714 (13)0.0601 (11)0.0624 (11)0.0095 (9)0.0083 (9)0.0014 (8)
C10.0545 (12)0.0570 (10)0.0674 (11)0.0005 (8)0.0147 (9)0.0049 (8)
C140.0583 (12)0.0579 (10)0.0536 (9)0.0036 (8)0.0115 (8)0.0011 (7)
C90.0685 (12)0.0595 (10)0.0547 (10)0.0027 (8)0.0157 (8)0.0002 (8)
C120.0548 (11)0.0659 (11)0.0630 (10)0.0009 (9)0.0096 (8)0.0062 (8)
C110.0610 (12)0.0867 (13)0.0705 (11)0.0109 (10)0.0006 (10)0.0023 (10)
C40.0799 (15)0.0759 (13)0.0779 (12)0.0108 (11)0.0101 (11)0.0056 (10)
C20.0593 (13)0.0732 (13)0.1010 (15)0.0071 (10)0.0194 (10)0.0066 (11)
C30.0573 (13)0.0765 (13)0.1162 (17)0.0031 (10)0.0077 (13)0.0165 (12)
C100.0781 (14)0.0836 (13)0.0571 (10)0.0129 (11)0.0042 (10)0.0082 (9)
C130.0599 (15)0.0961 (18)0.0825 (15)0.0006 (14)0.0125 (12)0.0028 (14)
F30.079 (2)0.129 (4)0.126 (3)0.006 (2)0.0405 (17)0.032 (2)
F10.063 (3)0.174 (4)0.107 (3)0.030 (3)0.0110 (19)0.017 (4)
F20.107 (3)0.125 (4)0.128 (3)0.0154 (18)0.064 (2)0.0488 (19)
C13'0.0599 (15)0.0961 (18)0.0825 (15)0.0006 (14)0.0125 (12)0.0028 (14)
F1'0.045 (6)0.182 (12)0.210 (14)0.024 (7)0.020 (7)0.094 (9)
F2'0.133 (10)0.278 (18)0.116 (7)0.051 (9)0.070 (6)0.053 (7)
F3'0.116 (10)0.084 (7)0.206 (13)0.007 (5)0.061 (8)0.036 (6)
Geometric parameters (Å, º) top
Cl1—C91.7242 (17)C14—H140.9300
O1—C11.3520 (18)C9—C101.371 (2)
O1—H10.8200C12—C111.387 (2)
N1—C71.2831 (18)C12—C131.477 (2)
N1—C81.4068 (19)C11—C101.370 (2)
C8—C141.382 (2)C11—H110.9300
C8—C91.396 (2)C4—C31.374 (3)
C7—C61.449 (2)C4—H40.9300
C7—H70.9300C2—C31.378 (2)
C6—C51.399 (2)C2—H20.9300
C6—C11.401 (2)C3—H30.9300
C5—C41.373 (2)C10—H100.9300
C5—H50.9300C13—F21.312 (5)
C1—C21.384 (2)C13—F11.329 (5)
C14—C121.387 (2)C13—F31.333 (5)
C7—N1—C8120.38 (13)C11—C12—C13120.32 (18)
C14—C8—C9118.20 (15)C14—C12—C13119.83 (17)
C14—C8—N1122.96 (13)C10—C11—C12119.86 (17)
C9—C8—N1118.78 (14)C10—C11—H11120.1
N1—C7—C6121.59 (14)C12—C11—H11120.1
N1—C7—H7119.2C5—C4—C3119.25 (18)
C6—C7—H7119.2C5—C4—H4120.4
C5—C6—C1119.00 (15)C3—C4—H4120.4
C5—C6—C7119.71 (15)C3—C2—C1119.47 (18)
C1—C6—C7121.28 (14)C3—C2—H2120.3
C4—C5—C6120.75 (18)C1—C2—H2120.3
C4—C5—H5119.6C4—C3—C2121.66 (18)
C6—C5—H5119.6C4—C3—H3119.2
O1—C1—C2118.10 (15)C2—C3—H3119.2
O1—C1—C6122.03 (15)C11—C10—C9120.22 (16)
C2—C1—C6119.86 (16)C11—C10—H10119.9
C8—C14—C12120.75 (15)C9—C10—H10119.9
C8—C14—H14119.6F2—C13—F1106.5 (4)
C12—C14—H14119.6F2—C13—F3105.3 (4)
C10—C9—C8121.14 (15)F1—C13—F3104.5 (4)
C10—C9—Cl1119.33 (13)F2—C13—C12113.4 (3)
C8—C9—Cl1119.50 (13)F1—C13—C12114.0 (3)
C11—C12—C14119.81 (16)F3—C13—C12112.4 (4)
C7—N1—C8—C1446.70 (19)C8—C14—C12—C13178.50 (16)
C7—N1—C8—C9136.21 (14)C14—C12—C11—C100.5 (2)
C8—N1—C7—C6177.93 (12)C13—C12—C11—C10178.58 (17)
N1—C7—C6—C5178.56 (13)C6—C5—C4—C30.7 (3)
N1—C7—C6—C10.5 (2)O1—C1—C2—C3179.45 (15)
C1—C6—C5—C40.6 (2)C6—C1—C2—C30.5 (2)
C7—C6—C5—C4178.46 (14)C5—C4—C3—C20.2 (3)
C5—C6—C1—O1179.94 (13)C1—C2—C3—C40.4 (3)
C7—C6—C1—O10.9 (2)C12—C11—C10—C90.4 (3)
C5—C6—C1—C20.0 (2)C8—C9—C10—C111.4 (2)
C7—C6—C1—C2179.07 (13)Cl1—C9—C10—C11179.52 (13)
C9—C8—C14—C120.5 (2)C11—C12—C13—F296.0 (5)
N1—C8—C14—C12177.65 (13)C14—C12—C13—F282.1 (5)
C14—C8—C9—C101.5 (2)C11—C12—C13—F126.1 (5)
N1—C8—C9—C10178.71 (13)C14—C12—C13—F1155.8 (5)
C14—C8—C9—Cl1179.58 (11)C11—C12—C13—F3144.8 (4)
N1—C8—C9—Cl13.19 (18)C14—C12—C13—F337.1 (5)
C8—C14—C12—C110.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.872.5975 (19)147

Experimental details

Crystal data
Chemical formulaC14H9ClF3NO
Mr299.67
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.979 (6), 7.418 (3), 13.881 (6)
β (°) 101.064 (7)
V3)1311.6 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.28 × 0.22 × 0.15
Data collection
DiffractometerBruker APEX-II area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.916, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
7694, 2303, 1411
Rint0.029
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.070, 0.96
No. of reflections2303
No. of parameters210
No. of restraints69
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.16

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.872.5975 (19)146.9
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds