organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Isonicotinamide–formamide (1/1)

CROSSMARK_Color_square_no_text.svg

aEuropean Synchrotron Radiation Facility, 6 Rue Jules Horowitz, BP 220, 38043 Grenoble Cedex 9, France, bCambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, England, and cSchool of Chemistry, The University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JJ, Scotland
*Correspondence e-mail: iain.oswald@esrf.fr

(Received 11 July 2005; accepted 19 August 2005; online 7 September 2005)

The 1:1 co-crystal of isonicotinamide and formamide, C6H6N2O·CH3NO, consists of hydrogen-bonded dimers, each comprising two isonicotinamide or two formamide mol­ecules. These dimers are connected further by hydrogen bonds into sheets, which are parallel to the ([\overline{2}]11) plane.

Comment

Isonicotinamide has been shown to crystallize with carboxylic acids in a 1:1 stoichiometry to form a robust building block or `supermolecule', (I)[link], consisting of two amide and two acid mol­ecules (Aakeröy et al., 2002[Aakeröy, C. B., Beatty, A. M. & Helfrich, B. A. (2002). J. Am. Chem. Soc. 124, 14425-14432.]; Oswald et al., 2004[Oswald, I. D. H., Motherwell, W. D. S. & Parsons, S. (2004). Acta Cryst. E60, o2380-o2383.]). Amides contain C=O and C—NH2 groups that could act in an analogous way to the C=O and C—OH groups of carboxylic acids. The aim of the present investigation was to assess the validity of this analogy in the case of the simplest amide, formamide.

[Scheme 1]

The title co-crystal, (II)[link], crystallizes in the monoclinic space group P21/c with one mol­ecule of each component in the asymmetric unit (Fig. 1[link]). The bond distances and angles are unremarkable.

[Scheme 2]

Amides characteristically form R22(8) (Bernstein et al. 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555- 1573.]) centrosymmetric dimers through hydrogen bonding between the NH2 and C=O groups. This behaviour is observed in (II)[link], where homomeric dimers are formed (i.e. formamide forms a dimer with another formamide etc.), the two components in each case being related by crystallographic inversion centres. The N⋯O distances in the R22(8) dimers are 2.9239 (16) Å in the case of isonicotinamide and 2.9696 (16) Å for formamide.

In co-crystals of carboxylic acids with isonicotinamide, homomeric R22(8) dimers are often formed between the amide groups of the isonicotinamide mol­ecules (Aakeröy et al., 2002[Aakeröy, C. B., Beatty, A. M. & Helfrich, B. A. (2002). J. Am. Chem. Soc. 124, 14425-14432.]). The two pyridyl functions at either end of the nicotin­amide dimer so formed hydrogen bond to two carboxylic acid mol­ecules in R22(7) motifs comprising C—OH⋯N and C—H⋯O hydrogen bonds. Of these inter­actions, only the R22(8) dimer formation is observed in (II).

The second donor function of the isonicotinamide forms a hydrogen bond to the carbonyl O atom of the formamide; these inter­actions build up chains. The chains are linked together through a hydrogen bond between a symmetry-equivalent formamide dimer and the pyridine N atom of the isonicotinamide forming an open grid-like layer parallel to the ([\overline{2}]11) plane (Fig. 2[link]). The second donor function of the formamide mol­ecules serves to link this layer with a symmetry equivalent parallel to ([\overline{2}][\overline{1}]1) filling in the structure.

[Figure 1]
Figure 1
The asymmetric unit of (II). Displacement ellipsoids are shown as 30% probability surfaces and H atoms are drawn as circles of arbitrary radii.
[Figure 2]
Figure 2
Formation of hydrogen-bonded layers in (II); hydrogen bonds are shown as broken lines. This view is approximately along the ([\overline{2}]11) reciprocal lattice direction.

Experimental

Isonicotinamide (0.49 g, 4.02 mmol) was dissolved in an excess of formamide (1.48 g, 32.10 mmol) and warmed until all the solid dissolved. On cooling, long colourless needles were produced, which fractured into thinner shards, degrading the crystal quality, when attempts were made to cut them to a more suitable length.

Crystal data
  • C6H6N2O·CH3NO

  • Mr = 167.17

  • Monoclinic, P 21 /c

  • a = 10.5785 (18) Å

  • b = 3.7461 (6) Å

  • c = 20.002 (3) Å

  • β = 94.587 (3)°

  • V = 790.1 (2) Å3

  • Z = 4

  • Dx = 1.405 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1965 reflections

  • θ = 2.7–28°

  • μ = 0.11 mm−1

  • T = 150 (2) K

  • Needle, colourless

  • 1.5 × 0.14 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.])Tmin = 0.663, Tmax = 1.000

  • 4454 measured reflections

  • 1860 independent reflections

  • 1554 reflections with I > 2σ(I)

  • Rint = 0.022

  • θmax = 28.7°

  • h = −13 → 10

  • k = −4 → 4

  • l = −23 → 25

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.122

  • S = 1.06

  • 1860 reflections

  • 125 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0688P)2 + 0.1905P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3S—H3S2⋯N1i 0.92 (2) 2.09 (2) 2.9937 (17) 167 (2)
N3S—H3S1⋯O2Sii 0.95 (2) 2.03 (2) 2.9696 (16) 172 (2)
N9—H91⋯O8iii 0.90 (2) 2.03 (2) 2.9239 (16) 172 (2)
N9—H92⋯O2S 0.89 (2) 2.08 (2) 2.9544 (17) 167 (2)
C5—H5⋯O2S 0.95 2.35 3.2384 (17) 156
Symmetry codes: (i) [x, -y+{\script{5\over 2}}, +z-{\script{1\over 2}}]; (ii) -x+2, -y+3, -z; (iii) -x+1, -y+1, -z.

H atoms attached to C atoms were placed in idealized positions (C—H = 0.95 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(C). H atoms attached to N atoms were located in a difference map and refined freely.

Data collection: SMART (Bruker–Nonius, 2001[Bruker-Nonius (2001). SMART. Version 5.624. Bruker AXS Inc., Madison, Wisconsin, USA.]); temperature control: Oxford Cryosystems low-temperature device (Cosier & Glazer, 1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]); cell refinement: SAINT (Bruker–Nonius, 2003[Bruker-Nonius (2003). SAINT. Version 7. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 2001[Sheldrick, G. M. (2001). SHELXTL. Version 6.01. University of Göttingen, Germany, and Bruker AXS Inc., Madison, Wisconsin, USA.]) and MERCURY (Taylor & Macrae, 2001[Taylor, R. & Macrae, C. F. (2001). Acta Cryst. B57, 815-827.]; Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Isonicotinamide has been shown to crystallize with carboxylic acids in a 1:1 stoichiometry to form a robust building block or `supermolecule', (I), consisting of two amide and two acid molecules (Aakeröy et al., 2002; Oswald et al., 2004). Amides contain CO and C—NH2 groups that could act in an analogous way to the CO and C—OH groups of carboxylic acids. The aim of the present investigation was to assess the validity of this analogy in the case of the simplest amide, formamide.

The title co-crystal, (II), crystallizes in the monoclinic space group P21/c with one molecule of each component in the asymmetric unit (Fig. 1). The primary bond distances and angles are unremarkable.

Amides characteristically form R22(8) (Bernstein et al. 1995) centrosymmetric dimers through hydrogen bonding between the NH2 and CO moieties. This behaviour is observed in (II), where homomeric dimers are formed (i.e. formamide forms a dimer with another formamide etc.), the two components in each case being related by crystallographic inversion centres. The N···O distances in the R22(8) dimers are 2.9239 (16) Å in the case of isonicotinamide and 2.9696 (16) Å for formamide.

In co-crystals of carboxylic acids with isonicotinamide, homomeric R22(8) dimers are often formed between the amide groups of the isonicotinamide molecules (Aakeröy et al., 2002). The two pyridyl functions at either end of the nicotinamide dimer so formed hydrogen bond to two carboxylic acid molecules in R22(7) motifs comprising C—OH···N and C—H···O hydrogen bonds. Of these interactions, only the R22(8) dimer formation is observed in (II).

The second donor function of the isonicotinamide forms a hydrogen bond to the carbonyl O atom of the formamide; these interactions build-up chains. The chains are linked together through a hydrogen bond between a symmetry-equivalent formamide dimer and the pyridine N atom of the isonicotinamide forming an open grid-like layer parallel to the (−211) planes (Fig. 2). The second donor function of the formamide molecules serves to link this layer with a symmetry equivalent parallel to (−2–11) filling-in the structure.

Experimental top

Isonicotinamide (0.49 g, 4.02 mmol) was dissolved in an excess of formamide (1.48 g, 32.10 mmol) and warmed until all the solid dissolved. On cooling, long colourless needles were produced, which fractured into thinner shards, degrading the crystal quality, when attempts were made to cut them to a more suitable length.

Refinement top

H atoms attached to C atoms were placed in idealized positions (C—H = 0.95 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(C). H atoms attached to N atoms were located in a difference map and refined freely.

Computing details top

Data collection: SMART (Bruker–Nonius, 2001); cell refinement: SAINT (Bruker–Nonius, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2001) and Mercury (Taylor & Macrae, 2001; Bruno et al., 2002); software used to prepare material for publication: PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (II). Displacement ellipsoids are shown as 30% probability surfaces and H atoms are drawn as circles of arbitrary radii.
[Figure 2] Fig. 2. Formation of hydrogen-bonded layers in (II). This view is approximately along the (−211) reciprocal lattice direction.
isonicotinamide–formamide (1/1) top
Crystal data top
C6H6N2O·CH3NOF(000) = 352
Mr = 167.17Dx = 1.405 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.5785 (18) ÅCell parameters from 1965 reflections
b = 3.7461 (6) Åθ = 2.7–28°
c = 20.002 (3) ŵ = 0.11 mm1
β = 94.587 (3)°T = 150 K
V = 790.1 (2) Å3Needle, colourless
Z = 41.5 × 0.14 × 0.08 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1860 independent reflections
Radiation source: fine-focus sealed tube1554 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 28.7°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1310
Tmin = 0.663, Tmax = 1.000k = 44
4454 measured reflectionsl = 2325
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: geom/difmap
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0688P)2 + 0.1905P]
where P = (Fo2 + 2Fc2)/3
1860 reflections(Δ/σ)max < 0.001
125 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C6H6N2O·CH3NOV = 790.1 (2) Å3
Mr = 167.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.5785 (18) ŵ = 0.11 mm1
b = 3.7461 (6) ÅT = 150 K
c = 20.002 (3) Å1.5 × 0.14 × 0.08 mm
β = 94.587 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1860 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1554 reflections with I > 2σ(I)
Tmin = 0.663, Tmax = 1.000Rint = 0.022
4454 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.31 e Å3
1860 reflectionsΔρmin = 0.20 e Å3
125 parameters
Special details top

Experimental. The temperature of the sample was controlled using an Oxford Cryosystems low-temperature device (Cosier & Glazer, 1986).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.82075 (11)0.8957 (4)0.27104 (6)0.0264 (3)
C20.70122 (14)0.7803 (4)0.27066 (7)0.0271 (3)
H20.66680.74160.31250.033*
C30.62479 (13)0.7142 (4)0.21249 (7)0.0234 (3)
H30.54040.63120.21490.028*
C40.67245 (12)0.7701 (4)0.15093 (6)0.0190 (3)
C50.79641 (13)0.8906 (4)0.15063 (7)0.0227 (3)
H50.83300.93310.10950.027*
C60.86592 (13)0.9480 (4)0.21147 (7)0.0253 (3)
H60.95081.02930.21060.030*
C70.58927 (13)0.6842 (4)0.08820 (7)0.0206 (3)
O80.48915 (9)0.5197 (3)0.09317 (5)0.0292 (3)
N90.63022 (12)0.7882 (4)0.03055 (6)0.0242 (3)
H910.5893 (19)0.713 (5)0.0082 (10)0.039 (5)*
H920.7035 (18)0.904 (5)0.0296 (9)0.036 (5)*
C1S0.84255 (13)1.2871 (4)0.05370 (7)0.0242 (3)
H1S0.76741.20350.07790.029*
O2S0.85676 (9)1.2164 (3)0.00663 (5)0.0283 (3)
N3S0.92304 (12)1.4691 (4)0.08733 (6)0.0266 (3)
H3S20.9045 (17)1.512 (5)0.1325 (10)0.038 (5)*
H3S10.9983 (19)1.561 (6)0.0645 (10)0.045 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0260 (6)0.0316 (7)0.0207 (6)0.0011 (5)0.0044 (5)0.0021 (5)
C20.0264 (7)0.0362 (9)0.0188 (7)0.0022 (6)0.0018 (5)0.0009 (6)
C30.0190 (6)0.0296 (8)0.0217 (7)0.0013 (6)0.0022 (5)0.0009 (6)
C40.0184 (6)0.0195 (7)0.0188 (6)0.0003 (5)0.0011 (5)0.0015 (5)
C50.0203 (6)0.0274 (7)0.0200 (6)0.0026 (6)0.0007 (5)0.0020 (6)
C60.0198 (6)0.0296 (8)0.0256 (7)0.0031 (6)0.0042 (5)0.0002 (6)
C70.0182 (6)0.0236 (7)0.0197 (6)0.0007 (5)0.0010 (5)0.0040 (5)
O80.0228 (5)0.0414 (7)0.0231 (5)0.0120 (5)0.0001 (4)0.0046 (4)
N90.0199 (6)0.0338 (7)0.0184 (6)0.0064 (5)0.0024 (5)0.0021 (5)
C1S0.0209 (7)0.0285 (8)0.0226 (7)0.0002 (6)0.0008 (5)0.0004 (6)
O2S0.0248 (5)0.0389 (7)0.0211 (5)0.0063 (4)0.0007 (4)0.0041 (4)
N3S0.0259 (6)0.0350 (7)0.0184 (6)0.0033 (5)0.0023 (5)0.0029 (5)
Geometric parameters (Å, º) top
N1—C61.3332 (19)C6—H60.9500
N1—C21.3357 (19)C7—O81.2363 (17)
C2—C31.3851 (19)C7—N91.3224 (18)
C2—H20.9500N9—H910.90 (2)
C3—C41.3833 (19)N9—H920.890 (19)
C3—H30.9500C1S—O2S1.2328 (17)
C4—C51.3873 (18)C1S—N3S1.3167 (19)
C4—C71.5086 (17)C1S—H1S0.9500
C5—C61.3873 (18)N3S—H3S20.923 (19)
C5—H50.9500N3S—H3S10.95 (2)
C6—N1—C2116.70 (11)N1—C6—H6118.0
N1—C2—C3123.46 (13)C5—C6—H6118.0
N1—C2—H2118.3O8—C7—N9124.03 (12)
C3—C2—H2118.3O8—C7—C4119.06 (12)
C4—C3—C2119.39 (13)N9—C7—C4116.90 (12)
C4—C3—H3120.3C7—N9—H91119.3 (13)
C2—C3—H3120.3C7—N9—H92120.6 (12)
C3—C4—C5117.72 (12)H91—N9—H92119.6 (17)
C3—C4—C7118.57 (12)O2S—C1S—N3S125.31 (14)
C5—C4—C7123.67 (12)O2S—C1S—H1S117.3
C4—C5—C6118.78 (13)N3S—C1S—H1S117.3
C4—C5—H5120.6C1S—N3S—H3S2119.7 (12)
C6—C5—H5120.6C1S—N3S—H3S1119.6 (12)
N1—C6—C5123.95 (13)H3S2—N3S—H3S1120.7 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3S—H3S2···N1i0.92 (2)2.09 (2)2.9937 (17)167.2 (16)
N3S—H3S1···O2Sii0.95 (2)2.03 (2)2.9696 (16)172.2 (17)
N9—H91···O8iii0.90 (2)2.03 (2)2.9239 (16)172.1 (17)
N9—H92···O2S0.890 (19)2.08 (2)2.9544 (17)167.0 (17)
C5—H5···O2S0.952.353.2384 (17)156
Symmetry codes: (i) x, y+5/2, z1/2; (ii) x+2, y+3, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC6H6N2O·CH3NO
Mr167.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)10.5785 (18), 3.7461 (6), 20.002 (3)
β (°) 94.587 (3)
V3)790.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)1.5 × 0.14 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.663, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4454, 1860, 1554
Rint0.022
(sin θ/λ)max1)0.675
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.122, 1.06
No. of reflections1860
No. of parameters125
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.20

Computer programs: SMART (Bruker–Nonius, 2001), SAINT (Bruker–Nonius, 2003), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 2001) and Mercury (Taylor & Macrae, 2001; Bruno et al., 2002), PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3S—H3S2···N1i0.92 (2)2.09 (2)2.9937 (17)167.2 (16)
N3S—H3S1···O2Sii0.95 (2)2.03 (2)2.9696 (16)172.2 (17)
N9—H91···O8iii0.90 (2)2.03 (2)2.9239 (16)172.1 (17)
N9—H92···O2S0.890 (19)2.08 (2)2.9544 (17)167.0 (17)
C5—H5···O2S0.952.353.2384 (17)156
Symmetry codes: (i) x, y+5/2, z1/2; (ii) x+2, y+3, z; (iii) x+1, y+1, z.
 

Acknowledgements

We thank the CCDC, the EPSRC and The University of Edinburgh for funding.

References

First citationAakeröy, C. B., Beatty, A. M. & Helfrich, B. A. (2002). J. Am. Chem. Soc. 124, 14425–14432.  Web of Science PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555– 1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker–Nonius (2001). SMART. Version 5.624. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker–Nonius (2003). SAINT. Version 7. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOswald, I. D. H., Motherwell, W. D. S. & Parsons, S. (2004). Acta Cryst. E60, o2380–o2383.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2001). SHELXTL. Version 6.01. University of Göttingen, Germany, and Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaylor, R. & Macrae, C. F. (2001). Acta Cryst. B57, 815–827.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds