Download citation
Download citation
link to html
The title complex, [NiCl2(bipy)2].CH3OH, where bipy is 2,2-bi­pyridine (C10H8N2), consists of an Ni atom coordinated to two cis chlorides and two bidentate bi­pyridines. One mol­ecule of methanol is hydrogen bonded to one of the two inequivalent chlorides.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801007838/ci6029sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801007838/ci6029Isup2.hkl
Contains datablock I

CCDC reference: 170732

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.047
  • wR factor = 0.101
  • Data-to-parameter ratio = 14.7

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
RADNW_01 Alert C The radiation wavelength lies outside the expected range for the supplied radiation type. Expected range 1.54175-1.54180 Wavelength given = 1.54056 General Notes
RADNW_01 The radiation wavelength given implies that Cu Kalpha1 has been used. Please check that this is correct. Wavelength given = 1.54056
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

In the course of our studies, the synthesis of [Ni(bipy)2Cl2]·CH3OH, (I), was carried out using a method previously reported for the synthesis of Ni(pyridine)4Cl2 (Long et al., 1978). The molecule adopts a pseudo-octahedral geometry with N—Ni—N bite angles of 77.75 (14) and 78.00 (14) Å, and cis angles between 87.84 (10) and 97.58 (13) Å; trans angles are also close to linearity. The structure of this complex (Fig. 1) is similar to the two structures of Ni(bipy)2Cl2 previously reported.

If CH3CN is used for recrystallization (Ferbinteanu et al., 1998), two water molecules make strong hydrogen bonds with the chlorides. The structure of the dimethylformamide (DMF) solvate was also published the same year (Hipler et al., 1998). In both published structures, a C2 axis is observed on the nickel making both chlorides and bipy ligands equivalent by symmetry. Our studies revealed that the Ni—Cl bond lengths are quite different (more than 20σ) from one another. We believe that this is due to a methanol being hydrogen bonded only to Cl1 [3.276 (3) versus 3.467 (3) Å]. Also unexpected is that one of the bipy shows both of its Ni—N lengths [2.073 (3) and 2.077 (3) Å] shorter than the other bipy [2.084 (3) and 2.100 (4) Å].

Experimental top

A solution of NiCl2·6H2O (2 g) in methanol (25 ml) was added to a solution of 2,2-bipyridine (2.75 g) in methanol. This mixture was agitated for 1 h and concentrated under vacuum to a volume of 10 ml. Slow evaporation of the solvent in air allowed the formation of green crystals.

Refinement top

H atoms were constrained to the parent site using a riding model (C—H 0.93–0.96 and O—H 0.82 Å). The isotropic displacement parameters, Uiso, were adjusted to a value 50% higher than that of the parent site (methyl and OH) and 20% higher (others).

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: NRC-2 and NRC-2A (Ahmed et al., 1973); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL96 (Sheldrick, 1996); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXL96.

Figures top
[Figure 1] Fig. 1. The structure of the title complex showing 30% probability displacement ellipsoids and the atom-numbering scheme.
cis-Bis(2,2-bipyridine)dichloronickel(II) methanol solvate top
Crystal data top
[NiCl2(C10H8N2)2]·CH4ODx = 1.526 Mg m3
Mr = 474.02Cu Kα radiation, λ = 1.54056 Å
Orthorhombic, PbcaCell parameters from 25 reflections
a = 10.455 (3) Åθ = 20.0–23.0°
b = 13.830 (4) ŵ = 3.90 mm1
c = 28.548 (10) ÅT = 293 K
V = 4128 (2) Å3Block, dark green
Z = 80.23 × 0.23 × 0.16 mm
F(000) = 1952.0
Data collection top
Nonius CAD-4
diffractometer
2054 reflections with I > 2σ(I)
Radiation source: normal-focus xray tubeRint = 0.073
Graphite monochromatorθmax = 69.9°, θmin = 3.1°
ω/2θ scansh = 012
Absorption correction: integration
(ABSORP in NRCVAX; Gabe et al., 1989)
k = 016
Tmin = 0.432, Tmax = 0.593l = 034
22288 measured reflections5 standard reflections every 60 min
3908 independent reflections intensity decay: no decay, variation 0.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.04P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.79(Δ/σ)max = 0.001
3908 reflectionsΔρmax = 0.31 e Å3
265 parametersΔρmin = 0.65 e Å3
0 restraintsExtinction correction: SHELXL96 (Sheldrick, 1996), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00066 (5)
Crystal data top
[NiCl2(C10H8N2)2]·CH4OV = 4128 (2) Å3
Mr = 474.02Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 10.455 (3) ŵ = 3.90 mm1
b = 13.830 (4) ÅT = 293 K
c = 28.548 (10) Å0.23 × 0.23 × 0.16 mm
Data collection top
Nonius CAD-4
diffractometer
2054 reflections with I > 2σ(I)
Absorption correction: integration
(ABSORP in NRCVAX; Gabe et al., 1989)
Rint = 0.073
Tmin = 0.432, Tmax = 0.5935 standard reflections every 60 min
22288 measured reflections intensity decay: no decay, variation 0.0%
3908 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 0.79Δρmax = 0.31 e Å3
3908 reflectionsΔρmin = 0.65 e Å3
265 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating R-factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.14225 (6)0.39332 (5)0.38102 (2)0.0470 (2)
Cl10.28217 (11)0.26123 (7)0.36335 (4)0.0605 (3)
Cl20.29823 (10)0.47056 (8)0.43132 (4)0.0577 (3)
N10.2053 (3)0.4614 (2)0.32013 (12)0.0471 (9)
N20.0161 (3)0.3383 (2)0.33035 (13)0.0501 (9)
C10.3009 (4)0.5259 (3)0.31710 (18)0.0573 (12)
H10.33500.55120.34460.069*
C20.3506 (4)0.5561 (3)0.27465 (19)0.0651 (14)
H20.41820.59980.27370.078*
C30.2991 (5)0.5209 (3)0.23441 (19)0.0650 (14)
H30.33210.53990.20560.078*
C40.1980 (4)0.4573 (3)0.23634 (17)0.0584 (12)
H40.15990.43430.20910.070*
C50.1548 (4)0.4286 (3)0.27983 (17)0.0485 (11)
C60.0469 (4)0.3582 (3)0.28575 (17)0.0490 (11)
C70.0171 (4)0.3162 (3)0.24814 (18)0.0579 (12)
H70.00780.32940.21750.069*
C80.1182 (4)0.2547 (3)0.2571 (2)0.0669 (14)
H80.16250.22570.23250.080*
C90.1520 (4)0.2370 (3)0.30239 (18)0.0655 (14)
H90.22090.19680.30910.079*
C100.0836 (4)0.2789 (3)0.33783 (18)0.0599 (13)
H100.10730.26560.36860.072*
N30.0100 (3)0.4972 (2)0.40138 (12)0.0476 (9)
N40.0490 (3)0.3248 (2)0.43582 (12)0.0473 (9)
C110.0042 (4)0.5849 (3)0.38084 (16)0.0526 (11)
H110.04600.60040.35500.063*
C120.0910 (4)0.6517 (3)0.39726 (18)0.0613 (14)
H120.09890.71160.38270.074*
C130.1652 (4)0.6296 (3)0.43496 (18)0.0641 (14)
H130.22480.67400.44600.077*
C140.1515 (4)0.5405 (3)0.45685 (17)0.0566 (12)
H140.20040.52460.48300.068*
C150.0625 (4)0.4757 (3)0.43855 (15)0.0459 (10)
C160.0420 (4)0.3774 (3)0.45807 (15)0.0472 (11)
C170.1105 (4)0.3419 (3)0.49582 (16)0.0570 (12)
H170.17100.38020.51080.068*
C180.0872 (4)0.2482 (4)0.51086 (17)0.0638 (14)
H180.13180.22260.53620.077*
C190.0029 (5)0.1934 (3)0.48768 (17)0.0632 (14)
H190.01860.12990.49680.076*
C200.0697 (4)0.2334 (3)0.45087 (16)0.0557 (12)
H200.13130.19620.43580.067*
O10.5478 (3)0.3869 (3)0.36236 (13)0.0820 (11)
H1A0.47360.38350.37160.123*
C210.6168 (5)0.4483 (5)0.3914 (2)0.110 (2)
H21A0.56420.50230.40010.165*
H21B0.69120.47110.37510.165*
H21C0.64250.41390.41900.165*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0391 (4)0.0358 (3)0.0661 (5)0.0005 (3)0.0029 (4)0.0016 (4)
Cl10.0551 (7)0.0446 (6)0.0817 (8)0.0097 (5)0.0058 (6)0.0002 (6)
Cl20.0476 (6)0.0519 (6)0.0737 (8)0.0042 (6)0.0020 (6)0.0024 (6)
N10.0394 (19)0.0383 (18)0.063 (2)0.0000 (17)0.0034 (18)0.0029 (18)
N20.041 (2)0.043 (2)0.066 (3)0.0018 (17)0.0044 (19)0.0034 (19)
C10.043 (2)0.042 (2)0.087 (4)0.005 (2)0.005 (3)0.006 (3)
C20.049 (3)0.042 (2)0.105 (4)0.002 (2)0.014 (3)0.018 (3)
C30.062 (3)0.054 (3)0.079 (4)0.006 (3)0.010 (3)0.014 (3)
C40.054 (3)0.052 (3)0.070 (3)0.002 (2)0.004 (3)0.008 (3)
C50.040 (2)0.039 (2)0.066 (3)0.008 (2)0.003 (2)0.008 (2)
C60.038 (2)0.039 (2)0.070 (3)0.0038 (19)0.002 (2)0.001 (2)
C70.057 (3)0.052 (3)0.065 (3)0.007 (2)0.007 (3)0.003 (3)
C80.063 (3)0.049 (3)0.089 (4)0.008 (3)0.009 (3)0.010 (3)
C90.054 (3)0.057 (3)0.085 (4)0.016 (3)0.007 (3)0.004 (3)
C100.047 (3)0.059 (3)0.074 (3)0.015 (2)0.003 (3)0.000 (3)
N30.0374 (19)0.0407 (19)0.065 (2)0.0018 (15)0.0017 (18)0.0010 (18)
N40.040 (2)0.0401 (19)0.062 (2)0.0041 (16)0.0027 (18)0.0038 (18)
C110.044 (2)0.045 (2)0.069 (3)0.004 (2)0.000 (2)0.004 (2)
C120.054 (3)0.040 (2)0.090 (4)0.006 (2)0.006 (3)0.005 (3)
C130.049 (3)0.051 (3)0.092 (4)0.007 (2)0.004 (3)0.013 (3)
C140.038 (2)0.058 (3)0.074 (3)0.001 (2)0.001 (2)0.007 (3)
C150.034 (2)0.044 (2)0.060 (3)0.005 (2)0.000 (2)0.002 (2)
C160.037 (2)0.050 (3)0.055 (3)0.005 (2)0.000 (2)0.001 (2)
C170.044 (3)0.058 (3)0.069 (3)0.006 (2)0.006 (2)0.002 (3)
C180.055 (3)0.068 (3)0.068 (4)0.016 (3)0.004 (3)0.009 (3)
C190.062 (3)0.050 (3)0.077 (4)0.011 (3)0.005 (3)0.015 (3)
C200.052 (3)0.044 (2)0.071 (3)0.001 (2)0.004 (3)0.008 (2)
O10.057 (2)0.090 (3)0.098 (3)0.018 (2)0.002 (2)0.001 (2)
C210.075 (4)0.148 (6)0.107 (5)0.039 (4)0.001 (4)0.028 (5)
Geometric parameters (Å, º) top
Ni—N42.073 (3)N3—C151.338 (5)
Ni—N32.077 (3)N3—C111.356 (5)
Ni—N12.084 (3)N4—C201.351 (5)
Ni—N22.100 (4)N4—C161.357 (5)
Ni—Cl12.3940 (13)C11—C121.377 (5)
Ni—Cl22.4213 (13)C11—H110.9300
N1—C11.342 (5)C12—C131.361 (6)
N1—C51.344 (5)C12—H120.9300
N2—C61.342 (5)C13—C141.389 (6)
N2—C101.344 (5)C13—H130.9300
C1—C21.384 (6)C14—C151.394 (5)
C1—H10.9300C14—H140.9300
C2—C31.359 (6)C15—C161.484 (5)
C2—H20.9300C16—C171.384 (5)
C3—C41.376 (6)C17—C181.387 (6)
C3—H30.9300C17—H170.9300
C4—C51.380 (6)C18—C191.378 (6)
C4—H40.9300C18—H180.9300
C5—C61.500 (5)C19—C201.378 (6)
C6—C71.392 (6)C19—H190.9300
C7—C81.380 (6)C20—H200.9300
C7—H70.9300O1—C211.388 (5)
C8—C91.364 (6)O1—H1A0.8200
C8—H80.9300C21—H21A0.9600
C9—C101.368 (6)C21—H21B0.9600
C9—H90.9300C21—H21C0.9600
C10—H100.9300
N4—Ni—N378.00 (14)C10—C9—H9120.3
N4—Ni—N1170.07 (14)N2—C10—C9123.1 (5)
N3—Ni—N197.58 (13)N2—C10—H10118.4
N4—Ni—N293.37 (14)C9—C10—H10118.4
N3—Ni—N291.44 (13)C15—N3—C11118.7 (4)
N1—Ni—N277.75 (14)C15—N3—Ni116.5 (3)
N4—Ni—Cl195.58 (10)C11—N3—Ni124.8 (3)
N3—Ni—Cl1173.48 (10)C20—N4—C16117.7 (4)
N1—Ni—Cl188.60 (10)C20—N4—Ni126.3 (3)
N2—Ni—Cl187.84 (10)C16—N4—Ni115.9 (3)
N4—Ni—Cl294.06 (10)N3—C11—C12121.7 (4)
N3—Ni—Cl288.70 (10)N3—C11—H11119.2
N1—Ni—Cl294.73 (11)C12—C11—H11119.2
N2—Ni—Cl2172.43 (11)C13—C12—C11119.6 (4)
Cl1—Ni—Cl292.87 (5)C13—C12—H12120.2
C1—N1—C5117.5 (4)C11—C12—H12120.2
C1—N1—Ni126.1 (3)C12—C13—C14119.7 (4)
C5—N1—Ni115.9 (3)C12—C13—H13120.1
C6—N2—C10117.6 (4)C14—C13—H13120.1
C6—N2—Ni115.3 (3)C13—C14—C15118.1 (4)
C10—N2—Ni126.8 (3)C13—C14—H14121.0
N1—C1—C2122.5 (5)C15—C14—H14121.0
N1—C1—H1118.7N3—C15—C14122.2 (4)
C2—C1—H1118.7N3—C15—C16114.8 (4)
C3—C2—C1118.9 (4)C14—C15—C16123.0 (4)
C3—C2—H2120.6N4—C16—C17122.5 (4)
C1—C2—H2120.6N4—C16—C15114.7 (4)
C2—C3—C4120.0 (5)C17—C16—C15122.9 (4)
C2—C3—H3120.0C16—C17—C18118.8 (5)
C4—C3—H3120.0C16—C17—H17120.6
C3—C4—C5118.1 (5)C18—C17—H17120.6
C3—C4—H4120.9C19—C18—C17119.0 (5)
C5—C4—H4120.9C19—C18—H18120.5
N1—C5—C4123.0 (4)C17—C18—H18120.5
N1—C5—C6114.7 (4)C20—C19—C18119.5 (5)
C4—C5—C6122.3 (4)C20—C19—H19120.3
N2—C6—C7122.0 (4)C18—C19—H19120.3
N2—C6—C5114.9 (4)N4—C20—C19122.5 (4)
C7—C6—C5123.1 (4)N4—C20—H20118.8
C8—C7—C6118.9 (5)C19—C20—H20118.8
C8—C7—H7120.5C21—O1—H1A109.5
C6—C7—H7120.5O1—C21—H21A109.5
C9—C8—C7118.9 (5)O1—C21—H21B109.5
C9—C8—H8120.5H21A—C21—H21B109.5
C7—C8—H8120.5O1—C21—H21C109.5
C8—C9—C10119.4 (5)H21A—C21—H21C109.5
C8—C9—H9120.3H21B—C21—H21C109.5
N3—Ni—N1—C188.3 (3)N4—Ni—N3—C153.2 (3)
N2—Ni—N1—C1178.2 (3)N1—Ni—N3—C15174.2 (3)
Cl1—Ni—N1—C193.8 (3)N2—Ni—N3—C1596.3 (3)
Cl2—Ni—N1—C11.0 (3)Cl2—Ni—N3—C1591.2 (3)
N3—Ni—N1—C599.9 (3)N4—Ni—N3—C11179.2 (4)
N2—Ni—N1—C510.1 (3)N1—Ni—N3—C118.2 (4)
Cl1—Ni—N1—C578.0 (3)N2—Ni—N3—C1186.1 (3)
Cl2—Ni—N1—C5170.7 (3)Cl2—Ni—N3—C1186.4 (3)
N4—Ni—N2—C6174.3 (3)N3—Ni—N4—C20176.9 (4)
N3—Ni—N2—C6107.6 (3)N2—Ni—N4—C2086.1 (4)
N1—Ni—N2—C610.2 (3)Cl2—Ni—N4—C2095.3 (3)
Cl1—Ni—N2—C678.9 (3)N3—Ni—N4—C162.5 (3)
N4—Ni—N2—C100.9 (4)N2—Ni—N4—C1693.2 (3)
N3—Ni—N2—C1079.0 (4)Cl1—Ni—N4—C16178.6 (3)
N1—Ni—N2—C10176.4 (4)Cl2—Ni—N4—C1685.3 (3)
Cl1—Ni—N2—C1094.5 (3)C15—N3—C11—C120.1 (6)
C5—N1—C1—C22.3 (6)Ni—N3—C11—C12177.7 (3)
Ni—N1—C1—C2169.3 (3)N3—C11—C12—C130.2 (7)
N1—C1—C2—C31.5 (7)C11—C12—C13—C140.8 (7)
C1—C2—C3—C40.8 (7)C12—C13—C14—C151.1 (7)
C2—C3—C4—C52.2 (7)C11—N3—C15—C140.2 (6)
C1—N1—C5—C40.8 (6)Ni—N3—C15—C14177.6 (3)
Ni—N1—C5—C4171.6 (3)C11—N3—C15—C16178.9 (3)
C1—N1—C5—C6178.9 (3)Ni—N3—C15—C163.3 (5)
Ni—N1—C5—C68.6 (4)C13—C14—C15—N30.8 (6)
C3—C4—C5—N11.4 (6)C13—C14—C15—C16178.2 (4)
C3—C4—C5—C6178.9 (4)C20—N4—C16—C171.8 (6)
C10—N2—C6—C72.8 (6)Ni—N4—C16—C17178.8 (3)
Ni—N2—C6—C7171.3 (3)C20—N4—C16—C15177.9 (4)
C10—N2—C6—C5177.2 (3)Ni—N4—C16—C151.5 (4)
Ni—N2—C6—C58.8 (4)N3—C15—C16—N41.2 (5)
N1—C5—C6—N20.2 (5)C14—C15—C16—N4179.7 (4)
C4—C5—C6—N2179.6 (4)N3—C15—C16—C17178.5 (4)
N1—C5—C6—C7179.8 (4)C14—C15—C16—C170.6 (7)
C4—C5—C6—C70.4 (6)N4—C16—C17—C181.5 (7)
N2—C6—C7—C82.1 (6)C15—C16—C17—C18178.2 (4)
C5—C6—C7—C8177.8 (4)C16—C17—C18—C190.2 (7)
C6—C7—C8—C90.0 (7)C17—C18—C19—C201.4 (7)
C7—C8—C9—C101.3 (7)C16—N4—C20—C190.5 (6)
C6—N2—C10—C91.4 (6)Ni—N4—C20—C19179.9 (3)
Ni—N2—C10—C9171.9 (3)C18—C19—C20—N41.1 (7)
C8—C9—C10—N20.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl10.822.633.276 (3)137
O1—H1A···Cl20.822.783.467 (3)143

Experimental details

Crystal data
Chemical formula[NiCl2(C10H8N2)2]·CH4O
Mr474.02
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)10.455 (3), 13.830 (4), 28.548 (10)
V3)4128 (2)
Z8
Radiation typeCu Kα
µ (mm1)3.90
Crystal size (mm)0.23 × 0.23 × 0.16
Data collection
DiffractometerNonius CAD-4
diffractometer
Absorption correctionIntegration
(ABSORP in NRCVAX; Gabe et al., 1989)
Tmin, Tmax0.432, 0.593
No. of measured, independent and
observed [I > 2σ(I)] reflections
22288, 3908, 2054
Rint0.073
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.101, 0.79
No. of reflections3908
No. of parameters265
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.65

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, NRC-2 and NRC-2A (Ahmed et al., 1973), SHELXS97 (Sheldrick, 1997), SHELXL96 (Sheldrick, 1996), SHELXTL (Bruker, 1997), SHELXL96.

Selected geometric parameters (Å, º) top
Ni—N42.073 (3)Ni—N22.100 (4)
Ni—N32.077 (3)Ni—Cl12.3940 (13)
Ni—N12.084 (3)Ni—Cl22.4213 (13)
N4—Ni—N378.00 (14)N1—Ni—Cl188.60 (10)
N4—Ni—N1170.07 (14)N2—Ni—Cl187.84 (10)
N3—Ni—N197.58 (13)N4—Ni—Cl294.06 (10)
N4—Ni—N293.37 (14)N3—Ni—Cl288.70 (10)
N3—Ni—N291.44 (13)N1—Ni—Cl294.73 (11)
N1—Ni—N277.75 (14)N2—Ni—Cl2172.43 (11)
N4—Ni—Cl195.58 (10)Cl1—Ni—Cl292.87 (5)
N3—Ni—Cl1173.48 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl10.822.633.276 (3)136.6
O1—H1A···Cl20.822.783.467 (3)142.8
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds