Download citation
Download citation
link to html
Chemotaxis, mediated by methyl-accepting chemotaxis protein (MCP) receptors, plays an important role in the ecology of bacterial populations. This paper presents the first crystallographic analysis of the structure and ligand-induced conformational changes of the periplasmic tandem Per-Arnt-Sim (PAS) sensing domain (PTPSD) of a characterized MCP chemoreceptor. Analysis of the complex of the Campylobacter jejuni Tlp3 PTPSD with isoleucine (a chemo­attractant) revealed that the PTPSD is a dimer in the crystal. The two ligand-binding sites are located in the membrane-distal PAS domains on the faces opposite to the dimer interface. Mutagenesis experiments show that the five strongly conserved residues that stabilize the main-chain moiety of isoleucine are essential for binding, suggesting that the mechanism by which this family of chemoreceptors recognizes amino acids is highly conserved. Although the fold and mode of ligand binding of the PTPSD are different from the aspartic acid receptor Tar, the structural analysis suggests that the PTPSDs of amino-acid chemoreceptors are also likely to signal by a piston displacement mechanism. The PTPSD fluctuates between piston (C-terminal helix) `up' and piston `down' states. Binding of an attractant to the distal PAS domain locks it in the closed form, weakening its association with the proximal domain and resulting in the transition of the latter into an open form, concomitant with a downward (towards the membrane) 4 Å piston displacement of the C-terminal helix. In vivo, this movement would generate a transmembrane signal by driving a downward displacement of the transmembrane helix 2 towards the cytoplasm.

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S139900471501384X/dz5380sup1.pdf
Supporting Information.

mov

Quicktime video file https://doi.org/10.1107/S139900471501384X/dz5380sup3.mov
Supplementary Movie S1. A morph movie showing the change in the structure required for the transition between the conformations observed in subunit A of the free protein and subunit B of the isoleucine complex.

mov

Quicktime video file https://doi.org/10.1107/S139900471501384X/dz5380sup4.mov
Supplementary Movie S2 (related to Fig. 6). NMA of free Tlp3 PTPSD (subunit A) showing movement along the fourth lowest frequency mode with amplitudes of between -30 and 100.

PDB references: Tlp3 PTPSD, 4xmq; complex with isoleucine, 4xmr


Follow Acta Cryst. D
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds