Download citation
Download citation
link to html
A gas diffusion layer (GDL) in a polymer electrolyte fuel cell (PEFC) is quantitatively visualized using synchrotron X-ray micro-computed tomography. For three-dimensional reconstruction, an adaptive threshold method is used. This method is compared with the conventional method, i.e. Otsu's method. Additionally, the spatial and temporal variations of the porosity distribution of the GDL under freeze-and-thaw cycles are investigated experimentally. The freeze-and-thaw cycles are established simply using a CRYO system and light source illumination, respectively. Structural defects are found to largely affect the porosity of the GDL. In addition, a cyclic porosity variation is observed in the GDL under freeze-and-thaw cycles. The heterogeneous porosity is irreversibly decreased with the progress of repetitive cycles.

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds