Download citation
Download citation
link to html
An energy-variable synchrotron diffraction technique is being established as a novel method for the depth-resolved measurement of residual strains in polycrystalline structures. An analytic expression for the diffraction profile is obtained by taking into account the instrument misalignment, change of the height of an incident X-ray beam with energy, and penetration of X-rays into the sample depth. It is shown that the maximum diffraction intensity recorded in the detector is coming from a certain depth beneath the surface of the sample, the depth being energy-dependent. This finding opens a way for precise strain measurements with high depth resolution by changing the X-ray energy in small enough steps. An experimental example, residual strain measurements across an alumina/zirconia multilayer, demonstrates the capability of the method.

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds