Download citation
Download citation
link to html
The electron density of monoclinic paracetamol was derived from high-resolution X-ray diffraction at 100 K. The Hansen-Coppens multipole model was used to refine the experimental electron density. The topologies of the electron density and the electrostatic potential were carefully analyzed. Numerical and analytical procedures were used to derive the charges integrated over the atomic basins. The highest charge magnitude (-1.2 e) was found for the N atom of the paracetamol molecule, which is in agreement with the observed nucleophilic attack occurring in the biological media. The electric field generated by the paracetamol molecule was used to calculate the atomic charges using the divergence theorem. This was simultaneously applied to estimate the total electrostatic force exerted on each atom of the molecule by using the Maxwell stress tensor. The interaction electrostatic energy of dimers of paracetamol in the crystal lattice was also estimated.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768109008271/gw5002sup1.cif
Contains datablocks publication_text, 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768109008271/gw50021sup2.hkl
Contains datablock 1

CCDC reference: 742425

Computing details top

Data collection: ASTRO (5.007), BRUKER AXS; cell refinement: SAINT (5.007),BRUKER AXS; data reduction: SORTAV, J. Appl. Cryst. 1997, 30, 421; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: MOLLY, Acta Cryst. 1978, A34, 909.

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
(1) top
Crystal data top
C8H9NO2Z = 4
Mr = 151.16F(000) = 320
Monoclinic, P21/nDx = 1.337 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 7.0915 (3) ŵ = 0.10 mm1
b = 9.2149 (4) ÅT = 100 K
c = 11.6015 (5) ÅBlock, colorless
β = 97.865 (1)°0.42 × 0.35 × 0.28 mm
V = 751.00 (6) Å3
Data collection top
SMART 1000 CCD
diffractometer
9441 independent reflections
Radiation source: fine-focus sealed tube6435 reflections with I > 3 σ(I)
Graphite monochromatorRint = 0.025
CCD scansθmax = 59.5°, θmin = 2.3°
Absorption correction: empirical (using intensity measurements)
Empirical absorption correction using spherical harmonics, implemented in SADABS - Bruker Nonius area detector scaling and absorption correction - V2.10 Ratio of minimum to maximum apparent transmission: 0.932780
h = 1716
Tmin = ?, Tmax = ?k = 2120
45383 measured reflectionsl = 2528
Refinement top
Refinement on F0 restraints
Least-squares matrix: fullOnly H-atom displacement parameters refined
R[F2 > 2σ(F2)] = 0.018 w1 = 1/[s2(Fo)]
wR(F2) = 0.021(Δ/σ)max < 0.001
S = 0.89Δρmax = 0.10 e Å3
6435 reflectionsΔρmin = 0.09 e Å3
278 parameters
Crystal data top
C8H9NO2V = 751.00 (6) Å3
Mr = 151.16Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.0915 (3) ŵ = 0.10 mm1
b = 9.2149 (4) ÅT = 100 K
c = 11.6015 (5) Å0.42 × 0.35 × 0.28 mm
β = 97.865 (1)°
Data collection top
SMART 1000 CCD
diffractometer
9441 independent reflections
Absorption correction: empirical (using intensity measurements)
Empirical absorption correction using spherical harmonics, implemented in SADABS - Bruker Nonius area detector scaling and absorption correction - V2.10 Ratio of minimum to maximum apparent transmission: 0.932780
6435 reflections with I > 3 σ(I)
Tmin = ?, Tmax = ?Rint = 0.025
45383 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0180 restraints
wR(F2) = 0.021Only H-atom displacement parameters refined
S = 0.89Δρmax = 0.10 e Å3
6435 reflectionsΔρmin = 0.09 e Å3
278 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.83573 (3)0.42321 (3)0.27736 (2)0.01706 (4)
O80.64663 (3)0.00573 (3)0.69136 (2)0.01838 (4)
N70.94805 (3)0.05129 (3)0.66039 (2)0.01249 (3)
C10.91188 (3)0.14266 (3)0.56170 (2)0.01120 (3)
C40.86614 (4)0.33084 (3)0.37039 (2)0.01256 (4)
C50.71954 (4)0.23699 (3)0.39018 (3)0.01348 (4)
C31.03765 (4)0.32839 (3)0.44549 (3)0.01501 (4)
C21.05982 (4)0.23486 (3)0.54034 (3)0.01437 (4)
C60.74178 (4)0.14284 (3)0.48505 (2)0.01286 (4)
C80.82133 (4)0.01424 (3)0.71961 (2)0.01300 (4)
C90.90728 (5)0.10118 (4)0.82381 (3)0.01874 (5)
H50.5979 (11)0.2363 (9)0.3336 (7)0.0225 (17)*
H60.6418 (11)0.0753 (9)0.4966 (7)0.0229 (18)*
H71.0732 (13)0.0417 (10)0.6873 (8)0.0275 (19)*
H21.1805 (13)0.2325 (10)0.5948 (8)0.031 (2)*
H31.1445 (12)0.3910 (9)0.4320 (8)0.0241 (18)*
H40.9525 (14)0.4582 (11)0.2571 (9)0.039 (2)*
H910.8355 (14)0.0857 (12)0.8877 (9)0.040 (2)*
H920.8966 (15)0.2061 (13)0.8084 (9)0.048 (3)*
H931.0408 (15)0.0847 (12)0.8453 (10)0.046 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.01154 (6)0.02147 (9)0.01759 (9)0.00089 (6)0.00013 (6)0.00716 (7)
O80.01103 (6)0.02696 (11)0.01771 (9)0.00229 (6)0.00395 (6)0.00081 (8)
N70.00982 (6)0.01473 (8)0.01291 (7)0.00067 (5)0.00160 (5)0.00145 (6)
C10.00945 (6)0.01256 (8)0.01153 (7)0.00088 (5)0.00127 (6)0.00059 (6)
C40.01022 (7)0.01412 (8)0.01308 (8)0.00037 (6)0.00072 (6)0.00092 (7)
C50.00991 (7)0.01622 (9)0.01381 (9)0.00154 (6)0.00017 (6)0.00065 (7)
C30.01108 (7)0.01729 (10)0.01593 (10)0.00358 (7)0.00077 (7)0.00337 (8)
C20.01051 (7)0.01703 (9)0.01479 (9)0.00334 (6)0.00104 (7)0.00253 (8)
C60.00975 (7)0.01498 (9)0.01355 (8)0.00226 (6)0.00053 (6)0.00009 (7)
C80.01216 (7)0.01399 (8)0.01334 (8)0.00111 (6)0.00353 (7)0.00060 (7)
C90.01976 (11)0.01930 (11)0.01777 (11)0.00134 (9)0.00479 (9)0.00513 (9)
Geometric parameters (Å, º) top
O4—C41.3683 (4)C5—C61.3934 (4)
O4—H40.948 (10)C5—H51.009 (8)
O8—C81.2399 (4)C3—C21.3896 (4)
N7—C81.3465 (3)C3—H30.982 (8)
N7—C11.4160 (4)C2—H20.992 (9)
N7—H70.904 (9)C6—H60.966 (8)
C1—C61.3972 (4)C8—C91.5077 (5)
C1—C21.3982 (4)C9—H910.966 (11)
C4—C51.3953 (4)C9—H920.985 (12)
C4—C31.3960 (4)C9—H930.958 (11)
C4—O4—H4111.0 (6)C3—C2—C1120.72 (2)
C8—N7—C1128.28 (2)C3—C2—H2120.8 (5)
C8—N7—H7118.2 (6)C1—C2—H2118.4 (5)
C1—N7—H7113.4 (6)C5—C6—C1119.87 (2)
C6—C1—C2119.33 (2)C5—C6—H6120.3 (5)
C6—C1—N7124.09 (2)C1—C6—H6119.8 (5)
C2—C1—N7116.57 (2)O8—C8—N7123.32 (3)
O4—C4—C5118.34 (2)O8—C8—C9121.69 (3)
O4—C4—C3122.15 (2)N7—C8—C9115.00 (3)
C5—C4—C3119.50 (3)C8—C9—H91109.8 (6)
C6—C5—C4120.63 (2)C8—C9—H92111.3 (6)
C6—C5—H5120.3 (5)H91—C9—H92104.4 (9)
C4—C5—H5119.1 (5)C8—C9—H93113.7 (7)
C2—C3—C4119.92 (2)H91—C9—H93112.5 (9)
C2—C3—H3119.0 (5)H92—C9—H93104.6 (9)
C4—C3—H3121.1 (5)

Experimental details

Crystal data
Chemical formulaC8H9NO2
Mr151.16
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)7.0915 (3), 9.2149 (4), 11.6015 (5)
β (°) 97.865 (1)
V3)751.00 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.42 × 0.35 × 0.28
Data collection
DiffractometerSMART 1000 CCD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
Empirical absorption correction using spherical harmonics, implemented in SADABS - Bruker Nonius area detector scaling and absorption correction - V2.10 Ratio of minimum to maximum apparent transmission: 0.932780
No. of measured, independent and
observed [I > 3 σ(I)] reflections
45383, 9441, 6435
Rint0.025
(sin θ/λ)max1)1.212
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.021, 0.89
No. of reflections6435
No. of parameters278
H-atom treatmentOnly H-atom displacement parameters refined
Δρmax, Δρmin (e Å3)0.10, 0.09

Computer programs: ASTRO (5.007), BRUKER AXS, SAINT (5.007),BRUKER AXS, SORTAV, J. Appl. Cryst. 1997, 30, 421, SHELXS97 (Sheldrick, 1990), MOLLY, Acta Cryst. 1978, A34, 909.

 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds