Download citation
Download citation
link to html
The crystal structure of Na2S2O5, a simple and common ionic compound, is reported here for the first time. The crystals form non-merohedral twins, with the twin domains related by a twofold axis which bisects the angle between the a and c axes of each unit cell. The structure was determined from a single-crystal fragment of a twinned crystal that had undergone cleavage along the twin boundary. In addition to the problems associated with twinning, space-group determination proved difficult as well, with the structure initially determined in the P21 space group appearing to be disordered with two rotational conformers of the metabisulfite ion occupying equivalent sites in the lattice. An analysis at low temperature provided new weak reflections which were inconsistent with the original unit cell, but indexed to the correct unit cell, allowing for space group and crystal structure determination. The apparent structure, which appeared disordered in P21, seems to have resulted from an apparently fortuitous superposition of two conformationally inequivalent S2O_5^{2-} anions in the asymmetric unit of the correct structure in the P21/n space group. The metabisulfite ions in this structure do not adopt the Cs geometry observed in previously determined crystal structures containing S2O_5^{2-}. The structures of both ions in the asymmetric unit are effectively conformational mirror images of one another with two of the O atoms on each S atom in the ion approaching an eclipsed geometry. This observation provides further evidence that the structures of sulfur-oxy anions in the solid state are dictated mainly by interionic coulombic forces rather than by intraionic bonding interactions

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768104003325/bk0141sup1.cif
Contains datablocks global, metabi-P21_n, metabi-P21

fcf

Structure factor file (CIF format) https://doi.org/10.1107/S0108768104003325/bk0141metabi_P21sup2.fcf
Contains datablock metabi_P21

fcf

Structure factor file (CIF format) https://doi.org/10.1107/S0108768104003325/bk0141metabi_P21_nsup3.fcf
Contains datablock metabi_P21_n

Computing details top

For both compounds, data collection: Bruker XSCANS; cell refinement: Bruker XSCANS; data reduction: Bruker XSCANS. Program(s) used to solve structure: SIR97 (Altomare A., et al., 1999) for metabi-P21_n; SHELXS97 (Sheldrick, 1997) for metabi-P21. For both compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
(metabi-P21_n) top
Crystal data top
Na2O5S2F(000) = 752
Mr = 190.1Dx = 2.384 Mg m3
Dm = 2.35 Mg m3
Dm measured by flotation
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.060 (1) ÅCell parameters from 49 reflections
b = 5.447 (1) Åθ = 4.5–13.1°
c = 21.560 (2) ŵ = 1.10 mm1
β = 95.31 (1)°T = 153 K
V = 1059.4 (2) Å3Rectangular solid, colorless
Z = 80.3 × 0.2 × 0.2 × 0.25 (radius) mm
Data collection top
Bruker P4
diffractometer
2004 reflections with I > 2σ(I)
ω–2\q scansRint = 0.049
Absorption correction: for a cylinder mounted on the ϕ axis
Interpolation using Int.Tab. Vol. C (1992) p. 523,Tab. 6.3.3.3 for values of muR in the range 0-2.5, and Int.Tab. Vol.II (1959) p.302; Table 5.3.6 B for muR in the range 2.6-10.0. The interpolation procedure of C.W.Dwiggins Jr (Acta Cryst.(1975) A31,146-148) is used with some modification.
θmax = 27.5°, θmin = 2.4°
Tmin = 0.604, Tmax = 0.609h = 1111
4568 measured reflectionsk = 67
2419 independent reflectionsl = 2828
Refinement top
Refinement on F2163 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.026P)2 + 4.7418P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.115(Δ/σ)max < 0.001
S = 1.15Δρmax = 0.75 e Å3
2419 reflectionsΔρmin = 0.78 e Å3
Crystal data top
Na2O5S2V = 1059.4 (2) Å3
Mr = 190.1Z = 8
Monoclinic, P21/nMo Kα radiation
a = 9.060 (1) ŵ = 1.10 mm1
b = 5.447 (1) ÅT = 153 K
c = 21.560 (2) Å0.3 × 0.2 × 0.2 × 0.25 (radius) mm
β = 95.31 (1)°
Data collection top
Bruker P4
diffractometer
2419 independent reflections
Absorption correction: for a cylinder mounted on the ϕ axis
Interpolation using Int.Tab. Vol. C (1992) p. 523,Tab. 6.3.3.3 for values of muR in the range 0-2.5, and Int.Tab. Vol.II (1959) p.302; Table 5.3.6 B for muR in the range 2.6-10.0. The interpolation procedure of C.W.Dwiggins Jr (Acta Cryst.(1975) A31,146-148) is used with some modification.
2004 reflections with I > 2σ(I)
Tmin = 0.604, Tmax = 0.609Rint = 0.049
4568 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041163 parameters
wR(F2) = 0.1150 restraints
S = 1.15Δρmax = 0.75 e Å3
2419 reflectionsΔρmin = 0.78 e Å3
Special details top

Experimental. Details of the twinning analysis for the twinned crystal reported in the manuscript:

Given that [Rt] [A1] = [A2], [Rt] = [A2][A1]-1

Twin 1 Orientation Matrix [A1]:

−0.05186 0.02711 0.03813 − 0.09713 − 0.02683 − 0.02463 0.00669 − 0.17890 0.00948 —————————————————- Twin 2 Orientation Matrix [A2]:

−0.07281 − 0.02724 0.03108 0.07941 0.02677 0.03436 − 0.02291 0.17871 − 0.00040

—————————————————- Twin Transformation matrix [Rt]:

0.92942 0.27200 0.25261 0.27251 − 0.96299 0.03566 0.25237 0.03628 − 0.96805

Since the columns of the orientation matrix are simply the Cartesian components of the reciprocal axes, the eigenvector/eigenvalue solution produces the rotation axis and rotation angles (proved in many books on Linear Algebra – e.g., Matrix theory, by Joel. N. Franklin,Dover Publications) in reciprocal Cartesian space (i.e. diffractometer space).

The advantage of leaving the vector in this form is that it is the same vector in real and reciprocal (Cartesian) space, provided that the Cartesian coordinate systems are defined consistently.

—————————————————- Eigenvectors (column vectors) of twin transformation matrix [Rt]:

0.98202 − 0.02887 − 0.18658 0.13839 0.78231 0.60732 0.12843 − 0.62222 0.77223

—————————————————- Eigenvalues of Twin Transformation matrix [Rt]:

1.00083 − 1.00195 − 1.00050

The first eigenvalue is real, the second two imaginary (giving 180 degree rotations, e(i*pi) and e-(i*pi)). The eigenvector (0.98202, 0.13839, 0.12843) is the rotation vector in the diffractometer (orthonormal) coordinate system.

The real space axes for both twins in diffractometer Cartesian coordinates are ([A1]-1) T and ([A2]-1) T, respectively.

Since [A1] and [A2] are the transformation matrices for reciprocal to Cartesian coordinates), [A1]-1 and [A2]-1 are the transforms from Cartesian to reciprocal coordinates.

Transforming the eigenvector (rotation axis) using either of these matrices givesthe twin rotation axis in reciprocal space,

(−0.31708,-0.00006,0.94840)

Dividing each component by the smallest number gives the vector

(−1, 0, 2.991), that is −1, 0, 3.

Likewise

(([A1]-1) T)-1 and (([A2]-1) T)-1 = [A1}T and [A2]T, transform the rotation axis into real lattice coordinates (−0.06346,-0.00010,0.03522).

Dividing each component by the smallest gives (1.8018, 0, 1), which scales to (2,0, 1.11) if an integer is desired for the first component.

Finally for a given vector with diffractometer coordinates Z,

[A1]h1 = Z and [A2]h2 = Z.

Thus [A1]h1 = [A2]h2 and [A2]-1[A1]h1 =h2. Rh = [A2]-1[A1], the twin law matrix:

—————————————————- Twin Law matrix [Rh]:

−0.24898 0.00090 − 0.41770 0.00043 − 1.00098 0.00005 − 2.25160 − 0.00307 0.24834

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O220.3407 (3)0.3973 (5)0.02508 (11)0.0145 (5)
O120.4024 (3)0.4958 (4)0.15472 (11)0.0151 (5)
O110.2768 (3)0.1356 (5)0.20098 (12)0.0160 (5)
O420.0893 (3)0.0364 (5)0.22490 (12)0.0146 (5)
O330.2679 (3)0.3737 (5)0.11702 (12)0.0154 (5)
O310.0378 (3)0.3270 (5)0.05235 (12)0.0173 (5)
O320.1670 (3)0.0373 (4)0.09474 (12)0.0143 (5)
O410.0659 (3)0.4800 (5)0.21246 (13)0.0190 (6)
O210.3075 (3)0.0447 (5)0.04145 (13)0.0174 (5)
O130.5095 (3)0.0871 (5)0.13824 (13)0.0171 (5)
S30.13419 (8)0.22266 (14)0.10345 (4)0.00846 (19)
S20.25679 (9)0.20387 (15)0.06309 (4)0.00992 (19)
S10.37385 (8)0.23379 (14)0.14869 (4)0.00856 (19)
S40.01132 (9)0.23741 (14)0.18763 (4)0.00987 (19)
Na30.17253 (15)0.6831 (3)0.01558 (6)0.0119 (3)
Na20.51005 (15)0.7263 (3)0.06784 (6)0.0128 (3)
Na40.26714 (15)0.2658 (2)0.18526 (6)0.0129 (3)
Na10.42248 (15)0.2320 (2)0.23332 (6)0.0128 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O220.0178 (12)0.0086 (11)0.0172 (12)0.0009 (10)0.0030 (10)0.0028 (9)
O120.0258 (13)0.0050 (11)0.0149 (12)0.0037 (10)0.0043 (10)0.0025 (9)
O110.0187 (12)0.0114 (12)0.0181 (12)0.0024 (10)0.0025 (10)0.0026 (10)
O420.0174 (12)0.0089 (11)0.0178 (12)0.0008 (9)0.0036 (9)0.0033 (9)
O330.0106 (11)0.0111 (12)0.0255 (13)0.0036 (9)0.0072 (10)0.0050 (10)
O310.0176 (12)0.0142 (12)0.0198 (13)0.0006 (10)0.0007 (10)0.0078 (10)
O320.0211 (12)0.0045 (11)0.0175 (12)0.0015 (9)0.0031 (10)0.0027 (9)
O410.0243 (13)0.0055 (11)0.0293 (14)0.0030 (10)0.0141 (11)0.0064 (10)
O210.0229 (13)0.0051 (11)0.0262 (13)0.0010 (10)0.0124 (11)0.0053 (10)
O130.0129 (11)0.0154 (13)0.0239 (13)0.0047 (10)0.0069 (10)0.0052 (10)
S30.0098 (4)0.0039 (4)0.0120 (4)0.0006 (3)0.0023 (3)0.0002 (3)
S20.0102 (4)0.0054 (4)0.0148 (4)0.0003 (3)0.0042 (3)0.0002 (3)
S10.0100 (4)0.0041 (4)0.0118 (4)0.0003 (3)0.0025 (3)0.0006 (3)
S40.0106 (4)0.0051 (4)0.0145 (4)0.0003 (3)0.0043 (3)0.0001 (3)
Na30.0136 (6)0.0060 (6)0.0167 (7)0.0011 (5)0.0037 (5)0.0009 (5)
Na20.0136 (6)0.0091 (6)0.0157 (7)0.0022 (5)0.0022 (5)0.0001 (5)
Na40.0150 (6)0.0073 (6)0.0166 (7)0.0007 (5)0.0022 (5)0.0008 (5)
Na10.0165 (6)0.0060 (6)0.0166 (7)0.0004 (5)0.0049 (5)0.0021 (5)
Geometric parameters (Å, º) top
O22—S21.498 (3)S2—Na2i3.3869 (16)
O22—Na32.400 (3)S1—Na13.1794 (16)
O22—Na2i2.407 (3)S1—Na23.3706 (16)
O22—Na22.584 (3)S4—Na4v3.2437 (16)
O12—S11.459 (2)S4—Na1viii3.3262 (16)
O12—Na1ii2.272 (3)S4—Na1iv3.3744 (16)
O12—Na22.387 (3)Na3—O32ii2.291 (3)
O11—S11.465 (3)Na3—O31vi2.294 (3)
O11—Na1iii2.305 (3)Na3—O21ii2.342 (3)
O11—Na12.531 (3)Na3—Na4ii3.690 (2)
O42—S41.496 (3)Na3—Na23.6958 (19)
O42—Na1iv2.469 (3)Na3—Na3vi3.717 (3)
O42—Na4v2.478 (3)Na3—Na2i3.7302 (19)
O42—Na42.508 (3)Na2—O21ii2.333 (3)
O33—S31.472 (2)Na2—O22i2.407 (3)
O33—Na2i2.421 (3)Na2—O33i2.421 (3)
O33—Na4ii2.454 (3)Na2—O13ii2.483 (3)
O33—Na32.832 (3)Na2—S2i3.3869 (16)
O31—S31.456 (3)Na2—Na1ii3.590 (2)
O31—Na3vi2.294 (3)Na2—Na3i3.7302 (19)
O31—Na32.462 (3)Na2—Na2i3.843 (3)
O32—S31.463 (2)Na4—O41vii2.405 (3)
O32—Na3vii2.291 (3)Na4—O33vii2.454 (3)
O32—Na42.419 (3)Na4—O42x2.478 (3)
O41—S41.493 (3)Na4—O13ix2.540 (3)
O41—Na1viii2.285 (3)Na4—O41x2.885 (3)
O41—Na4ii2.405 (3)Na4—S4x3.2437 (16)
O41—Na4v2.885 (3)Na4—Na3vii3.690 (2)
O21—S21.491 (3)Na4—Na1iv3.7211 (19)
O21—Na2vii2.333 (3)Na4—Na4v3.933 (2)
O21—Na3vii2.342 (3)Na1—O12vii2.272 (3)
O13—S11.466 (3)Na1—O41xi2.285 (3)
O13—Na2vii2.483 (3)Na1—O11xii2.305 (3)
O13—Na4ix2.540 (3)Na1—O42xiii2.469 (3)
O13—Na12.747 (3)Na1—S4xi3.3262 (16)
S3—S42.2165 (11)Na1—S4xiii3.3744 (16)
S3—Na33.1815 (16)Na1—Na2vii3.590 (2)
S3—Na43.3538 (16)Na1—Na4xiii3.7211 (19)
S2—S12.2179 (11)Na1—Na4ix3.974 (2)
S2—Na33.2425 (16)
S2—O22—Na3110.40 (14)O12—Na2—S121.89 (6)
S2—O22—Na2i118.43 (14)O22i—Na2—S1110.99 (8)
Na3—O22—Na2i101.78 (10)O33i—Na2—S182.73 (7)
S2—O22—Na2125.49 (14)O13ii—Na2—S1109.51 (8)
Na3—O22—Na295.65 (10)O22—Na2—S155.35 (6)
Na2i—O22—Na2100.65 (10)O21ii—Na2—S2i100.42 (9)
S1—O12—Na1ii137.08 (16)O12—Na2—S2i153.01 (8)
S1—O12—Na2120.51 (14)O22i—Na2—S2i22.89 (6)
Na1ii—O12—Na2100.78 (10)O33i—Na2—S2i84.89 (7)
S1—O11—Na1iii137.63 (16)O13ii—Na2—S2i112.74 (8)
S1—O11—Na1102.11 (14)O22—Na2—S2i97.21 (7)
Na1iii—O11—Na1118.48 (11)S1—Na2—S2i133.68 (5)
S4—O42—Na1iv114.40 (14)O21ii—Na2—Na1ii95.86 (8)
S4—O42—Na4v106.81 (14)O12—Na2—Na1ii38.44 (6)
Na1iv—O42—Na4v107.56 (10)O22i—Na2—Na1ii154.21 (8)
S4—O42—Na4125.69 (14)O33i—Na2—Na1ii72.25 (7)
Na1iv—O42—Na496.77 (10)O13ii—Na2—Na1ii49.80 (7)
Na4v—O42—Na4104.14 (10)O22—Na2—Na1ii108.33 (7)
S3—O33—Na2i119.28 (14)S1—Na2—Na1ii59.98 (3)
S3—O33—Na4ii121.24 (14)S2i—Na2—Na1ii152.21 (5)
Na2i—O33—Na4ii119.43 (11)O21ii—Na2—Na337.84 (7)
S3—O33—Na389.57 (12)O12—Na2—Na392.98 (8)
Na2i—O33—Na390.13 (9)O22i—Na2—Na390.20 (7)
Na4ii—O33—Na388.24 (9)O33i—Na2—Na3163.15 (8)
S3—O31—Na3vi151.42 (17)O13ii—Na2—Na3113.15 (7)
S3—O31—Na3105.70 (14)O22—Na2—Na340.26 (6)
Na3vi—O31—Na3102.74 (10)S1—Na2—Na385.48 (4)
S3—O32—Na3vii139.28 (16)S2i—Na2—Na394.70 (4)
S3—O32—Na4117.38 (14)Na1ii—Na2—Na3111.78 (5)
Na3vii—O32—Na4103.10 (10)O21ii—Na2—Na3i148.00 (9)
S4—O41—Na1viii122.00 (15)O12—Na2—Na3i99.80 (8)
S4—O41—Na4ii130.98 (15)O22i—Na2—Na3i39.04 (7)
Na1viii—O41—Na4ii105.00 (11)O33i—Na2—Na3i49.39 (7)
S4—O41—Na4v89.79 (13)O13ii—Na2—Na3i128.00 (8)
Na1viii—O41—Na4v99.82 (11)O22—Na2—Na3i86.79 (7)
Na4ii—O41—Na4v95.62 (10)S1—Na2—Na3i85.15 (4)
S2—O21—Na2vii129.48 (15)S2i—Na2—Na3i53.94 (3)
S2—O21—Na3vii125.38 (15)Na1ii—Na2—Na3i115.55 (5)
Na2vii—O21—Na3vii104.49 (11)Na3—Na2—Na3i117.67 (4)
S1—O13—Na2vii118.66 (14)O21ii—Na2—Na2i93.65 (8)
S1—O13—Na4ix114.67 (14)O12—Na2—Na2i102.42 (8)
Na2vii—O13—Na4ix126.23 (11)O22i—Na2—Na2i41.36 (7)
S1—O13—Na192.95 (13)O33i—Na2—Na2i106.78 (9)
Na2vii—O13—Na186.54 (9)O13ii—Na2—Na2i167.33 (9)
Na4ix—O13—Na197.41 (10)O22—Na2—Na2i37.99 (6)
O31—S3—O32113.28 (16)S1—Na2—Na2i80.91 (5)
O31—S3—O33110.93 (15)S2i—Na2—Na2i60.49 (4)
O32—S3—O33113.18 (15)Na1ii—Na2—Na2i140.84 (6)
O31—S3—S4107.09 (11)Na3—Na2—Na2i59.27 (4)
O32—S3—S4105.29 (11)Na3i—Na2—Na2i58.40 (4)
O33—S3—S4106.48 (11)O41vii—Na4—O32104.88 (11)
O31—S3—Na348.15 (11)O41vii—Na4—O33vii74.33 (9)
O32—S3—Na3130.69 (11)O32—Na4—O33vii87.11 (10)
O33—S3—Na362.88 (11)O41vii—Na4—O42x85.07 (10)
S4—S3—Na3123.35 (4)O32—Na4—O42x170.03 (10)
O31—S3—Na4150.27 (12)O33vii—Na4—O42x95.18 (10)
O32—S3—Na439.83 (11)O41vii—Na4—O4276.66 (9)
O33—S3—Na495.17 (11)O32—Na4—O4274.49 (9)
S4—S3—Na477.37 (4)O33vii—Na4—O42140.08 (10)
Na3—S3—Na4152.24 (4)O42x—Na4—O42109.05 (7)
O21—S2—O22109.96 (15)O41vii—Na4—O13ix165.49 (11)
O21—S2—S199.80 (11)O32—Na4—O13ix74.57 (9)
O22—S2—S198.39 (10)O33vii—Na4—O13ix91.19 (9)
O21—S2—Na3130.39 (11)O42x—Na4—O13ix95.66 (9)
O22—S2—Na343.94 (10)O42—Na4—O13ix116.44 (10)
S1—S2—Na3122.00 (4)O41vii—Na4—O41x115.87 (8)
O21—S2—Na2i71.98 (11)O32—Na4—O41x120.58 (9)
O22—S2—Na2i38.68 (10)O33vii—Na4—O41x143.04 (10)
S1—S2—Na2i112.08 (4)O42x—Na4—O41x53.43 (8)
Na3—S2—Na2i68.44 (4)O42—Na4—O41x75.11 (9)
O12—S1—O11112.78 (15)O13ix—Na4—O41x75.32 (9)
O12—S1—O13113.21 (16)O41vii—Na4—S4x102.76 (8)
O11—S1—O13110.74 (16)O32—Na4—S4x146.65 (8)
O12—S1—S2104.39 (11)O33vii—Na4—S4x118.36 (8)
O11—S1—S2108.33 (11)O42x—Na4—S4x26.20 (6)
O13—S1—S2106.90 (11)O42—Na4—S4x94.32 (7)
O12—S1—Na1134.00 (11)O13ix—Na4—S4x83.20 (7)
O11—S1—Na151.12 (11)O41x—Na4—S4x27.40 (5)
O13—S1—Na159.63 (12)O41vii—Na4—S3109.97 (8)
S2—S1—Na1121.41 (4)O32—Na4—S322.79 (6)
O12—S1—Na237.60 (10)O33vii—Na4—S3109.89 (8)
O11—S1—Na2148.58 (11)O42x—Na4—S3153.28 (8)
O13—S1—Na295.33 (12)O42—Na4—S356.48 (6)
S2—S1—Na278.96 (4)O13ix—Na4—S375.32 (7)
Na1—S1—Na2150.27 (4)O41x—Na4—S399.85 (7)
O41—S4—O42109.33 (15)S4x—Na4—S3127.16 (5)
O41—S4—S398.68 (11)O41vii—Na4—Na3vii94.97 (8)
O42—S4—S399.52 (10)O32—Na4—Na3vii37.22 (6)
O41—S4—Na4v62.81 (12)O33vii—Na4—Na3vii50.10 (7)
O42—S4—Na4v46.99 (10)O42x—Na4—Na3vii143.06 (8)
S3—S4—Na4v111.91 (4)O42—Na4—Na3vii106.84 (7)
O41—S4—Na1viii35.63 (10)O13ix—Na4—Na3vii75.74 (7)
O42—S4—Na1viii116.24 (11)O41x—Na4—Na3vii148.21 (7)
S3—S4—Na1viii127.78 (4)S4x—Na4—Na3vii155.08 (5)
Na4v—S4—Na1viii74.43 (4)S3—Na4—Na3vii59.95 (3)
O41—S4—Na1iv128.88 (12)O41vii—Na4—Na1iv36.38 (7)
O42—S4—Na1iv41.78 (10)O32—Na4—Na1iv96.54 (8)
S3—S4—Na1iv123.05 (4)O33vii—Na4—Na1iv109.23 (7)
Na4v—S4—Na1iv74.14 (4)O42x—Na4—Na1iv91.87 (7)
Na1viii—S4—Na1iv108.76 (5)O42—Na4—Na1iv41.21 (6)
O32ii—Na3—O31vi114.67 (11)O13ix—Na4—Na1iv157.51 (8)
O32ii—Na3—O21ii91.07 (10)O41x—Na4—Na1iv92.54 (7)
O31vi—Na3—O21ii97.07 (11)S4x—Na4—Na1iv94.71 (4)
O32ii—Na3—O22139.59 (11)S3—Na4—Na1iv88.54 (4)
O31vi—Na3—O22105.62 (10)Na3vii—Na4—Na1iv109.84 (5)
O21ii—Na3—O2280.73 (9)O41vii—Na4—Na4v96.56 (8)
O32ii—Na3—O31103.78 (10)O32—Na4—Na4v99.67 (7)
O31vi—Na3—O3177.26 (10)O33vii—Na4—Na4v169.89 (8)
O21ii—Na3—O31165.14 (11)O42x—Na4—Na4v79.43 (8)
O22—Na3—O3187.54 (10)O42—Na4—Na4v37.65 (6)
O32ii—Na3—O3381.16 (9)O13ix—Na4—Na4v97.82 (7)
O31vi—Na3—O33130.92 (10)O41x—Na4—Na4v37.48 (6)
O21ii—Na3—O33130.20 (10)S4x—Na4—Na4v58.66 (4)
O22—Na3—O3374.78 (9)S3—Na4—Na4v77.04 (3)
O31—Na3—O3353.66 (8)Na3vii—Na4—Na4v136.85 (5)
O32ii—Na3—S393.97 (8)Na1iv—Na4—Na4v62.78 (4)
O31vi—Na3—S3103.38 (8)O12vii—Na1—O41xi149.59 (12)
O21ii—Na3—S3154.55 (9)O12vii—Na1—O11xii98.16 (10)
O22—Na3—S379.29 (7)O41xi—Na1—O11xii108.89 (11)
O31—Na3—S326.15 (6)O12vii—Na1—O42xiii85.86 (10)
O33—Na3—S327.55 (5)O41xi—Na1—O42xiii79.66 (10)
O32ii—Na3—S2161.29 (9)O11xii—Na1—O42xiii92.11 (10)
O31vi—Na3—S282.45 (8)O12vii—Na1—O11103.36 (10)
O21ii—Na3—S294.33 (8)O41xi—Na1—O1190.08 (10)
O22—Na3—S225.66 (6)O11xii—Na1—O1191.03 (8)
O31—Na3—S271.45 (7)O42xiii—Na1—O11169.73 (10)
O33—Na3—S281.67 (6)O12vii—Na1—O1383.88 (9)
S3—Na3—S273.79 (4)O41xi—Na1—O1382.19 (10)
O32ii—Na3—Na4ii39.69 (7)O11xii—Na1—O13144.19 (10)
O31vi—Na3—Na4ii137.55 (9)O42xiii—Na1—O13123.64 (9)
O21ii—Na3—Na4ii112.84 (9)O11—Na1—O1354.19 (8)
O22—Na3—Na4ii108.29 (8)O12vii—Na1—S193.88 (8)
O31—Na3—Na4ii79.44 (7)O41xi—Na1—S185.98 (8)
O33—Na3—Na4ii41.66 (6)O11xii—Na1—S1117.38 (8)
S3—Na3—Na4ii59.82 (3)O42xiii—Na1—S1150.14 (8)
S2—Na3—Na4ii122.35 (5)O11—Na1—S126.77 (6)
O32ii—Na3—Na2113.34 (8)O13—Na1—S127.42 (5)
O31vi—Na3—Na2111.51 (8)O12vii—Na1—S4xi161.94 (9)
O21ii—Na3—Na237.67 (7)O41xi—Na1—S4xi22.37 (7)
O22—Na3—Na244.09 (7)O11xii—Na1—S4xi98.71 (8)
O31—Na3—Na2131.62 (8)O42xiii—Na1—S4xi99.88 (7)
O33—Na3—Na2101.92 (6)O11—Na1—S4xi69.97 (7)
S3—Na3—Na2118.74 (5)O13—Na1—S4xi78.68 (7)
S2—Na3—Na263.34 (3)S1—Na1—S4xi72.59 (4)
Na4ii—Na3—Na2110.54 (5)O12vii—Na1—S4xiii83.32 (8)
O32ii—Na3—Na3vi114.54 (9)O41xi—Na1—S4xiii93.33 (8)
O31vi—Na3—Na3vi40.24 (7)O11xii—Na1—S4xiii69.17 (7)
O21ii—Na3—Na3vi135.74 (10)O42xiii—Na1—S4xiii23.82 (6)
O22—Na3—Na3vi97.92 (8)O11—Na1—S4xiii159.95 (8)
O31—Na3—Na3vi37.02 (6)O13—Na1—S4xiii145.87 (7)
O33—Na3—Na3vi90.67 (7)S1—Na1—S4xiii173.27 (5)
S3—Na3—Na3vi63.14 (4)S4xi—Na1—S4xiii108.76 (5)
S2—Na3—Na3vi73.03 (4)O12vii—Na1—Na2vii40.79 (7)
Na4ii—Na3—Na3vi109.51 (6)O41xi—Na1—Na2vii117.56 (9)
Na2—Na3—Na3vi131.77 (6)O11xii—Na1—Na2vii132.80 (8)
O32ii—Na3—Na2i103.99 (8)O42xiii—Na1—Na2vii103.52 (8)
O31vi—Na3—Na2i138.61 (9)O11—Na1—Na2vii81.32 (7)
O21ii—Na3—Na2i96.42 (8)O13—Na1—Na2vii43.66 (6)
O22—Na3—Na2i39.17 (7)S1—Na1—Na2vii60.64 (4)
O31—Na3—Na2i79.80 (7)S4xi—Na1—Na2vii121.25 (5)
O33—Na3—Na2i40.48 (5)S4xiii—Na1—Na2vii114.16 (5)
S3—Na3—Na2i58.16 (3)O12vii—Na1—Na4xiii118.59 (9)
S2—Na3—Na2i57.61 (3)O41xi—Na1—Na4xiii38.62 (7)
Na4ii—Na3—Na2i69.13 (4)O11xii—Na1—Na4xiii110.67 (8)
Na2—Na3—Na2i62.33 (4)O42xiii—Na1—Na4xiii42.02 (7)
Na3vi—Na3—Na2i110.23 (6)O11—Na1—Na4xiii127.89 (8)
O21ii—Na2—O12101.48 (11)O13—Na1—Na4xiii99.13 (7)
O21ii—Na2—O22i109.92 (11)S1—Na1—Na4xiii116.12 (5)
O12—Na2—O22i131.54 (10)S4xi—Na1—Na4xiii60.49 (3)
O21ii—Na2—O33i158.67 (11)S4xiii—Na1—Na4xiii60.61 (3)
O12—Na2—O33i80.42 (10)Na2vii—Na1—Na4xiii110.53 (5)
O22i—Na2—O33i82.88 (10)O12vii—Na1—Na4ix110.76 (8)
O21ii—Na2—O13ii76.64 (9)O41xi—Na1—Na4ix45.68 (8)
O12—Na2—O13ii87.65 (10)O11xii—Na1—Na4ix150.32 (8)
O22i—Na2—O13ii134.39 (11)O42xiii—Na1—Na4ix96.38 (7)
O33i—Na2—O13ii82.25 (9)O11—Na1—Na4ix76.28 (7)
O21ii—Na2—O2277.14 (9)O13—Na1—Na4ix39.32 (6)
O12—Na2—O2272.67 (9)S1—Na1—Na4ix55.82 (3)
O22i—Na2—O2279.35 (10)S4xi—Na1—Na4ix51.84 (3)
O33i—Na2—O22123.01 (10)S4xiii—Na1—Na4ix119.49 (4)
O13ii—Na2—O22143.08 (10)Na2vii—Na1—Na4ix72.43 (4)
O21ii—Na2—S1107.04 (8)Na4xiii—Na1—Na4ix61.37 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x+1/2, y+1/2, z1/2; (iv) x1/2, y1/2, z+1/2; (v) x+1/2, y+1/2, z+1/2; (vi) x, y+1, z; (vii) x, y1, z; (viii) x1/2, y+1/2, z+1/2; (ix) x+1, y, z; (x) x+1/2, y1/2, z+1/2; (xi) x+1/2, y+1/2, z1/2; (xii) x+1/2, y1/2, z1/2; (xiii) x+1/2, y1/2, z1/2.
(metabi-P21) top
Crystal data top
Na2O5S2F(000) = 188
Mr = 190.1Dx = 2.346 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 6.073 (1) ÅCell parameters from 39 reflections
b = 5.470 (1) Åθ = 4.5–19.9°
c = 8.318 (1) ŵ = 1.08 mm1
β = 103.16 (1)°T = 293 K
V = 269.06 (7) Å3Rectangular solid, colorless
Z = 20.25 × 0.2 × 0.15 mm
Data collection top
Bruker P4
diffractometer
Rint = 0.030
ω–2\q scansθmax = 30.0°, θmin = 2.5°
1831 measured reflectionsh = 88
1559 independent reflectionsk = 77
1349 reflections with I > 2σ(I)l = 1111
Refinement top
Refinement on F21 restraint
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0555P)2 + 0.3072P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.04(Δ/σ)max = 0.001
wR(F2) = 0.110Δρmax = 0.56 e Å3
S = 1.07Δρmin = 0.50 e Å3
1559 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
111 parametersAbsolute structure parameter: 0.3 (3)
Crystal data top
Na2O5S2V = 269.06 (7) Å3
Mr = 190.1Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.073 (1) ŵ = 1.08 mm1
b = 5.470 (1) ÅT = 293 K
c = 8.318 (1) Å0.25 × 0.2 × 0.15 mm
β = 103.16 (1)°
Data collection top
Bruker P4
diffractometer
1349 reflections with I > 2σ(I)
1831 measured reflectionsRint = 0.030
1559 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041 restraint
wR(F2) = 0.110Δρmax = 0.56 e Å3
S = 1.07Δρmin = 0.50 e Å3
1559 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
111 parametersAbsolute structure parameter: 0.3 (3)
Special details top

Experimental. This structure, determined in the P21 space group, is correctly solved in the p21/n space group. Because of a fortuitous overlap and pseudo 21 symmetry between elements of the asymmetric unit in the p21/n lattice, a structure arises which superpositions the two anions in the asymmetric P21/n unit cell into a single "apparently" disorderd anion in P21.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.17866 (9)0.7510 (6)0.26907 (7)0.02189 (17)
S20.55190 (10)0.7542 (7)0.30265 (8)0.0308 (2)
Na30.71380 (18)0.7516 (9)0.05186 (14)0.0296 (3)
Na20.8752 (2)1.2576 (16)0.31210 (17)0.0506 (4)
O40.5752 (12)0.9922 (14)0.2157 (12)0.077 (3)
O50.5785 (14)0.5554 (16)0.1949 (10)0.0618 (17)
O3A0.126 (2)0.481 (2)0.2477 (17)0.031 (3)0.471 (15)
O1B0.123 (2)1.0099 (19)0.2399 (17)0.040 (3)0.554 (15)
O1A0.0843 (19)0.893 (2)0.1232 (13)0.033 (4)0.471 (15)
O2B0.076 (2)0.611 (2)0.1219 (15)0.042 (3)0.554 (15)
O2A0.121 (2)0.840 (3)0.4151 (16)0.035 (3)0.471 (15)
O3B0.121 (2)0.653 (2)0.4198 (15)0.041 (3)0.554 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0151 (3)0.0290 (3)0.0225 (3)0.0027 (8)0.00627 (19)0.0027 (9)
S20.0150 (3)0.0512 (4)0.0251 (3)0.0005 (10)0.0024 (2)0.0049 (10)
Na30.0249 (5)0.0342 (6)0.0310 (5)0.0040 (18)0.0093 (4)0.0018 (18)
Na20.0208 (6)0.0990 (13)0.0333 (6)0.002 (2)0.0091 (5)0.002 (3)
O40.019 (2)0.093 (5)0.106 (6)0.025 (3)0.012 (3)0.058 (4)
O50.029 (3)0.102 (5)0.054 (3)0.010 (3)0.008 (2)0.037 (3)
O3A0.023 (5)0.030 (6)0.046 (6)0.002 (4)0.020 (5)0.009 (5)
O1B0.038 (6)0.027 (5)0.057 (7)0.001 (4)0.016 (5)0.004 (4)
O1A0.022 (5)0.047 (8)0.022 (5)0.008 (4)0.015 (3)0.018 (5)
O2B0.026 (5)0.045 (7)0.058 (7)0.002 (4)0.014 (4)0.021 (6)
O2A0.031 (6)0.045 (8)0.033 (6)0.009 (5)0.017 (5)0.014 (5)
O3B0.039 (6)0.052 (9)0.036 (5)0.017 (5)0.016 (4)0.004 (5)
Geometric parameters (Å, º) top
S1—O2A1.425 (12)Na2—O3Bvii2.665 (15)
S1—O1A1.445 (10)Na2—O2Av2.756 (17)
S1—O2B1.460 (12)Na2—O2Bvii2.930 (15)
S1—O1B1.464 (11)Na2—O1Av2.994 (16)
S1—O3B1.477 (12)Na2—S1vii3.333 (7)
S1—O3A1.512 (12)Na2—S2ix3.342 (7)
S1—S22.2199 (9)O4—Na3iv2.422 (8)
S1—Na2i3.333 (7)O5—Na2ii2.460 (10)
S2—O51.441 (8)O5—Na3iii2.523 (9)
S2—O41.511 (8)O3A—O2B1.242 (18)
S2—Na33.3140 (13)O3A—O3B1.719 (19)
S2—Na2ii3.342 (7)O3A—Na2i2.115 (12)
S2—Na23.372 (7)O3A—Na3iii2.429 (13)
Na3—O4iii2.422 (8)O1B—O1A1.141 (17)
Na3—O1Biii2.427 (12)O1B—O2A1.73 (2)
Na3—O3Aiv2.429 (13)O1B—Na2x2.205 (13)
Na3—O1Aiii2.457 (12)O1B—Na3iv2.427 (12)
Na3—O2Bv2.463 (13)O1A—O2B1.546 (7)
Na3—O2Biv2.484 (11)O1A—Na3iv2.457 (12)
Na3—O1Av2.508 (11)O1A—Na3x2.508 (11)
Na3—O5iv2.523 (9)O1A—Na2x2.994 (16)
Na3—O52.609 (10)O2B—Na3x2.463 (12)
Na3—O42.872 (11)O2B—Na3iii2.484 (11)
Na3—Na2vi3.6574 (17)O2B—Na2i2.930 (14)
Na2—O3Avii2.115 (12)O2A—O3B1.022 (8)
Na2—O1Bv2.205 (13)O2A—Na2xi2.308 (13)
Na2—O3Bviii2.297 (12)O2A—Na2x2.756 (17)
Na2—O2Aviii2.308 (13)O3B—Na2xi2.297 (12)
Na2—O42.325 (9)O3B—Na2i2.665 (15)
Na2—O5ix2.460 (10)
O2A—S1—O1A113.9 (9)O5ix—Na2—O3Bvii84.2 (5)
O2A—S1—O2B138.8 (7)O3Avii—Na2—O2Av100.9 (4)
O1A—S1—O2B64.3 (3)O1Bv—Na2—O2Av38.9 (4)
O2A—S1—O1B73.6 (8)O3Bviii—Na2—O2Av66.8 (4)
O1A—S1—O1B46.2 (7)O2Aviii—Na2—O2Av88.4 (4)
O2B—S1—O1B109.3 (7)O4—Na2—O2Av85.2 (5)
O2A—S1—O3B41.2 (3)O5ix—Na2—O2Av165.4 (4)
O1A—S1—O3B141.4 (7)O3Bvii—Na2—O2Av110.29 (16)
O2B—S1—O3B112.4 (7)O3Avii—Na2—O2Bvii21.7 (5)
O1B—S1—O3B113.6 (7)O1Bv—Na2—O2Bvii82.3 (4)
O2A—S1—O3A110.3 (8)O3Bviii—Na2—O2Bvii140.7 (5)
O1A—S1—O3A113.1 (7)O2Aviii—Na2—O2Bvii119.3 (5)
O2B—S1—O3A49.4 (7)O4—Na2—O2Bvii127.9 (3)
O1B—S1—O3A152.8 (3)O5ix—Na2—O2Bvii72.9 (4)
O3B—S1—O3A70.2 (7)O3Bvii—Na2—O2Bvii51.5 (4)
O2A—S1—S2109.5 (5)O2Av—Na2—O2Bvii116.9 (3)
O1A—S1—S2107.5 (5)O3Avii—Na2—O1Av80.6 (4)
O2B—S1—S2109.9 (4)O1Bv—Na2—O1Av18.5 (4)
O1B—S1—S2101.9 (5)O3Bviii—Na2—O1Av115.6 (5)
O3B—S1—S2109.2 (5)O2Aviii—Na2—O1Av137.3 (4)
O3A—S1—S2101.9 (5)O4—Na2—O1Av78.2 (4)
O2A—S1—Na2i86.3 (5)O5ix—Na2—O1Av126.4 (2)
O1A—S1—Na2i113.7 (5)O3Bvii—Na2—O1Av116.4 (4)
O2B—S1—Na2i61.4 (5)O2Av—Na2—O1Av49.2 (3)
O1B—S1—Na2i133.4 (5)O2Bvii—Na2—O1Av82.98 (12)
O3B—S1—Na2i51.0 (5)O3Avii—Na2—S1vii19.4 (3)
O3A—S1—Na2i27.7 (4)O1Bv—Na2—S1vii92.3 (3)
S2—S1—Na2i124.51 (13)O3Bviii—Na2—S1vii115.0 (4)
O5—S2—O4108.4 (3)O2Aviii—Na2—S1vii93.7 (4)
O5—S2—S199.9 (3)O4—Na2—S1vii151.4 (2)
O4—S2—S198.7 (3)O5ix—Na2—S1vii78.1 (3)
O5—S2—Na349.1 (4)O3Bvii—Na2—S1vii25.5 (3)
O4—S2—Na359.9 (4)O2Av—Na2—S1vii115.6 (3)
S1—S2—Na3112.91 (3)O2Bvii—Na2—S1vii25.9 (2)
O5—S2—Na2ii41.7 (4)O1Av—Na2—S1vii99.9 (2)
O4—S2—Na2ii126.4 (4)O3Avii—Na2—S2ix88.7 (4)
S1—S2—Na2ii125.04 (14)O1Bv—Na2—S2ix157.8 (4)
Na3—S2—Na2ii74.08 (10)O3Bviii—Na2—S2ix95.8 (3)
O5—S2—Na2118.9 (4)O2Aviii—Na2—S2ix74.9 (4)
O4—S2—Na235.9 (3)O4—Na2—S2ix95.1 (3)
S1—S2—Na2125.58 (14)O5ix—Na2—S2ix22.93 (18)
Na3—S2—Na274.64 (10)O3Bvii—Na2—S2ix68.2 (4)
Na2ii—S2—Na2109.10 (4)O2Av—Na2—S2ix162.6 (3)
O4iii—Na3—O1Biii70.6 (4)O2Bvii—Na2—S2ix76.4 (3)
O4iii—Na3—O3Aiv106.0 (4)O1Av—Na2—S2ix147.8 (2)
O1Biii—Na3—O3Aiv64.15 (17)S1vii—Na2—S2ix71.07 (16)
O4iii—Na3—O1Aiii74.6 (3)S2—O4—Na2121.6 (5)
O1Biii—Na3—O1Aiii27.0 (4)S2—O4—Na3iv129.7 (4)
O3Aiv—Na3—O1Aiii87.3 (4)Na2—O4—Na3iv103.8 (3)
O4iii—Na3—O2Bv125.6 (4)S2—O4—Na393.0 (5)
O1Biii—Na3—O2Bv76.5 (4)Na2—O4—Na3102.0 (3)
O3Aiv—Na3—O2Bv96.6 (4)Na3iv—O4—Na397.8 (3)
O1Aiii—Na3—O2Bv57.6 (2)S2—O5—Na2ii115.4 (5)
O4iii—Na3—O2Biv132.6 (4)S2—O5—Na3iii128.6 (5)
O1Biii—Na3—O2Biv88.3 (4)Na2ii—O5—Na3iii97.1 (4)
O3Aiv—Na3—O2Biv29.3 (4)S2—O5—Na3106.2 (6)
O1Aiii—Na3—O2Biv105.21 (18)Na2ii—O5—Na3104.5 (3)
O2Bv—Na3—O2Biv87.0 (3)Na3iii—O5—Na3102.3 (3)
O4iii—Na3—O1Av161.3 (4)O2B—O3A—S163.1 (8)
O1Biii—Na3—O1Av95.6 (5)O2B—O3A—O3B110.0 (11)
O3Aiv—Na3—O1Av77.7 (4)S1—O3A—O3B53.9 (6)
O1Aiii—Na3—O1Av87.4 (3)O2B—O3A—Na2i119.3 (10)
O2Bv—Na3—O1Av36.22 (16)S1—O3A—Na2i132.9 (7)
O2Biv—Na3—O1Av56.7 (3)O3B—O3A—Na2i87.4 (6)
O4iii—Na3—O5iv77.20 (16)O2B—O3A—Na3iii77.8 (8)
O1Biii—Na3—O5iv113.7 (4)S1—O3A—Na3iii118.5 (6)
O3Aiv—Na3—O5iv71.9 (3)O3B—O3A—Na3iii158.0 (8)
O1Aiii—Na3—O5iv138.4 (3)Na2i—O3A—Na3iii107.0 (5)
O2Bv—Na3—O5iv157.1 (4)O1A—O1B—S166.0 (8)
O2Biv—Na3—O5iv73.3 (4)O1A—O1B—O2A112.1 (11)
O1Av—Na3—O5iv120.8 (4)S1—O1B—O2A52.2 (6)
O4iii—Na3—O583.3 (3)O1A—O1B—Na2x123.8 (11)
O1Biii—Na3—O5122.1 (4)S1—O1B—Na2x134.1 (8)
O3Aiv—Na3—O5170.5 (4)O2A—O1B—Na2x88.0 (7)
O1Aiii—Na3—O597.2 (4)O1A—O1B—Na3iv77.9 (9)
O2Bv—Na3—O578.9 (3)S1—O1B—Na3iv121.3 (7)
O2Biv—Na3—O5141.3 (3)O2A—O1B—Na3iv156.6 (8)
O1Av—Na3—O594.1 (3)Na2x—O1B—Na3iv104.2 (5)
O5iv—Na3—O5109.2 (2)O1B—O1A—S167.8 (8)
O4iii—Na3—O4113.7 (2)O1B—O1A—O2B124.5 (13)
O1Biii—Na3—O4169.9 (4)S1—O1A—O2B58.3 (7)
O3Aiv—Na3—O4121.1 (3)O1B—O1A—Na3iv75.0 (9)
O1Aiii—Na3—O4143.5 (3)S1—O1A—Na3iv120.5 (6)
O2Bv—Na3—O493.9 (3)O2B—O1A—Na3iv144.5 (11)
O2Biv—Na3—O494.4 (3)O1B—O1A—Na3x130.5 (10)
O1Av—Na3—O477.9 (4)S1—O1A—Na3x117.0 (6)
O5iv—Na3—O476.4 (3)O2B—O1A—Na3x70.3 (8)
O5—Na3—O451.57 (13)Na3iv—O1A—Na3x122.5 (4)
O4iii—Na3—S2100.3 (2)O1B—O1A—Na2x37.7 (8)
O1Biii—Na3—S2145.5 (3)S1—O1A—Na2x93.0 (6)
O3Aiv—Na3—S2147.1 (3)O2B—O1A—Na2x130.6 (10)
O1Aiii—Na3—S2118.9 (3)Na3iv—O1A—Na2x83.7 (4)
O2Bv—Na3—S283.4 (3)Na3x—O1A—Na2x94.5 (4)
O2Biv—Na3—S2118.6 (3)O3A—O2B—S167.5 (9)
O1Av—Na3—S283.7 (3)O3A—O2B—O1A124.2 (14)
O5iv—Na3—S295.6 (2)S1—O2B—O1A57.4 (7)
O5—Na3—S224.69 (19)O3A—O2B—Na3x133.5 (9)
O4—Na3—S227.09 (15)S1—O2B—Na3x118.8 (6)
O4iii—Na3—Na2vi100.2 (3)O1A—O2B—Na3x73.5 (8)
O1Biii—Na3—Na2vi35.8 (3)O3A—O2B—Na3iii72.9 (8)
O3Aiv—Na3—Na2vi33.6 (3)S1—O2B—Na3iii117.8 (7)
O1Aiii—Na3—Na2vi54.5 (4)O1A—O2B—Na3iii140.6 (11)
O2Bv—Na3—Na2vi73.3 (3)Na3x—O2B—Na3iii123.2 (5)
O2Biv—Na3—Na2vi52.9 (3)O3A—O2B—Na2i39.0 (7)
O1Av—Na3—Na2vi72.4 (3)S1—O2B—Na2i92.6 (6)
O5iv—Na3—Na2vi102.5 (2)O1A—O2B—Na2i132.3 (9)
O5—Na3—Na2vi148.1 (2)Na3x—O2B—Na2i95.7 (4)
O4—Na3—Na2vi144.5 (2)Na3iii—O2B—Na2i84.6 (4)
S2—Na3—Na2vi155.14 (4)O3B—O2A—S172.1 (12)
O3Avii—Na2—O1Bv73.27 (19)O3B—O2A—O1B124.6 (16)
O3Avii—Na2—O3Bviii122.7 (5)S1—O2A—O1B54.2 (6)
O1Bv—Na2—O3Bviii104.7 (5)O3B—O2A—Na2xi76.6 (14)
O3Avii—Na2—O2Aviii106.8 (5)S1—O2A—Na2xi145.3 (10)
O1Bv—Na2—O2Aviii122.1 (5)O1B—O2A—Na2xi158.7 (9)
O3Bviii—Na2—O2Aviii25.66 (19)O3B—O2A—Na2x146.7 (16)
O3Avii—Na2—O4145.7 (5)S1—O2A—Na2x103.8 (8)
O1Bv—Na2—O492.9 (6)O1B—O2A—Na2x53.1 (6)
O3Bviii—Na2—O490.8 (4)Na2xi—O2A—Na2x110.6 (5)
O2Aviii—Na2—O4107.0 (4)O2A—O3B—S166.7 (12)
O3Avii—Na2—O5ix91.2 (5)O2A—O3B—O3A121.0 (16)
O1Bv—Na2—O5ix141.4 (4)S1—O3B—O3A55.9 (6)
O3Bviii—Na2—O5ix113.2 (4)O2A—O3B—Na2xi77.8 (13)
O2Aviii—Na2—O5ix95.9 (4)S1—O3B—Na2xi141.4 (8)
O4—Na2—O5ix80.28 (16)O3A—O3B—Na2xi161.2 (9)
O3Avii—Na2—O3Bvii40.1 (5)O2A—O3B—Na2i143.4 (16)
O1Bv—Na2—O3Bvii103.1 (4)S1—O3B—Na2i103.4 (6)
O3Bviii—Na2—O3Bvii89.7 (4)O3A—O3B—Na2i52.4 (5)
O2Aviii—Na2—O3Bvii68.4 (4)Na2xi—O3B—Na2i114.2 (5)
O4—Na2—O3Bvii163.3 (5)
Symmetry codes: (i) x1, y1, z; (ii) x, y1, z; (iii) x+1, y1/2, z; (iv) x+1, y+1/2, z; (v) x+1, y, z; (vi) x+2, y1/2, z; (vii) x+1, y+1, z; (viii) x+1, y+1/2, z+1; (ix) x, y+1, z; (x) x1, y, z; (xi) x+1, y1/2, z+1.

Experimental details

(metabi-P21_n)(metabi-P21)
Crystal data
Chemical formulaNa2O5S2Na2O5S2
Mr190.1190.1
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21
Temperature (K)153293
a, b, c (Å)9.060 (1), 5.447 (1), 21.560 (2)6.073 (1), 5.470 (1), 8.318 (1)
β (°) 95.31 (1) 103.16 (1)
V3)1059.4 (2)269.06 (7)
Z82
Radiation typeMo KαMo Kα
µ (mm1)1.101.08
Crystal size (mm)0.3 × 0.2 × 0.2 × 0.25 (radius)0.25 × 0.2 × 0.15
Data collection
DiffractometerBruker P4
diffractometer
Bruker P4
diffractometer
Absorption correctionFor a cylinder mounted on the ϕ axis
Interpolation using Int.Tab. Vol. C (1992) p. 523,Tab. 6.3.3.3 for values of muR in the range 0-2.5, and Int.Tab. Vol.II (1959) p.302; Table 5.3.6 B for muR in the range 2.6-10.0. The interpolation procedure of C.W.Dwiggins Jr (Acta Cryst.(1975) A31,146-148) is used with some modification.
Tmin, Tmax0.604, 0.609
No. of measured, independent and
observed [I > 2σ(I)] reflections
4568, 2419, 2004 1831, 1559, 1349
Rint0.0490.030
(sin θ/λ)max1)0.6490.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.115, 1.15 0.04, 0.110, 1.07
No. of reflections24191559
No. of parameters163111
No. of restraints01
Δρmax, Δρmin (e Å3)0.75, 0.780.56, 0.50
Absolute structure?Flack H D (1983), Acta Cryst. A39, 876-881
Absolute structure parameter?0.3 (3)

Computer programs: Bruker XSCANS, SIR97 (Altomare A., et al., 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).

 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds