P.09.04.8 Acta Cryst. (2005). A61, C360 # Polynuclear Core $[Mn_6(O)_2Piv_{10}]$ in the Molecular Magnets Design <u>Galina Romanenko</u>, Elena Fursova, Kseniya Nosova, Victor Ovcharenko, *International Tomography Center SB RAS, Novosibirsk, Russia*. E-mail: romanenk@tomo.nsc.ru Mixed-valence manganese clusters, in particular, polynuclear oxocarboxylate clusters of manganese, [Mn^{II}_xMn^{III(IV)}_vO_z], display a non-typical magnetic behavior - slow relaxation of magnetization at low temperatures. This led to the creation of a specific family of magnets, so-called single-molecule magnets. Single-molecule magnets are of particular interest because of these are magnetic domains of strict definite dimensions. Therefore, using multinuclear manganese compounds shows great promise in design of heterospin complexes. We synthesized a large group of such complexes based on [Mn₆(O)₂Piv₁₀(Thf)₄] core with 2-R-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazolyl-3-oxide-1-oxyl (NIT-R, R = H, Me, Et, p-Py, n-butyl-Me)₂], possessing a diamondlike frame structure, and dumbbellike $[(EtOAc)_3Mn_6(O)_2Piv_{10}(NIT-Me)Mn_6(O)_2Piv_{10}(EtOAc)_3]$ molecules contain [Mn₆(O)₂Piv₁₀] cluster fragments linked by NIT-Me bridging Among the latter a new molecular magnet molecules $[Mn_6(O)_2Piv_{10}(Thf)_2(NIT-Me)Mn_6(O)_2Piv_{10}(Thf)(CH_2Cl_2)(NIT-Me)]$ with T_c=3.5 K has been found [1]. It was shown that the formation of high dimensional crystal structure has the exacting requirements for structure complementary of [Mn₆(O)₂Piv₁₀] and NIT-R, which can be realized only for $R = CH_3$. [1] Ovcharenko V., Fursova E., Romanenko G., Ikorskii V., *Inorg. Chem.*, 2004 **43** 13332 Keywords: molecular magnets, radicals, clusters ## P.09.04.9 Acta Cryst. (2005). A61, C360 Crystal Structures of Mo(II) Complexes with 2,2'-Dipyridylamine Susana Quintal^{a,b}, Patrícia Pinto^a, Vítor Félix^c, Michael Drew^d, Maria José Calhorda^{a,b}, ^aCQB, Universidade de Lisboa, Portugal. ^bITQB, Oeiras, Portugal. ^cUniversidade de Aveiro, Portugal, ^dUniversity of Reading, UK, E-mail: smquintal@fc.ul.pt Organometallic complexes are interesting building blocks in the design and synthesis of functional solids. Derivatives of the conical fragment $Mo(II)(\eta^3-C_3H_5)(CO)_2$ are useful precursors to build solids. In this work, we describe the synthesis and characterization of new Mo(II) complexes with the 2,2'-dipyridylamine (dipa) ligand, [MoBr(η^3 -C₃H₅)(CO)₂(dipa)] 1, [{MoBr(η^3 -C₃H₅)(CO)₂(dipa)}₂(4,4'-bipy)](PF₆)₂ 2 and [Mo(CH₃CN)(η^3 -C₃H₅)(CO)₂(dipa)]OTf 3. The crystal structures of all compounds were determined by single crystal X-ray diffraction. The dipa ligand is always bonded to Mo(II) through the heterocyclic nitrogen atoms. The presence of the NH group in the dipa ligand may lead to intermolecular hydrogen bond interactions, as shown in the figure for complex 1. Keywords: molybdenum compounds, crystal structures, dipyridylamine #### P.09.05.1 Acta Cryst. (2005). A61, C360 # **Highly Symmetrical Hydrogen-bonded Networks** Marissa G. Haywood, Brendan F. Abrahams, Timothy A. Hudson, Richard Robson, *School of Chemistry, University of Melbourne, 3010, Victoria, Australia.* E-mail: m.haywood@pgrad.unimelb.edu.au Metal/ligand covalent bonds and hydrogen bonds are the two major types of interactions that supramolecular chemists exploit to engineer both finite and infinite networks, for possible use in functional materials. The guanidiunium cation, $[C(NH_2)_3]^+$, has exerted powerful structure-determining effects on numerous coordination and hydrogen-bonding networks. The 3 pairs of hydrogen-bonds of the trigonal cation are positioned perfectly to interact with a variety of oxyanions to act as a 3-connecting node, in this case to create two new families of 3-dimensional hydrogen-bonding networks of cubic symmetry. One family are of the composition, $XO_4[C(NH_2)_3][Me_4N]$, where X=S, Cr and Mo, and have the (10,3)-a net topology. The second family are of the composition $[B(OMe_3)_4]_3[C(NH_2)_3]_4^+X$. solvate, where X=Cl, PF₆, NO₃, BF₄, Br, and I, and crystallise with the borocite topology. Single crystal X-ray studies have been conducted to characterise all compounds. Keywords: crystal engineering, guanidinium cation, hydrogenbonded networks ### P.09.05.2 Acta Cryst. (2005). A61, C360 Supramolecular Approach to Generation and Stabilization of Labile Organic Anions Thomas C. W. Mak, Chi-Keung Lam, Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P. R. China. E-mail: tcwmak@cuhk.edu.hk Urea and its derivatives interact with various anions to generate hydrogen-bonded host lattices that may incorporate water or other uncharged hydrophilic molecules, forming crystalline inclusion compounds with bulky hydrophobic organic cations as the guest species. Some elusive anions such as dihydrogen borate, allophanate, and 3-thioallophanate have been generated in situ and stabilized as a host component. This strategy has led to successful isolation of the non-benzenoid aromatic $D_{\rm nh}$ and enediolate $C_{\rm 2v}$ valence tautomers of rhodizonate $C_6O_6^{2-[5]}$ and croconate $C_5O_5^{2-[6]}$ Our recent studies in the supramolecular assembly of hydrogenbonded infinte arrays based on preconceived cogwheel, rosette-tape, [7] and rosette-layer structural motifs will also be presented. This work is supported by the Hong Kong Research Grants Council (Project Ref. No. CUHK 402003). [1] Mak T.C.W., Li Q. in Advances in Molecular Structure and Research, (Eds.: M. Hargittai, I. Hargittai), JAI Press, Stamford, Connecticut, 1998, Vol. IV, pp. 151-225. [2] Li Q., Xue F., Mak T.C.W., Inorg. Chem. 1999, 38, 4142. [3] Mak T. C.W., Yip W.H., Li Q., J. Am. Chem. Soc. 1995, 117, 11995. [4] Lam C.-K., Chan T.-L., Mak T.C.W., CrystEngComm. 2004, 6, 290. [5] Lam C.-K., Mak T.C.W., Angew. Chem. Int. Ed. 2001, 40, 3453. [6] Lam C.-K., Chem. M.-F., Li C.-L., Zhang J.-P., Chen X.-M., Li W.-K., Mak T.C.W., Chem. Commun. 2004, 448. [7] Mak T.C.W, Xue F., J. Am. Chem. Soc. 2000, 122, 9860. Keywords: labile organic anions, supramolecular assemblies, urea inclusion compounds