Download citation
Download citation
link to html
One of the most important problems in the application of direct methods for large structures is to establish reliable consistency criteria for the correctness of a phasing trial. The introduction in the twin variables method [Bethanis, Tzamalis, Hountas, Mishnev & Tsoucaris (2000). Acta Cryst. A56, 105-111] of a new criterion based on the crystallographic symmetry consists of testing the phase extension and refinement algorithm by deliberately sacrificing the space-group-symmetry information in the auxiliary variable set then using its gradual re-appearance as a criterion for correctness. In the present paper, the crystallographic symmetry test has been used in the implementation of the twin algorithm in two different ways: (i) as an overall test throughout the iterations that is likely to reflect the correctness of the phasing procedure for each one of the extension trials in a macromolecular phasing environment; (ii) as a convenient criterion to determine the optimum cycle for freeing the initial phases used by the algorithm for the phase-extension procedure.

Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds