Download citation
Download citation
link to html
In the title compound, [Mn(C5H2N2O4)(C12H9N3)2]·H2O, the MnII centre is surrounded by three bidentate chelating ligands, namely, one 6-oxido-2-oxo-1,2-dihydro­pyrimidine-5-carboxyl­ate (or uracil-5-carboxyl­ate, Huca2−) ligand [Mn—O = 2.136 (2) and 2.156 (3) Å] and two 2-(2-pyrid­yl)-1H-benzimidazole (Hpybim) ligands [Mn—N = 2.213 (3)–2.331 (3) Å], and it displays a severely distorted octa­hedral geometry, with cis angles ranging from 73.05 (10) to 105.77 (10)°. Inter­molecular N—H...O hydrogen bonds both between the Hpybim and the Huca2− ligands and between the Huca2− ligands link the mol­ecules into infinite chains. The lattice water mol­ecule acts as a hydrogen-bond donor to form double O...H—O—H...O hydrogen bonds with the Huca2− O atoms, crosslinking the chains to afford an infinite two-dimensional sheet; a third hydrogen bond (N—H...O) formed by the water mol­ecule as a hydrogen-bond acceptor and a Hpybim N atom further links these sheets to yield a three-dimensional supra­molecular framework. Possible partial π–π stacking inter­actions involving the Hpybim rings are also observed in the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111002782/fg3213sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111002782/fg3213Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108270111002782/fg3213sup3.pdf
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108270111002782/fg3213sup4.pdf
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108270111002782/fg3213sup5.pdf
Supplementary material

CCDC reference: 817040

Comment top

Manganese-containing small molecular species have been found to play an important role at the active sites of several redox-based enzymes (Weighardt, 1989). The peripheral ligation around the Mn centre(s) in these enzymes is believed to include both the carboxyl and/or phenol hydroxy groups and the imidazole ring from various amino acid residues, affording a predominant N/O coordination sphere (Pecoraro & Butler, 1986). Simple carboxylate, phenoxide and imidazole-containing molecules are often used in place of the peptide side chains in preparing molecule [molecular?] models of the active sites of these enzymes. Uracil-5-carboxylic acid (H3uca) (systematic name: 2,4-dihydroxypyrimidine-5-carboxylic acid), which possesses a biologically important pyrimidine heterocycle bearing both one carboxyl group and two hydroxy groups, could [may?] display diverse coordination modes to metal ions only or simultaneously through the carboxyl oxygen atoms, and the hydroxy oxygen atoms as well as the pyrimidine nitrogen atoms. As part of our study on manganese biochemistry, we have investigated manganese complexation by uracil-5-carboxylic acid, during which some α,α'-diimine molecules strongly favouring bidentate chelation coordination, such as 2,2'-bipyridine and 2-(2-pyridyl)benzimidazole, are introduced to prevent formation of uracil-5-carboxylic acid bridging manganese polymeric complexes, and thus small molecular manganese compounds are expected. In the present work, reaction of disodium uracil-5-carboxylic acid with manganese acetate in the presence of 2-(2-pyridyl)benzimidazole affords pale yellow crystals of the title compound, (I), which represents a rare example of mononuclear six-coordinate transition metal complexes with mixed ligands including uracil-5-carboxylic acid, though several eight-coordinate lanthanide complexes with a similar mixed-ligand system have been reported recently (Xiong et al., 2008; Sun & Jin, 2004; Xing et al., 2008; Liu et al., 2009).

Compound (I) consists of one neutral [Mn(Huca)(Hpybim)2] monomer [Hpybim is 2-(2-pyridyl)benzimidazole] and one solvate water molecule, all in general positions in the asymmetric unit. The MnII atom is surrounded by three bidentate chelating ligands, coordinated via four N atoms (N3, N4, N6 and N7) from a pair of neutral Hpybim ligands, and via two O atoms (O1 and O3) from one dianionic Huca2- ligand, as shown in Fig. 1. The complex displays a severely distorted octahedral geometry around the Mn centre (Table 1), in which three N atoms (N4, N6 and N7) of the Hpybim ligands and one hydroxyl O atom (O3) of the Huca2- ligand define a best octahedral equatorial plane [the mean out-of-plane deviation is 0.027 (5) Å, and the maximum out-of-plane deviation of 0.030 (7) Å is for atom N7], with the Mn atom displaced from the plane by 0.053 (5) Å. The pyridyl N atom (N3) of the Hpybim ligand and one carboxylate O atom (O1) of the Huca2- ligand complete the distorted octahedron through coordination in the axial positions, with an O1—Mn1—N3 angle of 160.52 (9)°.

The high spin d5 Mn2+ ion favours the formation of the octahedral d2sp3 hybrid orbitals, with the cis-angles equal to 90°. The rigid chelating Hpybim ligand usually gives a narrow bite of less than 75° at a central Mn atom. The strong distortion deviating from an ideal Mn octahedron in (I), with the cis-angles ranging from 73.05 (10) to 105.77 (10)°, is obviously due to the double chelation of the two Hpybim ligands. The average Mn—N distance [2.28 (5) Å], as well as the N—Mn—N chelate angles [74.34 (11) and 73.05 (10)°] are comparable with those observed in the reported pybim-containing monomeric MnII complex [Mn(ptl)2(Hpybim)] [ptl is p-toluate; 2.2274 (19) Å, and 74.45 (5)°, respectively; Ma et al., 2007] and, as expected, the Mn—N(imidazole) distances in (I) are shorter than the Mn—N(pyridine) ones, since the benzene group in the ortho position enhances the electron density on the imidazole N atom. Two Hpybim ligands are each reasonably planar, with maximum out-of plane deviations of 0.107 (2) and 0.146 (3) Å for atoms H14A and H27A, respectively. A very small dihedral angle of 4.2 (1)° is observed between the N3-containing Hpybim ligand plane and the chelate plane N3/N4/Mn1. However, the other Hpybim ligand makes a larger dihedral angle [16.9 (1)°] with its chelate plane N6/N7/Mn1.

The Huca2- dianion in (I) acts as a bidentate ligand to chelate to the Mn atom through one carboxylate O atom and one hydroxy O atom, with a second carboxylate O atom, and the carbonyl O atom in the 2-positon, as well as two pyrimidine N atoms uncoordinated. Difference map plots unequivocally located the lone ring H atom as being bonded to N1, between the two oxygens O3 and O4. The position of the protonated N atom differs from that found in [Mn(Huca)(H2O)2]n (Chen et al., 2007), where the H is clearly established as being bonded to the other ring N atom. The Mn—O distances (Table 1) and the O3—Mn—O1 chelate angle of 84.07 (9)° are comparable to those observed in [Mn(H2uca)2] (Maistralis et al., 1991) and [Mn(Huca)(H2O)2]n (Chen et al., 2007). The Huca2- ligand is also reasonably planar, with a maximum out-of plane deviation of 0.101 (5) Å for atom O4. The ligand plane folds with the chelate plane O1/O3/Mn1, at an angle of 16.0 (1)°.

As shown in Fig. 2, with details in Table 2, extensive intermolecular hydrogen bonding produces a three-dimensional hydrogen-bonded framework. The uncoordinated imidazole N8—H8 of the Hpybim ligand donates the H atom to the carboxyl O1 atom of the molecule related by the inversion centre at (1/2, 1/2, 1/2) (see figure S1 in the Supplementary material). Similarly, the protonated N1—H1 moiety of the Huca2- ligand donates the H1 atom to the uncoordinated carbonyl O4 atom of the molecule related by the inversion centre at (1/2, 1/2, 0) to yield a one-dimensional chain extending in the c direction (fig. S2 in the Supplementary material). The lattice water molecule (O5) connects to three [Mn(Huca)(Hpybim)2] monomers (Table 2 and Fig. S3), to produce a three-dimensional hydrogen-bonded framework. There are, in addition, two types of partial ππ stacking interactions between inversion-related pybim ligands. The centroid-to-centroid separations are 3.705 (3) Å between the N3, C6–C10 rings at (x, y, z) and (-x, 1 - y, -z) and 3.797 (3) Å between the ring N6, C18–C22 at (x, y, z) and the ring C24–C29 at (1 - x, 1 - y, 1 - z).

Related literature top

For related literature, see: Chen et al. (2007); Liu et al. (2009); Ma et al. (2007); Sun & Jin (2004); Weighardt (1989); Xing et al. (2008).

Experimental top

To a hot water–dimethylformamide (15 ml, ca 2/1) solution containing uracil-5-carboxylic acid (0.5 mmol), sodium hydroxide (1.0 mmol) and 2-(2-pyridyl)benzimidazole (1.0 mmol), solid manganese acetate tetrahydrate (0.5 mmol) was added in portions, with continuous stirring. The mixture was refluxed for 30 min and then filtered to remove the precipitate. The light yellow filtrate was allowed to stand undisturbed for 1 month or so at room temperature, during which time pale yellow crystals of (I) suitable for X-ray diffraction analysis were deposited in ca 30% yield. Analysis calculated for C29H22MnN8O5: C 56.41, H 3.59, N 18.15%; found C 56.50, H 3.51, N 18.24%. FT–IR (KBr, cm–1): 3467 (vs, br.), 2022(w), 1622(vs), 1538(m), 1455(w), 1441(w), 1385(s), 1320(w), 1300(s), 1231(w), 1208(w), 1183(w), 1150(w),1050(w), 994(w), 976(w), 898(w), 849(w), 811(m), 751(s), 647(s), 582(w), 501(m), 431(w), 406(w).

Refinement top

The aromatic H atoms were placed in calculated positions, with C—H distances of 0.93 Å and N—H distances of 0.86 Å, and treated as riding atoms [Uiso(H) = 1.2Ueq(C or N)]. The locations of the water H atoms were not well defined in difference maps; the O—H distances were normalized at 0.85 Å then allowed for as riding atoms with Uiso(H) = 1.5Ueq(O)].

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2004); cell refinement: CrystalClear (Rigaku/MSC, 2004); data reduction: CrystalClear (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), showing the atom-labelling scheme and 20% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A packing diagram for (I), showing part of the two-dimensional hydrogen-bonded network derived from the crosslinkage of the one-dimensional chains hydrogen-bonded via O5—H5A···O2 and O5—H5B···O4 hydrogen bonds. Atoms labelled with a plus sign (+) are at the symmetry position (x, -y + 3/2, z + 1/2).
(6-Oxido-2-oxo-1,2-dihydropyrimidine-5-carboxylato- κ2O5,O6)bis[2-(2-pyridyl)-1H-benzimidazole- κ2N2,N3)manganese(II) monohydrate top
Crystal data top
[Mn(C5H2N2O4)(C12H9N3)2]·H2OF(000) = 1268
Mr = 617.49Dx = 1.508 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 6364 reflections
a = 10.915 (6) Åθ = 2.5–27.5°
b = 15.42 (1) ŵ = 0.54 mm1
c = 17.972 (12) ÅT = 293 K
β = 115.945 (2)°Tiny block, yellow
V = 2720 (3) Å30.20 × 0.12 × 0.05 mm
Z = 4
Data collection top
Rigaku MERCURY CCD
diffractometer
6139 independent reflections
Radiation source: fine-focus sealed tube4436 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ and ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 1214
Tmin = 0.910, Tmax = 0.981k = 1917
20068 measured reflectionsl = 2322
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0851P)2 + 0.6684P]
where P = (Fo2 + 2Fc2)/3
6139 reflections(Δ/σ)max < 0.001
388 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Mn(C5H2N2O4)(C12H9N3)2]·H2OV = 2720 (3) Å3
Mr = 617.49Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.915 (6) ŵ = 0.54 mm1
b = 15.42 (1) ÅT = 293 K
c = 17.972 (12) Å0.20 × 0.12 × 0.05 mm
β = 115.945 (2)°
Data collection top
Rigaku MERCURY CCD
diffractometer
6139 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
4436 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.981Rint = 0.049
20068 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.182H-atom parameters constrained
S = 1.09Δρmax = 0.53 e Å3
6139 reflectionsΔρmin = 0.32 e Å3
388 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.33627 (5)0.52565 (3)0.27082 (3)0.04716 (18)
N10.5162 (3)0.55119 (17)0.10162 (15)0.0487 (6)
H10.46290.51480.06580.058*
N20.6961 (3)0.6526 (2)0.13721 (19)0.0650 (8)
N30.1345 (3)0.47808 (18)0.16395 (17)0.0566 (7)
N40.2072 (3)0.64258 (17)0.22493 (16)0.0530 (6)
N50.0023 (3)0.7003 (2)0.14407 (19)0.0690 (8)
H50.08010.70420.10620.083*
N60.4455 (3)0.40145 (18)0.34349 (16)0.0530 (6)
N70.2682 (3)0.50619 (18)0.37145 (16)0.0496 (6)
N80.3265 (3)0.45442 (17)0.49928 (16)0.0528 (6)
H8A0.36750.42400.54340.063*
O10.5187 (2)0.60047 (16)0.33798 (13)0.0577 (6)
O20.6852 (3)0.6947 (2)0.35855 (17)0.0879 (9)
O30.4162 (2)0.51072 (16)0.18224 (14)0.0601 (6)
O40.5996 (3)0.58793 (17)0.01004 (14)0.0655 (7)
O50.7647 (3)0.7596 (2)0.5107 (2)0.1187 (14)
H5A0.75760.74990.46220.178*
H5B0.70820.79870.50910.178*
C10.5960 (3)0.6188 (2)0.23259 (18)0.0485 (7)
C20.5059 (3)0.5582 (2)0.17522 (18)0.0469 (7)
C30.6052 (3)0.5978 (2)0.08043 (19)0.0516 (7)
C40.6866 (4)0.6603 (2)0.2088 (2)0.0626 (9)
H40.74830.69800.24750.075*
C50.6010 (3)0.6401 (2)0.31423 (19)0.0536 (8)
C60.1021 (4)0.3968 (3)0.1321 (3)0.0719 (10)
H60.16680.35320.15470.086*
C70.0219 (5)0.3759 (3)0.0682 (3)0.0834 (12)
H70.03960.31950.04790.100*
C80.1199 (4)0.4397 (3)0.0345 (3)0.0800 (12)
H80.20510.42680.00790.096*
C90.0883 (4)0.5237 (3)0.0651 (2)0.0661 (10)
H90.15170.56810.04300.079*
C100.0384 (4)0.5402 (2)0.1289 (2)0.0556 (8)
C110.0816 (4)0.6276 (2)0.16471 (19)0.0542 (8)
C120.0788 (4)0.7666 (2)0.1954 (2)0.0658 (9)
C130.0492 (5)0.8534 (3)0.2024 (3)0.0876 (13)
H130.03450.87780.16800.105*
C140.1513 (6)0.9011 (3)0.2633 (3)0.0966 (15)
H140.13490.95890.27080.116*
C150.2785 (6)0.8651 (3)0.3141 (3)0.0875 (13)
H150.34380.89980.35430.105*
C160.3100 (4)0.7800 (2)0.3066 (2)0.0686 (10)
H160.39540.75710.34000.082*
C170.2075 (4)0.7294 (2)0.2461 (2)0.0573 (8)
C180.5288 (4)0.3489 (2)0.3268 (2)0.0640 (9)
H180.53280.35540.27640.077*
C190.6087 (4)0.2858 (2)0.3809 (3)0.0693 (10)
H190.66370.25010.36670.083*
C200.6055 (4)0.2763 (2)0.4571 (3)0.0679 (10)
H200.65900.23490.49500.082*
C210.5198 (3)0.3309 (2)0.4748 (2)0.0564 (8)
H210.51550.32660.52520.068*
C220.4419 (3)0.3911 (2)0.41739 (19)0.0487 (7)
C230.3470 (3)0.4508 (2)0.42997 (18)0.0460 (7)
C240.2265 (3)0.5168 (2)0.4853 (2)0.0512 (7)
C250.1657 (4)0.5470 (2)0.5346 (2)0.0632 (9)
H250.19300.52700.58840.076*
C260.0633 (4)0.6079 (3)0.4997 (3)0.0716 (11)
H260.02100.62980.53080.086*
C270.0221 (4)0.6369 (2)0.4188 (3)0.0668 (10)
H270.04920.67650.39680.080*
C280.0837 (3)0.6089 (2)0.3702 (2)0.0613 (9)
H280.05640.62980.31670.074*
C290.1889 (3)0.5479 (2)0.4048 (2)0.0505 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0514 (3)0.0516 (3)0.0393 (3)0.0031 (2)0.0206 (2)0.00512 (19)
N10.0529 (15)0.0514 (14)0.0414 (13)0.0031 (12)0.0202 (12)0.0006 (11)
N20.0694 (19)0.070 (2)0.0612 (17)0.0199 (16)0.0342 (16)0.0124 (15)
N30.0664 (18)0.0521 (16)0.0501 (15)0.0018 (14)0.0244 (14)0.0033 (12)
N40.0577 (16)0.0482 (15)0.0507 (15)0.0024 (13)0.0215 (13)0.0053 (12)
N50.0681 (19)0.0623 (19)0.0617 (18)0.0189 (16)0.0147 (15)0.0031 (15)
N60.0573 (16)0.0520 (15)0.0525 (15)0.0020 (13)0.0268 (13)0.0004 (12)
N70.0505 (15)0.0550 (15)0.0447 (14)0.0029 (12)0.0221 (12)0.0061 (12)
N80.0615 (17)0.0535 (15)0.0446 (14)0.0016 (13)0.0241 (13)0.0033 (12)
O10.0618 (14)0.0696 (15)0.0399 (11)0.0032 (12)0.0204 (10)0.0005 (10)
O20.0781 (18)0.116 (2)0.0685 (17)0.0293 (18)0.0307 (15)0.0404 (17)
O30.0700 (15)0.0691 (15)0.0525 (13)0.0168 (12)0.0372 (13)0.0104 (11)
O40.0782 (17)0.0738 (16)0.0537 (13)0.0177 (13)0.0374 (13)0.0062 (12)
O50.081 (2)0.147 (3)0.115 (3)0.006 (2)0.0315 (19)0.080 (3)
C10.0465 (16)0.0537 (18)0.0437 (16)0.0049 (14)0.0182 (14)0.0000 (13)
C20.0514 (17)0.0476 (16)0.0432 (15)0.0038 (14)0.0220 (14)0.0023 (13)
C30.0577 (19)0.0516 (18)0.0479 (17)0.0019 (15)0.0253 (15)0.0021 (14)
C40.059 (2)0.069 (2)0.061 (2)0.0117 (17)0.0269 (18)0.0136 (18)
C50.0477 (17)0.065 (2)0.0437 (16)0.0053 (16)0.0164 (14)0.0046 (15)
C60.089 (3)0.053 (2)0.069 (2)0.001 (2)0.029 (2)0.0014 (18)
C70.094 (3)0.061 (2)0.080 (3)0.017 (2)0.025 (3)0.012 (2)
C80.067 (2)0.084 (3)0.074 (3)0.009 (2)0.017 (2)0.008 (2)
C90.060 (2)0.071 (2)0.063 (2)0.0006 (18)0.0232 (19)0.0010 (18)
C100.0565 (19)0.058 (2)0.0500 (18)0.0011 (16)0.0216 (16)0.0021 (15)
C110.062 (2)0.0535 (19)0.0455 (16)0.0090 (16)0.0221 (16)0.0038 (14)
C120.086 (3)0.054 (2)0.058 (2)0.0078 (19)0.032 (2)0.0022 (17)
C130.120 (4)0.063 (3)0.083 (3)0.029 (3)0.047 (3)0.007 (2)
C140.148 (5)0.055 (2)0.102 (4)0.007 (3)0.069 (4)0.007 (2)
C150.121 (4)0.060 (2)0.095 (3)0.021 (3)0.059 (3)0.017 (2)
C160.085 (3)0.056 (2)0.070 (2)0.0124 (19)0.039 (2)0.0054 (18)
C170.072 (2)0.0508 (19)0.0557 (19)0.0002 (17)0.0338 (18)0.0042 (15)
C180.069 (2)0.065 (2)0.069 (2)0.0024 (19)0.039 (2)0.0061 (18)
C190.063 (2)0.057 (2)0.092 (3)0.0047 (18)0.038 (2)0.006 (2)
C200.065 (2)0.050 (2)0.084 (3)0.0055 (17)0.027 (2)0.0067 (19)
C210.0559 (19)0.0540 (19)0.0567 (18)0.0010 (16)0.0224 (16)0.0034 (15)
C220.0524 (17)0.0481 (17)0.0463 (16)0.0039 (14)0.0222 (14)0.0020 (13)
C230.0467 (16)0.0502 (17)0.0419 (15)0.0045 (13)0.0200 (13)0.0012 (13)
C240.0544 (18)0.0512 (18)0.0528 (18)0.0065 (15)0.0279 (16)0.0038 (14)
C250.073 (2)0.064 (2)0.066 (2)0.0114 (18)0.043 (2)0.0111 (17)
C260.077 (2)0.068 (2)0.088 (3)0.006 (2)0.053 (2)0.017 (2)
C270.063 (2)0.060 (2)0.085 (3)0.0041 (17)0.039 (2)0.004 (2)
C280.060 (2)0.061 (2)0.064 (2)0.0068 (17)0.0279 (18)0.0077 (17)
C290.0515 (18)0.0511 (18)0.0530 (18)0.0006 (14)0.0268 (15)0.0006 (14)
Geometric parameters (Å, º) top
Mn1—O32.136 (2)C7—C81.383 (6)
Mn1—O12.156 (3)C7—H70.9300
Mn1—N42.213 (3)C8—C91.390 (6)
Mn1—N72.256 (3)C8—H80.9300
Mn1—N32.319 (3)C9—C101.380 (5)
Mn1—N62.331 (3)C9—H90.9300
N1—C21.380 (4)C10—C111.480 (5)
N1—C31.389 (4)C12—C131.395 (5)
N1—H10.8600C12—C171.419 (5)
N2—C41.341 (5)C13—C141.384 (7)
N2—C31.361 (4)C13—H130.9300
N3—C101.354 (4)C14—C151.400 (7)
N3—C61.358 (5)C14—H140.9300
N4—C111.343 (4)C15—C161.378 (6)
N4—C171.392 (4)C15—H150.9300
N5—C111.365 (4)C16—C171.407 (5)
N5—C121.385 (5)C16—H160.9300
N5—H50.8600C18—C191.384 (5)
N6—C181.346 (4)C18—H180.9300
N6—C221.355 (4)C19—C201.392 (5)
N7—C231.336 (4)C19—H190.9300
N7—C291.405 (4)C20—C211.395 (5)
N8—C231.360 (4)C20—H200.9300
N8—C241.392 (4)C21—C221.371 (4)
N8—H8A0.8600C21—H210.9300
O1—C51.303 (4)C22—C231.475 (4)
O2—C51.244 (4)C24—C251.399 (5)
O3—C21.272 (4)C24—C291.404 (5)
O4—C31.249 (4)C25—C261.383 (6)
O5—H5A0.8537C25—H250.9300
O5—H5B0.8539C26—C271.394 (6)
C1—C41.393 (5)C26—H260.9300
C1—C21.419 (4)C27—C281.385 (5)
C1—C51.481 (4)C27—H270.9300
C4—H40.9300C28—C291.403 (5)
C6—C71.377 (6)C28—H280.9300
C6—H60.9300
O3—Mn1—O184.07 (9)C10—C9—C8119.1 (4)
O3—Mn1—N4102.18 (11)C10—C9—H9120.5
O1—Mn1—N493.10 (10)C8—C9—H9120.5
O3—Mn1—N7165.53 (11)N3—C10—C9123.1 (3)
O1—Mn1—N799.77 (10)N3—C10—C11114.0 (3)
N4—Mn1—N791.59 (10)C9—C10—C11122.8 (3)
O3—Mn1—N384.16 (11)N4—C11—N5112.4 (3)
O1—Mn1—N3160.52 (9)N4—C11—C10121.7 (3)
N4—Mn1—N374.34 (11)N5—C11—C10125.9 (3)
N7—Mn1—N395.47 (11)N5—C12—C13132.2 (4)
O3—Mn1—N693.08 (10)N5—C12—C17105.6 (3)
O1—Mn1—N690.31 (10)C13—C12—C17122.2 (4)
N4—Mn1—N6164.63 (9)C14—C13—C12116.3 (4)
N7—Mn1—N673.05 (10)C14—C13—H13121.8
N3—Mn1—N6105.77 (10)C12—C13—H13121.8
C2—N1—C3125.6 (3)C13—C14—C15122.1 (4)
C2—N1—H1117.2C13—C14—H14119.0
C3—N1—H1117.2C15—C14—H14119.0
C4—N2—C3115.9 (3)C16—C15—C14122.2 (4)
C10—N3—C6116.8 (3)C16—C15—H15118.9
C10—N3—Mn1115.0 (2)C14—C15—H15118.9
C6—N3—Mn1128.2 (3)C15—C16—C17117.1 (4)
C11—N4—C17105.3 (3)C15—C16—H16121.5
C11—N4—Mn1114.8 (2)C17—C16—H16121.5
C17—N4—Mn1139.2 (2)N4—C17—C16130.6 (3)
C11—N5—C12107.4 (3)N4—C17—C12109.3 (3)
C11—N5—H5126.3C16—C17—C12120.1 (3)
C12—N5—H5126.3N6—C18—C19123.1 (3)
C18—N6—C22117.4 (3)N6—C18—H18118.5
C18—N6—Mn1126.8 (2)C19—C18—H18118.5
C22—N6—Mn1114.8 (2)C18—C19—C20119.1 (3)
C23—N7—C29105.1 (2)C18—C19—H19120.4
C23—N7—Mn1113.07 (19)C20—C19—H19120.4
C29—N7—Mn1139.6 (2)C19—C20—C21117.9 (3)
C23—N8—C24107.0 (3)C19—C20—H20121.0
C23—N8—H8A126.5C21—C20—H20121.0
C24—N8—H8A126.5C22—C21—C20119.6 (3)
C5—O1—Mn1131.9 (2)C22—C21—H21120.2
C2—O3—Mn1126.5 (2)C20—C21—H21120.2
H5A—O5—H5B110.3N6—C22—C21122.9 (3)
C4—C1—C2116.0 (3)N6—C22—C23113.6 (3)
C4—C1—C5118.5 (3)C21—C22—C23123.5 (3)
C2—C1—C5125.4 (3)N7—C23—N8112.8 (3)
O3—C2—N1116.0 (3)N7—C23—C22122.1 (3)
O3—C2—C1128.7 (3)N8—C23—C22125.0 (3)
N1—C2—C1115.3 (3)N8—C24—C25131.8 (3)
O4—C3—N2122.1 (3)N8—C24—C29106.0 (3)
O4—C3—N1119.0 (3)C25—C24—C29122.2 (3)
N2—C3—N1118.9 (3)C26—C25—C24116.9 (4)
N2—C4—C1128.1 (3)C26—C25—H25121.6
N2—C4—H4116.0C24—C25—H25121.6
C1—C4—H4116.0C25—C26—C27121.3 (3)
O2—C5—O1122.0 (3)C25—C26—H26119.4
O2—C5—C1118.8 (3)C27—C26—H26119.4
O1—C5—C1119.2 (3)C28—C27—C26122.2 (4)
N3—C6—C7123.2 (4)C28—C27—H27118.9
N3—C6—H6118.4C26—C27—H27118.9
C7—C6—H6118.4C27—C28—C29117.3 (3)
C6—C7—C8119.3 (4)C27—C28—H28121.3
C6—C7—H7120.4C29—C28—H28121.3
C8—C7—H7120.4C28—C29—C24120.0 (3)
C7—C8—C9118.6 (4)C28—C29—N7130.9 (3)
C7—C8—H8120.7C24—C29—N7109.0 (3)
C9—C8—H8120.7
O3—Mn1—N3—C10106.6 (2)C6—C7—C8—C91.6 (7)
O1—Mn1—N3—C1053.6 (4)C7—C8—C9—C101.1 (6)
N4—Mn1—N3—C102.2 (2)C6—N3—C10—C91.4 (5)
N7—Mn1—N3—C1087.9 (2)Mn1—N3—C10—C9179.3 (3)
N6—Mn1—N3—C10161.8 (2)C6—N3—C10—C11178.3 (3)
O3—Mn1—N3—C672.6 (3)Mn1—N3—C10—C111.0 (4)
O1—Mn1—N3—C6125.6 (3)C8—C9—C10—N30.5 (6)
N4—Mn1—N3—C6177.0 (3)C8—C9—C10—C11179.2 (3)
N7—Mn1—N3—C692.9 (3)C17—N4—C11—N51.9 (4)
N6—Mn1—N3—C619.0 (3)Mn1—N4—C11—N5174.3 (2)
O3—Mn1—N4—C1183.4 (2)C17—N4—C11—C10176.4 (3)
O1—Mn1—N4—C11168.0 (2)Mn1—N4—C11—C103.9 (4)
N7—Mn1—N4—C1192.1 (2)C12—N5—C11—N41.8 (4)
N3—Mn1—N4—C113.1 (2)C12—N5—C11—C10176.4 (3)
N6—Mn1—N4—C1189.4 (4)N3—C10—C11—N41.9 (5)
O3—Mn1—N4—C17107.8 (3)C9—C10—C11—N4177.8 (3)
O1—Mn1—N4—C1723.2 (3)N3—C10—C11—N5176.1 (3)
N7—Mn1—N4—C1776.7 (3)C9—C10—C11—N54.3 (6)
N3—Mn1—N4—C17171.9 (3)C11—N5—C12—C13179.1 (4)
N6—Mn1—N4—C1779.4 (5)C11—N5—C12—C170.9 (4)
O3—Mn1—N6—C181.6 (3)N5—C12—C13—C14178.3 (4)
O1—Mn1—N6—C1882.5 (3)C17—C12—C13—C141.7 (6)
N4—Mn1—N6—C18174.6 (4)C12—C13—C14—C151.3 (7)
N7—Mn1—N6—C18177.4 (3)C13—C14—C15—C160.1 (7)
N3—Mn1—N6—C1886.4 (3)C14—C15—C16—C171.1 (6)
O3—Mn1—N6—C22169.5 (2)C11—N4—C17—C16178.3 (3)
O1—Mn1—N6—C2285.4 (2)Mn1—N4—C17—C168.8 (6)
N4—Mn1—N6—C2217.5 (5)C11—N4—C17—C121.2 (4)
N7—Mn1—N6—C2214.7 (2)Mn1—N4—C17—C12170.7 (3)
N3—Mn1—N6—C22105.7 (2)C15—C16—C17—N4178.7 (4)
O3—Mn1—N7—C2332.6 (5)C15—C16—C17—C120.8 (5)
O1—Mn1—N7—C2371.8 (2)N5—C12—C17—N40.2 (4)
N4—Mn1—N7—C23165.2 (2)C13—C12—C17—N4179.8 (3)
N3—Mn1—N7—C23120.4 (2)N5—C12—C17—C16179.3 (3)
N6—Mn1—N7—C2315.5 (2)C13—C12—C17—C160.7 (6)
O3—Mn1—N7—C29167.7 (3)C22—N6—C18—C190.4 (5)
O1—Mn1—N7—C2988.0 (3)Mn1—N6—C18—C19168.0 (3)
N4—Mn1—N7—C295.4 (3)N6—C18—C19—C201.1 (6)
N3—Mn1—N7—C2979.8 (3)C18—C19—C20—C210.8 (6)
N6—Mn1—N7—C29175.3 (3)C19—C20—C21—C220.3 (5)
O3—Mn1—O1—C521.4 (3)C18—N6—C22—C210.8 (5)
N4—Mn1—O1—C580.5 (3)Mn1—N6—C22—C21168.3 (2)
N7—Mn1—O1—C5172.6 (3)C18—N6—C22—C23179.5 (3)
N3—Mn1—O1—C531.6 (5)Mn1—N6—C22—C2311.4 (3)
N6—Mn1—O1—C5114.5 (3)C20—C21—C22—N61.1 (5)
O1—Mn1—O3—C219.6 (3)C20—C21—C22—C23179.2 (3)
N4—Mn1—O3—C272.3 (3)C29—N7—C23—N81.1 (4)
N7—Mn1—O3—C2125.9 (4)Mn1—N7—C23—N8165.5 (2)
N3—Mn1—O3—C2144.8 (3)C29—N7—C23—C22177.2 (3)
N6—Mn1—O3—C2109.6 (3)Mn1—N7—C23—C2216.3 (4)
Mn1—O3—C2—N1163.6 (2)C24—N8—C23—N70.2 (4)
Mn1—O3—C2—C115.3 (5)C24—N8—C23—C22178.1 (3)
C3—N1—C2—O3178.9 (3)N6—C22—C23—N73.1 (4)
C3—N1—C2—C10.2 (4)C21—C22—C23—N7177.1 (3)
C4—C1—C2—O3178.4 (3)N6—C22—C23—N8178.8 (3)
C5—C1—C2—O31.2 (5)C21—C22—C23—N80.9 (5)
C4—C1—C2—N12.7 (4)C23—N8—C24—C25179.7 (3)
C5—C1—C2—N1177.7 (3)C23—N8—C24—C290.9 (3)
C4—N2—C3—O4176.8 (3)N8—C24—C25—C26177.1 (3)
C4—N2—C3—N13.5 (5)C29—C24—C25—C261.6 (5)
C2—N1—C3—O4176.8 (3)C24—C25—C26—C270.6 (6)
C2—N1—C3—N23.5 (5)C25—C26—C27—C282.1 (6)
C3—N2—C4—C10.5 (6)C26—C27—C28—C291.3 (6)
C2—C1—C4—N22.7 (6)C27—C28—C29—C240.9 (5)
C5—C1—C4—N2177.6 (4)C27—C28—C29—N7178.6 (3)
Mn1—O1—C5—O2164.8 (3)N8—C24—C29—C28176.6 (3)
Mn1—O1—C5—C116.1 (5)C25—C24—C29—C282.4 (5)
C4—C1—C5—O20.5 (5)N8—C24—C29—N71.6 (4)
C2—C1—C5—O2179.9 (3)C25—C24—C29—N7179.4 (3)
C4—C1—C5—O1178.6 (3)C23—N7—C29—C28176.3 (3)
C2—C1—C5—O11.0 (5)Mn1—N7—C29—C2823.0 (6)
C10—N3—C6—C70.8 (6)C23—N7—C29—C241.6 (4)
Mn1—N3—C6—C7180.0 (3)Mn1—N7—C29—C24159.1 (3)
N3—C6—C7—C80.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.862.002.830 (4)160
N5—H5···O5ii0.861.892.722 (4)162
N8—H8A···O1iii0.861.982.793 (4)158
O5—H5A···O20.851.882.675 (4)154
O5—H5B···O4iv0.852.122.959 (4)169
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y+3/2, z1/2; (iii) x+1, y+1, z+1; (iv) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn(C5H2N2O4)(C12H9N3)2]·H2O
Mr617.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.915 (6), 15.42 (1), 17.972 (12)
β (°) 115.945 (2)
V3)2720 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.54
Crystal size (mm)0.20 × 0.12 × 0.05
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.910, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
20068, 6139, 4436
Rint0.049
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.182, 1.09
No. of reflections6139
No. of parameters388
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.32

Computer programs: CrystalClear (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Selected bond lengths (Å) top
Mn1—O32.136 (2)Mn1—N72.256 (3)
Mn1—O12.156 (3)Mn1—N32.319 (3)
Mn1—N42.213 (3)Mn1—N62.331 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.862.002.830 (4)160
N5—H5···O5ii0.861.892.722 (4)162
N8—H8A···O1iii0.861.982.793 (4)158
O5—H5A···O20.851.882.675 (4)154
O5—H5B···O4iv0.852.122.959 (4)169
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y+3/2, z1/2; (iii) x+1, y+1, z+1; (iv) x, y+3/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds