Download citation
Download citation
link to html
The mol­ecules of N-(3-tert-butyl-1-phenyl-1H-pyrazol-5-yl)-2-chloro-N-(4-methoxy­benz­yl)acetamide, C23H26ClN3O2, are linked into a chain of edge-fused centrosymmetric rings by a combination of one C-H...O hydrogen bond and one C-H...[pi](arene) hydrogen bond. In N-(3-tert-butyl-1-phenyl-1H-pyrazol-5-yl)-2-chloro-N-(4-chloro­benz­yl)acetamide, C22H23Cl2N3O, a combination of one C-H...O hydrogen bond and two C-H...[pi](arene) hydrogen bonds, which utilize different aryl rings as the acceptors, link the mol­ecules into sheets. The mol­ecules of S-[N-(3-tert-butyl-1-phenyl-1H-pyrazol-5-yl)-N-(4-methyl­benz­yl)carbamo­yl]methyl O-ethyl carbonodithio­ate, C26H31N3O2S2, are also linked into sheets, now by a combination of two C-H...O hydrogen bonds, both of which utilize the amide O atom as the acceptor, and two C-H...[pi](arene) hydrogen bonds, which utilize different aryl groups as the acceptors.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110006244/sk3367sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110006244/sk3367Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110006244/sk3367IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110006244/sk3367IIIsup4.hkl
Contains datablock III

CCDC references: 774894; 774895; 774896

Comment top

Fused pyrazole derivatives have a wide range of potential applications (Elguero, 1984,1996) and, in connection with a synthetic study of new routes to such compounds, we report here the structure of three new compounds, (I)–(III) (Figs. 1–3), prepared as intermediates in a synthetic pathway designed to produce fused pyrazole compounds from alkylxanthate derivatives via free-radical cyclization processes (Binot et al., 2003; Bacqué et al., 2004; Ibarra-Rivera et al., 2007). In this synthetic sequence (see Scheme) benzyl-substituted N-(3-tert-butyl-1-phenyl-1H-pyrazol-5-yl)-2-chloro- N-benzylacetamides are prepared by reaction of the corresponding 3-tert-butyl-1-phenyl-5-benzylamino-1H-pyrazoles with chloroacetyl chloride, followed by reaction with potassium O-ethyl carbonodithioate to introduce the alkylxanthate moiety. Here we report the molecular and supramolecular structures of two chloroacetamide intermediates, N-(3-tert-butyl-1-phenyl-1H-pyrazol-5-yl)-2-chloro-N– (4-methoxybenzyl)acetamide, (I), and N-(3-tert-butyl-1-phenyl-1H-pyrazol-5-yl)-2-chloro-N– (4-chlorobenzyl)acetamide, (II), and one carbonodithioate intermediate, S-2-[(3-tert-butyl-1-phenyl-1H-pyrazol-5-yl)- (4-methylbenzylamino)]-2-oxoethyl O-ethyl carbonodithioate, (III), all of which have interesting patterns of hydrogen bonding in their crystal structures. We compare the molecular structures, particularly the molecular conformations, of compounds (I)–(III) with that of the simple acetamide N-(3-tert-butyl-1-phenyl-1H-pyrazol-5-yl)-N– (4-methoxybenzyl)acetamide, (IV), whose structure was reported recently (Castillo et al., 2010), and we also compare the hydrogen bonding in (I) with that in (IV).

Compounds (I) and (II) differ only in the identity of the 4-substituent in the benzyl unit, 4-methoxy in compound (I) and 4-chloro in compound (II), but despite this rather small change of substituent, these two compounds crystallize in different crystal systems, triclinic for (I) and monoclinic for (II). Similarly, the pattern of the intermolecular hydrogen bonds is different in (I) and (II) leading to different forms of supramolecular aggregation, as discussed below, despite the fact that in neither compound does the substituent in question play any direct role in the intermolecular interactions. Compounds (I) and (IV) (Castillo et al., 2010) are even closer in similarity, differing only by the replacement of one of the acetyl H atoms in (IV) by a Cl atom in (I): these two compounds crystallize in the same space group, P1, with unit-cell volumes which differ by less than 1%, while the corresponding unit-cell angles differ by less than 2°. However, unit-cell vectors a and b are larger for (I) by circa 2.5% and 6.6%, while the unit-cell vector c is smaller for (I) by circa 7.1%. This degree of similarity raises the question of whether (I) and (IV) can be regarded as isomorphous or isostructural; examination of the atom coordinates for the two compounds shows that the coordinates of corresponding atoms are approximately related to one another by the non-crystallographic transformation (1 - y, 1 - x, 1/2 - z), but, as discussed below, the two reference molecules are selected to be the same conformational enantiomer and the hydrogen-bonded structures of (I) and (IV) are significantly different.

The molecular conformations of compounds (I)–(III) can, apart from the carbonodithioate portion of compound (III), be defined in terms of a rather small number of torsion angles, and Table 1 lists the values of these angles along with the corresponding values for compound (IV) (Castillo et al., 2010). It is immediately evident that all four compounds adopt very similar conformations for their common fragments, with the exception of the orientation of the tert-butyl groups. In each of (I)–(IV), one methyl C atom of the tert-butyl group, denoted C32 in each case, lies close to, but not in the plane of, the adjacent pyrazole ring. However, while in compounds (I) and (IV), atom C32 lies remote from the ring atom N2, in compounds (II) and (III) this atom lies close to N2 (Figs. 1–3, Table 1). The tert-butyl group has local threefold rotational symmetry, and in compounds (I)–(IV) it is bonded directly to a planar pyrazole ring; hence the rotational barriers about the bonds C3—C31 approximate to sixfold barriers and, as such, they are expected to be very low, providing essentially no intramolecular hindrance to rotation about this bond. In addition, there are no direction-specific intermolecular interactions present which might provide intermolecular hindrance to such a rotation. Indeed this type of rapid rotation of tert-butyl groups has been observed in a number of systems using solid-state NMR spectroscopy (Riddell & Rogerson, 1996, 1997). Thus it is possible that the observed orientations of the tert-butyl groups are determined primarily by the space left available by the supramolecular aggregation. None of the molecules of (I)–(III) exhibits any internal symmetry and so all are conformationally chiral, but in every case the space group accommodates equal numbers of the two conformational enantiomers.

The supramolecular aggregation in compounds (I)–(III) is controlled by a combination of C—H···O and C—H···π(arene) hydrogen bonds (Table 2 where, for each compound, the C—H···O hydrogen bonds are listed first). However, C—H···N hydrogen bonds and aromatic π···π stacking interactions are absent from the structures of all three compounds. While the amide atom O58 acts as a hydrogen-bond acceptor in each of (I)–(III), as indeed it does in compound (IV) also (Castillo et al., 2010), different hydrogen-bond donors to O58 are active in each of (I)–(III). In compound (I) only the unsubstituted aryl ring acts as an acceptor of a C—H···π(arene) hydrogen bond, but in compounds (II) and (III) both aryl rings accept hydrogen bonds. The hydrogen-bonded structure of compound (I) is one-dimensional and thus fairly simple, whereas the hydrogen-bonded structures of compounds (II) and (III) are both two-dimensional and considerably more complex than that of compound (I).

In compound (I), the two independent hydrogen bonds (Table 2) generate a chain of edge-fused centrosymmetric rings running parallel to the [111] direction, with R22(16) (Bernstein et al., 1995) rings built from pairs of C—H···O hydrogen bonds centred at (n, n, n - 1/2), where n represents an integer, and with the rings built from pairs of C—H···π(arene) hydrogen bonds centred at (n + 1/2, n + 1/2, n), where n again represents an integer (Fig. 4).

The hydrogen-bonded structure of compound (II) takes the form of a sheet, whose formation is readily analysed using the substructure approach (Ferguson et al., 1998a,b; Gregson et al., 2000). Two independent one-dimensional substructures can be identified in the crystal structure of compound (II). In the first of these, the combined actions of the C—H···O hydrogen bond and the C—H···π(arene) hydrogen bond which utilizes the unsubstituted aryl ring as the acceptor link molecules related by the 21 screw axis along (1/2, y, 1/4) into a chain of symmetry-related rings running parallel to the [010] direction, and within which the C—H···O interaction forms a C(5) chain (Fig. 5). In the second, and simpler, substructure, a single C—H···π(arene) hydrogen bond using the substituted aryl ring as the acceptor links molecules related by the c-glide plane at y = 0.25 into a chain running parallel to the [001] direction (Fig. 6).

Although compound (III) crystallizes in space group P1 with only one symmetry operator other than translation available, the occurrence in the structure of four independent hydrogen bonds, each of them linking pairs of molecules related to one another by inversion (Table 2), permits the development of a two-dimensional hydrogen-bonded structure. As with the structure of compound (II), it is convenient to consider the formation of the sheet structure in compound (III) in terms of two one-dimensional substructures. The two C—H···O hydrogen bonds in the structure of (III) both utilize the same atom, O58, as the acceptor and, in combination, these two interactions generate a chain of edge-fused centrosymmetric rings running parallel to the [001] direction. Within this chain, R22(16) rings centred at (1/2, 1/2, n), where n represents an integer, alternate with R22(18) rings centred at (1/2, 1/2, n + 1/2), where n again represents an integer (Fig. 7). The combination of the R22(18) ring with the centrosymmetric ring generated by the C—H···π(arene) hydrogen bond involving the unsubstituted aryl group produces a second chain of edge-fused centrosymmetric rings, this time running parallel to the [100] direction. The rings built from pairs of C—H···.O hydrogen bonds are centred at (n + 1/2, 1/2, 1/2), and those built from paired C—H···π(arene) hydrogen bonds are centred at (n, 1/2, 1/2), where in each case n represents an integer (Fig. 8). The formation of two chains of rings parallel to the [100] and [001] directions, respectively, is sufficient to generate a sheet of considerable complexity lying parallel to (010). The second C—H···π(arene) hydrogen bond, in which the substituted aryl ring acts as the acceptor, lies within this sheet and it can be regarded as a modest reinforcement of the chain parallel to [001].

It is of interest briefly to compare the hydrogen-bonded structures of compounds (I) and (IV), particularly in view of the similarity in their unit-cell dimensions. In compound (IV) (Castillo et al., 2010) a chain of edge-fused centrosymmetric rings is generated by the combination of one C—H···O hydrogen bond and one C—H···π(arene) hydrogen bond, rather as in compound (I). However, the rings formed by the C—H···O hydrogen bond are of R22(20) type in (IV) as opposed to R22(16) type in (I), and the chain runs parallel to [100] in (IV), i.e. parallel to the shortest unit-cell edge, whereas in (I) the chain runs parallel to [111], i.e. parallel to a body-diagonal of the unit cell.

Related literature top

For related literature, see: Castillo et al. (2010); Bacqué et al. (2004); Bernstein et al. (1995); Binot et al. (2003); Elguero (1984, 1996); Ferguson et al. (1998a, 1998b); Gregson et al. (2000); Ibarra-Rivera, Gámez-Montaño & Miranda (2007); Riddell & Rogerson (1996, 1997).

Experimental top

For the synthesis of compounds (I) and (II), mixtures of chloroacetyl chloride (0.1 cm3, 1.25 mmol), dichloromethane (8 cm3) and triethylamine (0.3 cm3, 2.15 mmol) were cooled in an ice-water bath under an argon atmosphere. To each mixture, a solution (0.6 mmol) of the appropriate 3-tert-butyl-1-phenyl-5-(benzyl)amino-1H-pyrazole, [3-tert-butyl-1-phenyl-5-(4-methoxybenzyl)amino-1H-pyrazole for (I) or 3-tert-butyl-1-phenyl-5-(4-chlorobenzyl)amino-1H-pyrazole for (II)] in dichloromethane (2 cm3) was added and each mixture was then left at room temperature for 10 h. In each case, the solvent was removed under reduced pressure and the resulting solid product was purified by column chromatography on silica gel (ethyl acetate/dichloromethane gradient) to obtain compound (I) in 86% yield and compound (II) in 82% yield. Crystals of (I) and (II) suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in air, of solutions in ethanol. (I) Yellow crystals, m.p. 353 K; MS (70 eV) m/z (%) = 411/413 (30/10) [M+], 226 (43), 121 (100); elemental analysis, found C 67.3, H 6.4, N 9.8%, C23H26ClN3O2 requires C 67.1, H 6.4, N 10.2%. (II) Colourless crystals, m.p. 432 K; MS (70 eV) m/z (%) = 419/417/415 (6/34/51) [M+], 368/366 (23/63) [M-49], 340/338 (19/52), [M—Ph], 127/125 (29/100) [C7H6Cl], 77 (40) [Ph]; HRMS found 415.1213, required for C22H23N3OCl2 415.1218.

For the synthesis of compound (III) a solution of N-(3-tert-butyl-1-phenyl-1H-pyrazol-5-yl)-2-chloro-N– (4-methylbenzyl)acetamide (0.49 mmol), prepared as for compounds (I) and (II), and potassium O-ethyl carbonodithioate (0.73 mmol) in acetonitrile (6 cm3) was stirred at room temperature in the absence of light for 2.5 h. The solvent was removed under reduced pressure and the residue purified by column chromatography on silica gel (ethyl acetate/dichloromethane gradient) to obtain compound (III) in 94% yield. Yellow crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in air, of a solution in ethanol. M.p. 359 K; MS (70 eV) m/z (%) = 481 (2) [M+], 319 (40), 163 (30), 105 (100); elemental analysis, found C 64.8, H 6.4, N 8.7%, C26H31N3O2S2 requires C 64.8, H 6.5, N 8.7%.

Refinement top

All H atoms were located in difference maps and then treated as riding atoms in geometrically idealized positions, with C—H distances 0.95 Å (aromatic and pyrazole), 0.98 Å (CH3) or 0.99 Å (CH2), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms. The quality of the crystals for compound (III) was consistently rather low as indicated by the high value of the merging index, 0.148, and the lower precision of the geometric parameters as compared with those for compounds (I) and (II). For each of (I)–(III), the reference molecule was selected to have the same configuration at atom N51 and the same orientation of the aryl ring (C11—C16) as found in compound (IV) (Castillo et al., 2010), and the atom-labelling schemes for (I)–(III) are based on that employed in (IV).

Computing details top

For all compounds, data collection: COLLECT (Hooft, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular structure of compound (II) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. The molecular structure of compound (III) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4] Fig. 4. A stereoview of part of the crystal structure of compound (I) showing the formation of a hydrogen-bonded chain of edge-fused centrosymmetric rings running parallel to [111]. For the sake of clarity the H atoms not involved in the motifs shown have been omitted.
[Figure 5] Fig. 5. A stereoview of part of the crystal structure of compound (II) showing the formation of a hydrogen-bonded chain of edge-fused centrosymmetric rings running parallel to [010]. For the sake of clarity the H atoms not involved in the motifs shown have been omitted.
[Figure 6] Fig. 6. A stereoview of part of the crystal structure of compound (II) showing the formation of a hydrogen-bonded chain running parallel to [001]. For the sake of clarity the H atoms not involved in the motif shown have been omitted.
[Figure 7] Fig. 7. A stereoview of part of the crystal structure of compound (III) showing the formation of a hydrogen-bonded chain of edge-fused centrosymmetric rings running parallel to [001]. For the sake of clarity the H atoms not involved in the motifs shown have been omitted.
[Figure 8] Fig. 8. A stereoview of part of the crystal structure of compound (III) showing the formation of a hydrogen-bonded chain of edge-fused centrosymmetric rings running parallel to [100]. For the sake of clarity the H atoms not involved in the motifs shown have been omitted.
(I) N-(3-tert-butyl-1-phenyl-1H-pyrazol-5-yl)-2-chloro- N-(4-methoxybenzyl)acetamide top
Crystal data top
C23H26ClN3O2Z = 2
Mr = 411.92F(000) = 436
Triclinic, P1Dx = 1.311 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.0761 (12) ÅCell parameters from 4801 reflections
b = 10.5208 (8) Åθ = 2.6–27.5°
c = 11.1868 (19) ŵ = 0.21 mm1
α = 96.546 (7)°T = 120 K
β = 95.790 (9)°Block, yellow
γ = 116.035 (9)°0.50 × 0.26 × 0.22 mm
V = 1043.4 (2) Å3
Data collection top
Bruker Nonius KappaCCD
diffractometer
4801 independent reflections
Radiation source: Bruker Nonius FR591 rotating-anode2893 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.6°
ϕ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1313
Tmin = 0.914, Tmax = 0.956l = 1414
27179 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0719P)2 + 0.3396P]
where P = (Fo2 + 2Fc2)/3
4801 reflections(Δ/σ)max = 0.001
266 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C23H26ClN3O2γ = 116.035 (9)°
Mr = 411.92V = 1043.4 (2) Å3
Triclinic, P1Z = 2
a = 10.0761 (12) ÅMo Kα radiation
b = 10.5208 (8) ŵ = 0.21 mm1
c = 11.1868 (19) ÅT = 120 K
α = 96.546 (7)°0.50 × 0.26 × 0.22 mm
β = 95.790 (9)°
Data collection top
Bruker Nonius KappaCCD
diffractometer
4801 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2893 reflections with I > 2σ(I)
Tmin = 0.914, Tmax = 0.956Rint = 0.068
27179 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.05Δρmax = 0.37 e Å3
4801 reflectionsΔρmin = 0.31 e Å3
266 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3765 (2)0.56271 (19)0.13012 (18)0.0248 (4)
N20.2675 (2)0.42991 (19)0.13705 (18)0.0269 (5)
C30.3274 (3)0.3843 (2)0.2223 (2)0.0249 (5)
C40.4748 (3)0.4863 (2)0.2714 (2)0.0268 (5)
H40.54180.47850.33290.032*
C50.5014 (2)0.5986 (2)0.2124 (2)0.0245 (5)
C110.3406 (3)0.6500 (2)0.0580 (2)0.0254 (5)
C120.4402 (3)0.7316 (3)0.0107 (2)0.0329 (6)
H120.53340.72950.01200.040*
C130.4023 (3)0.8168 (3)0.0780 (2)0.0374 (7)
H130.47110.87570.12430.045*
C140.2660 (3)0.8170 (3)0.0783 (2)0.0368 (7)
H140.24040.87490.12580.044*
C150.1663 (3)0.7335 (3)0.0100 (2)0.0357 (6)
H150.07190.73350.01050.043*
C160.2039 (3)0.6499 (3)0.0591 (2)0.0302 (6)
H160.13610.59270.10700.036*
C310.2327 (3)0.2414 (2)0.2581 (2)0.0290 (6)
C320.3176 (3)0.2194 (3)0.3667 (3)0.0435 (7)
H32A0.41160.22360.34630.065*
H32B0.25640.12530.38750.065*
H32C0.33960.29500.43650.065*
C330.1901 (3)0.1195 (3)0.1521 (3)0.0455 (8)
H33A0.12810.02780.17650.068*
H33B0.28110.11890.12900.068*
H33C0.13360.13300.08240.068*
C340.0913 (3)0.2423 (3)0.2924 (3)0.0363 (6)
H34A0.11820.32110.36060.055*
H34B0.02900.15060.31660.055*
H34C0.03550.25570.22210.055*
N510.6248 (2)0.73499 (19)0.22916 (18)0.0242 (4)
C570.7575 (3)0.7518 (3)0.1747 (2)0.0275 (5)
H57A0.81000.85140.15930.033*
H57B0.72430.68610.09510.033*
C510.8657 (3)0.7210 (2)0.2541 (2)0.0270 (5)
C520.8780 (3)0.5956 (3)0.2234 (2)0.0302 (6)
H520.81630.52840.15250.036*
C530.9774 (3)0.5671 (3)0.2936 (2)0.0308 (6)
H530.98430.48060.27100.037*
C541.0676 (3)0.6630 (2)0.3967 (2)0.0258 (5)
C551.0568 (3)0.7887 (2)0.4295 (2)0.0270 (5)
H551.11780.85530.50100.032*
C560.9566 (3)0.8162 (2)0.3574 (2)0.0276 (6)
H560.95010.90290.37950.033*
O541.16455 (19)0.62585 (18)0.45991 (16)0.0339 (4)
C5411.2445 (3)0.7131 (3)0.5737 (2)0.0368 (6)
H54A1.17380.71960.62530.055*
H54B1.31270.80950.56120.055*
H54C1.30240.67080.61380.055*
C580.6270 (3)0.8525 (3)0.2956 (2)0.0264 (5)
O580.73130 (19)0.97125 (17)0.30755 (16)0.0347 (4)
C590.4951 (3)0.8280 (3)0.3600 (2)0.0302 (6)
H59A0.52950.85330.44940.036*
H59B0.42090.72520.34000.036*
Cl590.41073 (7)0.93447 (7)0.31407 (6)0.0374 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0225 (10)0.0223 (10)0.0247 (11)0.0061 (9)0.0010 (8)0.0057 (8)
N20.0223 (11)0.0225 (10)0.0318 (12)0.0058 (9)0.0041 (9)0.0078 (9)
C30.0242 (12)0.0242 (12)0.0272 (13)0.0115 (11)0.0052 (10)0.0058 (10)
C40.0244 (13)0.0279 (13)0.0299 (14)0.0134 (11)0.0044 (10)0.0062 (11)
C50.0198 (12)0.0242 (12)0.0266 (13)0.0084 (10)0.0015 (10)0.0023 (10)
C110.0268 (13)0.0220 (12)0.0222 (13)0.0080 (11)0.0024 (10)0.0025 (10)
C120.0256 (13)0.0330 (14)0.0332 (15)0.0076 (12)0.0007 (11)0.0084 (12)
C130.0325 (15)0.0372 (15)0.0350 (16)0.0078 (13)0.0011 (12)0.0164 (13)
C140.0402 (16)0.0284 (14)0.0371 (16)0.0135 (13)0.0059 (13)0.0080 (12)
C150.0345 (15)0.0357 (15)0.0366 (16)0.0168 (13)0.0009 (12)0.0068 (12)
C160.0300 (14)0.0315 (13)0.0294 (14)0.0138 (12)0.0053 (11)0.0079 (11)
C310.0269 (13)0.0238 (12)0.0370 (15)0.0111 (11)0.0060 (11)0.0088 (11)
C320.0353 (16)0.0371 (15)0.059 (2)0.0145 (13)0.0029 (14)0.0257 (14)
C330.0495 (18)0.0276 (14)0.055 (2)0.0102 (14)0.0232 (16)0.0099 (14)
C340.0307 (14)0.0361 (15)0.0479 (18)0.0158 (13)0.0127 (13)0.0208 (13)
N510.0188 (10)0.0234 (10)0.0280 (11)0.0073 (9)0.0039 (8)0.0046 (8)
C570.0252 (13)0.0302 (13)0.0254 (13)0.0109 (11)0.0064 (10)0.0038 (10)
C510.0205 (12)0.0271 (13)0.0291 (14)0.0067 (11)0.0052 (10)0.0062 (11)
C520.0249 (13)0.0284 (13)0.0306 (14)0.0090 (11)0.0005 (11)0.0027 (11)
C530.0302 (14)0.0251 (13)0.0364 (15)0.0135 (11)0.0046 (12)0.0010 (11)
C540.0212 (12)0.0280 (13)0.0283 (14)0.0107 (11)0.0042 (10)0.0078 (11)
C550.0221 (12)0.0263 (13)0.0258 (14)0.0064 (11)0.0004 (10)0.0022 (10)
C560.0246 (13)0.0230 (12)0.0325 (15)0.0084 (11)0.0046 (11)0.0053 (11)
O540.0314 (10)0.0327 (10)0.0386 (11)0.0173 (8)0.0002 (8)0.0041 (8)
C5410.0302 (14)0.0431 (16)0.0374 (16)0.0179 (13)0.0003 (12)0.0083 (13)
C580.0263 (13)0.0264 (13)0.0268 (14)0.0122 (11)0.0028 (10)0.0070 (10)
O580.0297 (10)0.0244 (9)0.0424 (11)0.0064 (8)0.0051 (8)0.0038 (8)
C590.0339 (14)0.0304 (13)0.0305 (14)0.0168 (12)0.0079 (11)0.0101 (11)
Cl590.0330 (4)0.0368 (4)0.0479 (4)0.0196 (3)0.0067 (3)0.0119 (3)
Geometric parameters (Å, º) top
N1—C51.357 (3)C34—H34A0.9800
N1—N21.364 (2)C34—H34B0.9800
N1—C111.424 (3)C34—H34C0.9800
N2—C31.322 (3)N51—C581.358 (3)
C3—C41.401 (3)N51—C571.474 (3)
C3—C311.511 (3)C57—C511.504 (3)
C4—C51.357 (3)C57—H57A0.9900
C4—H40.9500C57—H57B0.9900
C5—N511.402 (3)C51—C561.377 (3)
C11—C121.373 (3)C51—C521.387 (3)
C11—C161.378 (3)C52—C531.367 (3)
C12—C131.383 (3)C52—H520.9500
C12—H120.9500C53—C541.376 (3)
C13—C141.374 (4)C53—H530.9500
C13—H130.9500C54—O541.366 (3)
C14—C151.378 (4)C54—C551.385 (3)
C14—H140.9500C55—C561.378 (3)
C15—C161.380 (3)C55—H550.9500
C15—H150.9500C56—H560.9500
C16—H160.9500O54—C5411.411 (3)
C31—C321.513 (3)C541—H54A0.9800
C31—C341.516 (3)C541—H54B0.9800
C31—C331.517 (4)C541—H54C0.9800
C32—H32A0.9800C58—O581.210 (3)
C32—H32B0.9800C58—C591.511 (3)
C32—H32C0.9800C59—Cl591.767 (2)
C33—H33A0.9800C59—H59A0.9900
C33—H33B0.9800C59—H59B0.9900
C33—H33C0.9800
C5—N1—N2110.54 (18)C31—C34—H34A109.5
C5—N1—C11129.30 (19)C31—C34—H34B109.5
N2—N1—C11119.28 (18)H34A—C34—H34B109.5
C3—N2—N1105.36 (18)C31—C34—H34C109.5
N2—C3—C4111.2 (2)H34A—C34—H34C109.5
N2—C3—C31119.3 (2)H34B—C34—H34C109.5
C4—C3—C31129.4 (2)C58—N51—C5122.0 (2)
C5—C4—C3105.2 (2)C58—N51—C57118.65 (19)
C5—C4—H4127.4C5—N51—C57119.31 (19)
C3—C4—H4127.4N51—C57—C51113.18 (19)
C4—C5—N1107.6 (2)N51—C57—H57A108.9
C4—C5—N51131.2 (2)C51—C57—H57A108.9
N1—C5—N51121.1 (2)N51—C57—H57B108.9
C12—C11—C16121.3 (2)C51—C57—H57B108.9
C12—C11—N1120.4 (2)H57A—C57—H57B107.8
C16—C11—N1118.3 (2)C56—C51—C52118.1 (2)
C11—C12—C13118.7 (2)C56—C51—C57121.5 (2)
C11—C12—H12120.6C52—C51—C57120.4 (2)
C13—C12—H12120.6C53—C52—C51121.1 (2)
C14—C13—C12120.6 (2)C53—C52—H52119.4
C14—C13—H13119.7C51—C52—H52119.4
C12—C13—H13119.7C52—C53—C54120.3 (2)
C13—C14—C15120.1 (2)C52—C53—H53119.8
C13—C14—H14119.9C54—C53—H53119.8
C15—C14—H14119.9O54—C54—C53116.0 (2)
C14—C15—C16119.8 (2)O54—C54—C55124.4 (2)
C14—C15—H15120.1C53—C54—C55119.6 (2)
C16—C15—H15120.1C56—C55—C54119.3 (2)
C11—C16—C15119.5 (2)C56—C55—H55120.3
C11—C16—H16120.3C54—C55—H55120.3
C15—C16—H16120.3C51—C56—C55121.6 (2)
C3—C31—C32110.1 (2)C51—C56—H56119.2
C3—C31—C34108.42 (19)C55—C56—H56119.2
C32—C31—C34109.1 (2)C54—O54—C541116.92 (19)
C3—C31—C33110.5 (2)O54—C541—H54A109.5
C32—C31—C33109.6 (2)O54—C541—H54B109.5
C34—C31—C33109.1 (2)H54A—C541—H54B109.5
C31—C32—H32A109.5O54—C541—H54C109.5
C31—C32—H32B109.5H54A—C541—H54C109.5
H32A—C32—H32B109.5H54B—C541—H54C109.5
C31—C32—H32C109.5O58—C58—N51122.4 (2)
H32A—C32—H32C109.5O58—C58—C59120.6 (2)
H32B—C32—H32C109.5N51—C58—C59116.9 (2)
C31—C33—H33A109.5C58—C59—Cl59110.01 (16)
C31—C33—H33B109.5C58—C59—H59A109.7
H33A—C33—H33B109.5Cl59—C59—H59A109.7
C31—C33—H33C109.5C58—C59—H59B109.7
H33A—C33—H33C109.5Cl59—C59—H59B109.7
H33B—C33—H33C109.5H59A—C59—H59B108.2
C5—N1—N2—C31.1 (2)N2—C3—C31—C3365.6 (3)
C11—N1—N2—C3171.4 (2)C4—C3—C31—C33118.3 (3)
N1—N2—C3—C40.1 (3)C4—C5—N51—C5897.4 (3)
N1—N2—C3—C31176.91 (19)N1—C5—N51—C5878.3 (3)
N2—C3—C4—C50.9 (3)C4—C5—N51—C5781.7 (3)
C31—C3—C4—C5175.5 (2)N1—C5—N51—C57102.5 (3)
C3—C4—C5—N11.5 (3)C58—N51—C57—C5193.5 (2)
C3—C4—C5—N51174.7 (2)C5—N51—C57—C5185.6 (3)
N2—N1—C5—C41.6 (3)N51—C57—C51—C5674.2 (3)
C11—N1—C5—C4170.7 (2)N51—C57—C51—C52106.8 (3)
N2—N1—C5—N51174.99 (19)C56—C51—C52—C530.0 (4)
C11—N1—C5—N515.9 (4)C57—C51—C52—C53179.0 (2)
C5—N1—C11—C1250.9 (4)C51—C52—C53—C540.1 (4)
N2—N1—C11—C12140.8 (2)C52—C53—C54—O54179.2 (2)
C5—N1—C11—C16129.2 (3)C52—C53—C54—C550.2 (4)
N2—N1—C11—C1639.1 (3)O54—C54—C55—C56178.8 (2)
C16—C11—C12—C131.2 (4)C53—C54—C55—C560.6 (4)
N1—C11—C12—C13178.9 (2)C52—C51—C56—C550.4 (4)
C11—C12—C13—C141.6 (4)C57—C51—C56—C55179.4 (2)
C12—C13—C14—C150.9 (4)C54—C55—C56—C510.7 (4)
C13—C14—C15—C160.2 (4)C53—C54—O54—C541172.3 (2)
C12—C11—C16—C150.1 (4)C55—C54—O54—C5418.3 (3)
N1—C11—C16—C15180.0 (2)C5—N51—C58—O58177.9 (2)
C14—C15—C16—C110.6 (4)C57—N51—C58—O583.0 (3)
N2—C3—C31—C32173.3 (2)C5—N51—C58—C595.0 (3)
C4—C3—C31—C322.9 (4)C57—N51—C58—C59174.17 (19)
N2—C3—C31—C3453.9 (3)O58—C58—C59—Cl5959.4 (3)
C4—C3—C31—C34122.2 (3)N51—C58—C59—Cl59123.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C55—H55···O58i0.952.503.449 (3)178
C52—H52···Cg1ii0.952.703.562 (3)152
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+1, z.
(II) N-(3-tert-butyl-1-phenyl-1H-pyrazol-5-yl)-2-chloro- N-(4-chlorobenzyl)acetamide top
Crystal data top
C22H23Cl2N3OF(000) = 872
Mr = 416.33Dx = 1.322 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4792 reflections
a = 10.120 (2) Åθ = 2.8–27.5°
b = 10.7732 (18) ŵ = 0.33 mm1
c = 19.2751 (14) ÅT = 120 K
β = 95.662 (9)°Needle, colourless
V = 2091.2 (6) Å30.35 × 0.12 × 0.06 mm
Z = 4
Data collection top
Bruker Nonius KappaCCD
diffractometer
4792 independent reflections
Radiation source: Bruker Nonius FR591 rotating-anode3328 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.8°
ϕ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1313
Tmin = 0.899, Tmax = 0.981l = 2324
33228 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.037P)2 + 2.2697P]
where P = (Fo2 + 2Fc2)/3
4792 reflections(Δ/σ)max = 0.001
256 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.83 e Å3
Crystal data top
C22H23Cl2N3OV = 2091.2 (6) Å3
Mr = 416.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.120 (2) ŵ = 0.33 mm1
b = 10.7732 (18) ÅT = 120 K
c = 19.2751 (14) Å0.35 × 0.12 × 0.06 mm
β = 95.662 (9)°
Data collection top
Bruker Nonius KappaCCD
diffractometer
4792 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3328 reflections with I > 2σ(I)
Tmin = 0.899, Tmax = 0.981Rint = 0.063
33228 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.04Δρmax = 0.70 e Å3
4792 reflectionsΔρmin = 0.83 e Å3
256 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.61865 (16)0.35337 (16)0.16477 (8)0.0160 (4)
N20.69957 (17)0.44926 (15)0.15140 (9)0.0164 (4)
C30.8008 (2)0.44291 (19)0.20033 (10)0.0163 (4)
C40.7871 (2)0.34228 (19)0.24494 (10)0.0179 (4)
H40.84640.31800.28390.022*
C50.6713 (2)0.28677 (18)0.22090 (10)0.0157 (4)
C110.5031 (2)0.33030 (19)0.11880 (10)0.0165 (4)
C120.3901 (2)0.2822 (2)0.14301 (11)0.0199 (4)
H120.38760.26540.19120.024*
C130.2811 (2)0.2588 (2)0.09654 (11)0.0237 (5)
H130.20390.22340.11270.028*
C140.2823 (2)0.2860 (2)0.02670 (11)0.0235 (5)
H140.20630.26990.00500.028*
C150.3943 (2)0.3366 (2)0.00329 (11)0.0237 (5)
H150.39500.35700.04460.028*
C160.5057 (2)0.3579 (2)0.04880 (11)0.0201 (4)
H160.58360.39130.03230.024*
C310.9101 (2)0.53764 (19)0.20449 (10)0.0179 (4)
C320.8962 (2)0.6213 (2)0.14079 (12)0.0272 (5)
H32A0.81050.66430.13810.041*
H32B0.90100.57110.09870.041*
H32C0.96820.68260.14440.041*
C331.0441 (2)0.4726 (2)0.20941 (13)0.0274 (5)
H33A1.04870.41930.16850.041*
H33B1.05480.42190.25180.041*
H33C1.11510.53470.21110.041*
C340.9004 (2)0.6152 (2)0.26999 (12)0.0299 (5)
H34A0.90630.56070.31090.045*
H34B0.81540.65940.26630.045*
H34C0.97330.67540.27490.045*
N510.60951 (17)0.18100 (15)0.24512 (8)0.0164 (4)
C570.5421 (2)0.1932 (2)0.30909 (10)0.0189 (4)
H57A0.48960.11730.31550.023*
H57B0.47990.26430.30410.023*
C510.6389 (2)0.2126 (2)0.37209 (10)0.0192 (4)
C520.6577 (2)0.3292 (2)0.40072 (11)0.0262 (5)
H520.60750.39720.38080.031*
C530.7492 (2)0.3488 (3)0.45827 (12)0.0325 (6)
H530.76180.42910.47820.039*
C540.8208 (2)0.2492 (3)0.48560 (11)0.0323 (6)
C550.8041 (2)0.1324 (3)0.45822 (12)0.0306 (6)
H550.85490.06480.47810.037*
C560.7126 (2)0.1145 (2)0.40138 (11)0.0234 (5)
H560.70000.03370.38210.028*
Cl540.93487 (7)0.27147 (9)0.55764 (3)0.0547 (2)
C580.6121 (2)0.0698 (2)0.21199 (10)0.0196 (4)
O580.55919 (17)0.02194 (14)0.23199 (8)0.0292 (4)
C590.6861 (2)0.0721 (2)0.14731 (11)0.0243 (5)
H59A0.77260.11420.15820.029*
H59B0.63420.12020.11030.029*
Cl590.71317 (7)0.07799 (6)0.11675 (4)0.04079 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0162 (9)0.0156 (9)0.0166 (8)0.0019 (7)0.0026 (7)0.0014 (7)
N20.0173 (9)0.0141 (9)0.0185 (9)0.0031 (7)0.0047 (7)0.0001 (7)
C30.0163 (10)0.0173 (10)0.0153 (10)0.0003 (8)0.0018 (8)0.0023 (8)
C40.0171 (10)0.0192 (10)0.0173 (10)0.0009 (8)0.0008 (8)0.0000 (8)
C50.0190 (10)0.0143 (10)0.0143 (9)0.0013 (8)0.0043 (8)0.0010 (8)
C110.0151 (10)0.0155 (10)0.0185 (10)0.0004 (8)0.0001 (8)0.0028 (8)
C120.0195 (11)0.0237 (11)0.0167 (10)0.0022 (9)0.0021 (8)0.0020 (9)
C130.0195 (11)0.0302 (12)0.0213 (11)0.0065 (9)0.0023 (8)0.0034 (9)
C140.0232 (11)0.0273 (12)0.0189 (10)0.0037 (9)0.0038 (8)0.0013 (9)
C150.0251 (12)0.0305 (12)0.0155 (10)0.0018 (10)0.0026 (9)0.0000 (9)
C160.0184 (11)0.0239 (11)0.0184 (10)0.0011 (9)0.0042 (8)0.0004 (9)
C310.0180 (10)0.0176 (10)0.0182 (10)0.0008 (8)0.0021 (8)0.0000 (8)
C320.0260 (12)0.0264 (12)0.0284 (12)0.0073 (10)0.0011 (9)0.0062 (10)
C330.0181 (11)0.0253 (12)0.0386 (13)0.0046 (9)0.0015 (9)0.0008 (10)
C340.0340 (14)0.0279 (13)0.0287 (12)0.0113 (11)0.0075 (10)0.0100 (10)
N510.0191 (9)0.0154 (9)0.0148 (8)0.0024 (7)0.0025 (7)0.0005 (7)
C570.0195 (11)0.0207 (11)0.0172 (10)0.0013 (9)0.0053 (8)0.0003 (8)
C510.0182 (11)0.0248 (11)0.0155 (10)0.0015 (9)0.0054 (8)0.0003 (9)
C520.0276 (12)0.0266 (12)0.0246 (11)0.0002 (10)0.0029 (9)0.0007 (10)
C530.0301 (13)0.0414 (15)0.0263 (12)0.0047 (11)0.0033 (10)0.0112 (11)
C540.0170 (11)0.0628 (18)0.0171 (11)0.0001 (12)0.0020 (8)0.0034 (11)
C550.0233 (12)0.0475 (16)0.0216 (11)0.0100 (11)0.0054 (9)0.0085 (11)
C560.0224 (12)0.0287 (12)0.0198 (11)0.0025 (9)0.0066 (9)0.0054 (9)
Cl540.0254 (3)0.1090 (7)0.0281 (3)0.0041 (4)0.0063 (3)0.0147 (4)
C580.0219 (11)0.0198 (11)0.0166 (10)0.0003 (9)0.0002 (8)0.0000 (8)
O580.0424 (10)0.0185 (8)0.0279 (9)0.0088 (7)0.0105 (7)0.0012 (7)
C590.0345 (13)0.0172 (11)0.0222 (11)0.0031 (10)0.0076 (9)0.0025 (9)
Cl590.0568 (4)0.0218 (3)0.0474 (4)0.0006 (3)0.0235 (3)0.0106 (3)
Geometric parameters (Å, º) top
N1—N21.359 (2)C33—H33B0.9800
N1—C51.362 (3)C33—H33C0.9800
N1—C111.417 (3)C34—H34A0.9800
N2—C31.324 (3)C34—H34B0.9800
C3—C41.399 (3)C34—H34C0.9800
C3—C311.501 (3)N51—C581.359 (3)
C4—C51.356 (3)N51—C571.473 (2)
C4—H40.9500C57—C511.498 (3)
C5—N511.402 (3)C57—H57A0.9900
C11—C121.378 (3)C57—H57B0.9900
C11—C161.384 (3)C51—C521.378 (3)
C12—C131.374 (3)C51—C561.382 (3)
C12—H120.9500C52—C531.389 (3)
C13—C141.379 (3)C52—H520.9500
C13—H130.9500C53—C541.371 (4)
C14—C151.373 (3)C53—H530.9500
C14—H140.9500C54—C551.368 (4)
C15—C161.378 (3)C54—Cl541.733 (2)
C15—H150.9500C55—C561.377 (3)
C16—H160.9500C55—H550.9500
C31—C321.518 (3)C56—H560.9500
C31—C331.521 (3)C58—O581.206 (3)
C31—C341.525 (3)C58—C591.516 (3)
C32—H32A0.9800C59—Cl591.751 (2)
C32—H32B0.9800C59—H59A0.9900
C32—H32C0.9800C59—H59B0.9900
C33—H33A0.9800
N2—N1—C5110.81 (16)C31—C33—H33C109.5
N2—N1—C11119.36 (16)H33A—C33—H33C109.5
C5—N1—C11129.64 (17)H33B—C33—H33C109.5
C3—N2—N1105.33 (16)C31—C34—H34A109.5
N2—C3—C4111.14 (18)C31—C34—H34B109.5
N2—C3—C31121.14 (18)H34A—C34—H34B109.5
C4—C3—C31127.70 (18)C31—C34—H34C109.5
C5—C4—C3105.48 (18)H34A—C34—H34C109.5
C5—C4—H4127.3H34B—C34—H34C109.5
C3—C4—H4127.3C58—N51—C5122.00 (16)
C4—C5—N1107.23 (17)C58—N51—C57120.29 (17)
C4—C5—N51130.07 (18)C5—N51—C57117.71 (16)
N1—C5—N51122.71 (18)N51—C57—C51111.80 (16)
C12—C11—C16120.44 (19)N51—C57—H57A109.3
C12—C11—N1121.00 (18)C51—C57—H57A109.3
C16—C11—N1118.55 (18)N51—C57—H57B109.3
C13—C12—C11119.21 (19)C51—C57—H57B109.3
C13—C12—H12120.4H57A—C57—H57B107.9
C11—C12—H12120.4C52—C51—C56119.1 (2)
C12—C13—C14120.9 (2)C52—C51—C57120.4 (2)
C12—C13—H13119.5C56—C51—C57120.5 (2)
C14—C13—H13119.5C51—C52—C53120.9 (2)
C15—C14—C13119.5 (2)C51—C52—H52119.6
C15—C14—H14120.3C53—C52—H52119.6
C13—C14—H14120.3C54—C53—C52118.2 (2)
C14—C15—C16120.5 (2)C54—C53—H53120.9
C14—C15—H15119.8C52—C53—H53120.9
C16—C15—H15119.8C55—C54—C53122.1 (2)
C15—C16—C11119.46 (19)C55—C54—Cl54118.9 (2)
C15—C16—H16120.3C53—C54—Cl54119.0 (2)
C11—C16—H16120.3C54—C55—C56118.9 (2)
C3—C31—C32110.58 (17)C54—C55—H55120.5
C3—C31—C33109.73 (17)C56—C55—H55120.5
C32—C31—C33109.56 (18)C55—C56—C51120.8 (2)
C3—C31—C34108.03 (17)C55—C56—H56119.6
C32—C31—C34109.60 (19)C51—C56—H56119.6
C33—C31—C34109.30 (19)O58—C58—N51122.86 (19)
C31—C32—H32A109.5O58—C58—C59123.1 (2)
C31—C32—H32B109.5N51—C58—C59114.00 (18)
H32A—C32—H32B109.5C58—C59—Cl59111.61 (16)
C31—C32—H32C109.5C58—C59—H59A109.3
H32A—C32—H32C109.5Cl59—C59—H59A109.3
H32B—C32—H32C109.5C58—C59—H59B109.3
C31—C33—H33A109.5Cl59—C59—H59B109.3
C31—C33—H33B109.5H59A—C59—H59B108.0
H33A—C33—H33B109.5
C5—N1—N2—C31.2 (2)C4—C3—C31—C3351.9 (3)
C11—N1—N2—C3176.62 (17)N2—C3—C31—C34111.1 (2)
N1—N2—C3—C40.8 (2)C4—C3—C31—C3467.2 (3)
N1—N2—C3—C31177.72 (17)C4—C5—N51—C58103.5 (3)
N2—C3—C4—C50.1 (2)N1—C5—N51—C5876.1 (3)
C31—C3—C4—C5178.29 (19)C4—C5—N51—C5775.6 (3)
C3—C4—C5—N10.6 (2)N1—C5—N51—C57104.7 (2)
C3—C4—C5—N51179.07 (19)C58—N51—C57—C51110.1 (2)
N2—N1—C5—C41.2 (2)C5—N51—C57—C5169.1 (2)
C11—N1—C5—C4175.97 (18)N51—C57—C51—C52102.4 (2)
N2—N1—C5—N51178.56 (17)N51—C57—C51—C5676.2 (2)
C11—N1—C5—N513.8 (3)C56—C51—C52—C530.1 (3)
N2—N1—C11—C12148.0 (2)C57—C51—C52—C53178.67 (19)
C5—N1—C11—C1237.6 (3)C51—C52—C53—C540.4 (3)
N2—N1—C11—C1631.6 (3)C52—C53—C54—C550.3 (4)
C5—N1—C11—C16142.8 (2)C52—C53—C54—Cl54179.72 (18)
C16—C11—C12—C131.7 (3)C53—C54—C55—C560.0 (4)
N1—C11—C12—C13178.7 (2)Cl54—C54—C55—C56179.41 (16)
C11—C12—C13—C141.8 (3)C54—C55—C56—C510.2 (3)
C12—C13—C14—C150.3 (4)C52—C51—C56—C550.2 (3)
C13—C14—C15—C161.3 (3)C57—C51—C56—C55178.35 (19)
C14—C15—C16—C111.3 (3)C5—N51—C58—O58179.8 (2)
C12—C11—C16—C150.2 (3)C57—N51—C58—O581.1 (3)
N1—C11—C16—C15179.77 (19)C5—N51—C58—C590.4 (3)
N2—C3—C31—C328.9 (3)C57—N51—C58—C59179.55 (18)
C4—C3—C31—C32172.9 (2)O58—C58—C59—Cl5912.0 (3)
N2—C3—C31—C33129.8 (2)N51—C58—C59—Cl59168.70 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C57—H57B···O58i0.992.433.307 (3)148
C16—H16···Cg2ii0.952.913.526 (2)124
C56—H56···Cg1iii0.952.773.514 (2)136
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x+1, y1/2, z+1/2.
(III) S-[N-(3-tert-butyl-1-phenyl-1H-pyrazol-5-yl)- N-(4-methylbenzyl)carbamoyl]methyl O-ethyl carbonodithioate top
Crystal data top
C26H31N3O2S2Z = 2
Mr = 481.68F(000) = 512
Triclinic, P1Dx = 1.271 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6847 (14) ÅCell parameters from 4471 reflections
b = 11.3127 (9) Åθ = 2.8–25.1°
c = 12.3425 (12) ŵ = 0.24 mm1
α = 77.040 (8)°T = 120 K
β = 72.789 (9)°Block, yellow
γ = 84.977 (9)°0.42 × 0.35 × 0.23 mm
V = 1258.5 (2) Å3
Data collection top
Bruker Nonius KappaCCD
diffractometer
4471 independent reflections
Radiation source: Bruker Nonius FR591 rotating-anode2251 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.148
Detector resolution: 9.091 pixels mm-1θmax = 25.1°, θmin = 2.8°
ϕ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1313
Tmin = 0.901, Tmax = 0.947l = 1414
24648 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0877P)2]
where P = (Fo2 + 2Fc2)/3
4471 reflections(Δ/σ)max = 0.001
303 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C26H31N3O2S2γ = 84.977 (9)°
Mr = 481.68V = 1258.5 (2) Å3
Triclinic, P1Z = 2
a = 9.6847 (14) ÅMo Kα radiation
b = 11.3127 (9) ŵ = 0.24 mm1
c = 12.3425 (12) ÅT = 120 K
α = 77.040 (8)°0.42 × 0.35 × 0.23 mm
β = 72.789 (9)°
Data collection top
Bruker Nonius KappaCCD
diffractometer
4471 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2251 reflections with I > 2σ(I)
Tmin = 0.901, Tmax = 0.947Rint = 0.148
24648 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 1.00Δρmax = 0.43 e Å3
4471 reflectionsΔρmin = 0.35 e Å3
303 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1241 (3)0.2748 (3)0.5328 (2)0.0242 (7)
N20.0013 (3)0.2140 (3)0.5838 (2)0.0256 (7)
C30.0648 (4)0.2252 (3)0.5000 (3)0.0249 (9)
C40.0208 (4)0.2909 (3)0.3956 (3)0.0287 (9)
H40.00010.31080.32300.034*
C50.1392 (4)0.3204 (3)0.4190 (3)0.0243 (9)
C110.2156 (4)0.2835 (3)0.6023 (3)0.0243 (9)
C120.2770 (4)0.3913 (4)0.5911 (3)0.0289 (9)
H120.26420.45910.53330.035*
C130.3575 (4)0.4017 (4)0.6635 (3)0.0328 (10)
H130.40070.47660.65560.039*
C140.3750 (4)0.3033 (4)0.7474 (3)0.0343 (10)
H140.42870.31030.79870.041*
C150.3143 (4)0.1945 (4)0.7566 (3)0.0329 (10)
H150.32740.12620.81380.039*
C160.2351 (4)0.1840 (4)0.6840 (3)0.0288 (9)
H160.19420.10860.69000.035*
C310.2069 (4)0.1678 (3)0.5234 (3)0.0267 (9)
C320.2687 (4)0.1130 (4)0.6519 (3)0.0368 (10)
H32A0.20340.04820.67620.055*
H32B0.36370.07960.66520.055*
H32C0.27870.17610.69690.055*
C330.1860 (4)0.0694 (4)0.4535 (3)0.0352 (10)
H33A0.14000.10390.37150.053*
H33B0.28020.03730.46190.053*
H33C0.12440.00380.48190.053*
C340.3140 (4)0.2649 (4)0.4868 (3)0.0342 (10)
H34A0.32780.32780.53240.051*
H34B0.40680.22770.50020.051*
H34C0.27580.30130.40420.051*
N510.2612 (3)0.3868 (3)0.3480 (2)0.0266 (7)
C570.2445 (4)0.5179 (3)0.3082 (3)0.0317 (10)
H57A0.33700.55670.29660.038*
H57B0.17030.55020.36960.038*
C510.2020 (4)0.5528 (3)0.1981 (3)0.0281 (9)
C520.0706 (5)0.6066 (4)0.1960 (3)0.0422 (11)
H520.00410.62070.26600.051*
C530.0333 (5)0.6406 (4)0.0941 (4)0.0473 (12)
H530.05910.67710.09520.057*
C540.1261 (5)0.6232 (4)0.0088 (3)0.0366 (10)
C550.2570 (5)0.5674 (4)0.0064 (3)0.0387 (11)
H550.32340.55300.07640.046*
C560.2932 (4)0.5324 (4)0.0945 (3)0.0392 (11)
H560.38400.49270.09360.047*
C5410.0864 (5)0.6630 (4)0.1201 (4)0.0537 (13)
H54A0.01710.65130.10550.081*
H54B0.14220.61480.17590.081*
H54C0.10810.74900.15170.081*
C580.3936 (4)0.3330 (4)0.3128 (3)0.0268 (9)
O580.5003 (3)0.3923 (2)0.2603 (2)0.0310 (7)
C590.3982 (4)0.1955 (3)0.3451 (3)0.0303 (9)
H59A0.31980.16380.32390.036*
H59B0.37980.16970.43010.036*
S590.56492 (11)0.13141 (9)0.27603 (8)0.0333 (3)
C600.5539 (4)0.1467 (3)0.1356 (3)0.0289 (9)
S600.41996 (12)0.20106 (10)0.08517 (9)0.0395 (3)
O600.6788 (3)0.1020 (2)0.0783 (2)0.0332 (7)
C610.7101 (4)0.1091 (4)0.0454 (3)0.0361 (10)
H61A0.70970.19480.08700.043*
H61B0.63690.06520.06160.043*
C620.8564 (5)0.0518 (4)0.0831 (3)0.0485 (12)
H62A0.92460.08730.05520.073*
H62B0.88910.06610.16800.073*
H62C0.85140.03570.05090.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0225 (18)0.0250 (18)0.0243 (17)0.0054 (15)0.0039 (14)0.0052 (14)
N20.0269 (19)0.0247 (18)0.0246 (17)0.0040 (15)0.0057 (14)0.0046 (14)
C30.028 (2)0.019 (2)0.029 (2)0.0014 (18)0.0092 (18)0.0058 (17)
C40.035 (2)0.029 (2)0.025 (2)0.0034 (19)0.0131 (18)0.0046 (18)
C50.025 (2)0.022 (2)0.0220 (19)0.0036 (18)0.0022 (17)0.0028 (16)
C110.026 (2)0.029 (2)0.0204 (19)0.0044 (18)0.0058 (16)0.0089 (17)
C120.032 (2)0.026 (2)0.028 (2)0.0011 (19)0.0079 (18)0.0047 (17)
C130.031 (2)0.031 (2)0.041 (2)0.007 (2)0.013 (2)0.013 (2)
C140.031 (2)0.042 (3)0.035 (2)0.002 (2)0.0134 (19)0.015 (2)
C150.035 (2)0.035 (3)0.029 (2)0.005 (2)0.0104 (19)0.0067 (18)
C160.028 (2)0.027 (2)0.029 (2)0.0072 (19)0.0039 (18)0.0049 (17)
C310.025 (2)0.026 (2)0.028 (2)0.0016 (18)0.0057 (17)0.0069 (17)
C320.032 (2)0.040 (3)0.037 (2)0.009 (2)0.0106 (19)0.0010 (19)
C330.035 (3)0.033 (2)0.042 (2)0.001 (2)0.014 (2)0.012 (2)
C340.037 (2)0.031 (2)0.038 (2)0.002 (2)0.014 (2)0.0101 (19)
N510.0297 (19)0.0242 (19)0.0241 (16)0.0059 (16)0.0044 (14)0.0037 (14)
C570.032 (2)0.029 (2)0.029 (2)0.003 (2)0.0004 (18)0.0067 (18)
C510.032 (2)0.023 (2)0.031 (2)0.0062 (19)0.0067 (18)0.0086 (17)
C520.038 (3)0.052 (3)0.036 (2)0.008 (2)0.006 (2)0.016 (2)
C530.038 (3)0.059 (3)0.047 (3)0.011 (2)0.020 (2)0.010 (2)
C540.047 (3)0.033 (2)0.030 (2)0.007 (2)0.015 (2)0.0009 (19)
C550.036 (3)0.050 (3)0.022 (2)0.005 (2)0.0016 (18)0.0030 (19)
C560.033 (3)0.046 (3)0.031 (2)0.010 (2)0.006 (2)0.001 (2)
C5410.061 (3)0.054 (3)0.049 (3)0.009 (3)0.026 (3)0.001 (2)
C580.033 (2)0.029 (2)0.023 (2)0.006 (2)0.0107 (19)0.0067 (17)
O580.0263 (16)0.0325 (16)0.0318 (15)0.0099 (14)0.0034 (13)0.0048 (13)
C590.030 (2)0.027 (2)0.034 (2)0.0059 (19)0.0053 (18)0.0090 (18)
S590.0340 (6)0.0364 (7)0.0307 (6)0.0009 (5)0.0105 (5)0.0084 (5)
C600.030 (2)0.027 (2)0.029 (2)0.0064 (19)0.0102 (18)0.0014 (17)
S600.0390 (7)0.0437 (7)0.0403 (6)0.0017 (5)0.0182 (5)0.0095 (5)
O600.0377 (17)0.0337 (16)0.0249 (14)0.0017 (14)0.0050 (12)0.0059 (12)
C610.045 (3)0.038 (3)0.025 (2)0.002 (2)0.0088 (19)0.0072 (18)
C620.048 (3)0.061 (3)0.032 (2)0.006 (3)0.005 (2)0.013 (2)
Geometric parameters (Å, º) top
N1—C51.352 (4)N51—C571.465 (5)
N1—N21.358 (4)C57—C511.495 (5)
N1—C111.427 (4)C57—H57A0.9900
N2—C31.330 (4)C57—H57B0.9900
C3—C41.395 (5)C51—C521.367 (5)
C3—C311.496 (5)C51—C561.377 (5)
C4—C51.347 (5)C52—C531.374 (5)
C4—H40.9500C52—H520.9500
C5—N511.406 (5)C53—C541.366 (5)
C11—C121.364 (5)C53—H530.9500
C11—C161.374 (5)C54—C551.372 (5)
C12—C131.378 (5)C54—C5411.498 (5)
C12—H120.9500C55—C561.357 (5)
C13—C141.377 (6)C55—H550.9500
C13—H130.9500C56—H560.9500
C14—C151.378 (5)C541—H54A0.9800
C14—H140.9500C541—H54B0.9800
C15—C161.370 (5)C541—H54C0.9800
C15—H150.9500C58—O581.212 (4)
C16—H160.9500C58—C591.517 (5)
C31—C331.521 (5)C59—S591.766 (4)
C31—C321.522 (5)C59—H59A0.9900
C31—C341.530 (5)C59—H59B0.9900
C32—H32A0.9800S59—C601.737 (4)
C32—H32B0.9800C60—O601.329 (4)
C32—H32C0.9800C60—S601.617 (4)
C33—H33A0.9800O60—C611.450 (4)
C33—H33B0.9800C61—C621.492 (5)
C33—H33C0.9800C61—H61A0.9900
C34—H34A0.9800C61—H61B0.9900
C34—H34B0.9800C62—H62A0.9800
C34—H34C0.9800C62—H62B0.9800
N51—C581.362 (4)C62—H62C0.9800
C5—N1—N2111.0 (3)C5—N51—C57118.8 (3)
C5—N1—C11130.3 (3)N51—C57—C51114.0 (3)
N2—N1—C11118.7 (3)N51—C57—H57A108.8
C3—N2—N1105.0 (3)C51—C57—H57A108.8
N2—C3—C4110.8 (3)N51—C57—H57B108.8
N2—C3—C31120.6 (3)C51—C57—H57B108.8
C4—C3—C31128.6 (3)H57A—C57—H57B107.6
C5—C4—C3105.7 (3)C52—C51—C56117.1 (4)
C5—C4—H4127.1C52—C51—C57121.3 (3)
C3—C4—H4127.1C56—C51—C57121.6 (4)
C4—C5—N1107.5 (3)C51—C52—C53121.0 (4)
C4—C5—N51131.3 (3)C51—C52—H52119.5
N1—C5—N51121.3 (3)C53—C52—H52119.5
C12—C11—C16120.8 (3)C54—C53—C52121.5 (4)
C12—C11—N1120.0 (3)C54—C53—H53119.2
C16—C11—N1119.1 (3)C52—C53—H53119.2
C11—C12—C13120.0 (4)C53—C54—C55117.5 (4)
C11—C12—H12120.0C53—C54—C541121.3 (4)
C13—C12—H12120.0C55—C54—C541121.2 (4)
C14—C13—C12119.7 (4)C56—C55—C54121.0 (4)
C14—C13—H13120.1C56—C55—H55119.5
C12—C13—H13120.1C54—C55—H55119.5
C13—C14—C15119.7 (4)C55—C56—C51121.9 (4)
C13—C14—H14120.2C55—C56—H56119.1
C15—C14—H14120.2C51—C56—H56119.1
C16—C15—C14120.5 (4)C54—C541—H54A109.5
C16—C15—H15119.7C54—C541—H54B109.5
C14—C15—H15119.7H54A—C541—H54B109.5
C15—C16—C11119.3 (4)C54—C541—H54C109.5
C15—C16—H16120.4H54A—C541—H54C109.5
C11—C16—H16120.4H54B—C541—H54C109.5
C3—C31—C33109.0 (3)O58—C58—N51121.6 (4)
C3—C31—C32111.2 (3)O58—C58—C59122.7 (4)
C33—C31—C32109.7 (3)N51—C58—C59115.7 (3)
C3—C31—C34108.9 (3)C58—C59—S59113.1 (3)
C33—C31—C34109.6 (3)C58—C59—H59A109.0
C32—C31—C34108.3 (3)S59—C59—H59A109.0
C31—C32—H32A109.5C58—C59—H59B109.0
C31—C32—H32B109.5S59—C59—H59B109.0
H32A—C32—H32B109.5H59A—C59—H59B107.8
C31—C32—H32C109.5C60—S59—C59102.39 (19)
H32A—C32—H32C109.5O60—C60—S60127.1 (3)
H32B—C32—H32C109.5O60—C60—S59105.2 (2)
C31—C33—H33A109.5S60—C60—S59127.8 (2)
C31—C33—H33B109.5C60—O60—C61119.6 (3)
H33A—C33—H33B109.5O60—C61—C62106.5 (3)
C31—C33—H33C109.5O60—C61—H61A110.4
H33A—C33—H33C109.5C62—C61—H61A110.4
H33B—C33—H33C109.5O60—C61—H61B110.4
C31—C34—H34A109.5C62—C61—H61B110.4
C31—C34—H34B109.5H61A—C61—H61B108.6
H34A—C34—H34B109.5C61—C62—H62A109.5
C31—C34—H34C109.5C61—C62—H62B109.5
H34A—C34—H34C109.5H62A—C62—H62B109.5
H34B—C34—H34C109.5C61—C62—H62C109.5
C58—N51—C5122.3 (3)H62A—C62—H62C109.5
C58—N51—C57118.9 (3)H62B—C62—H62C109.5
C5—N1—N2—C31.3 (4)C4—C5—N51—C58108.0 (4)
C11—N1—N2—C3177.6 (3)N1—C5—N51—C5873.1 (4)
N1—N2—C3—C41.1 (4)C4—C5—N51—C5770.3 (5)
N1—N2—C3—C31179.3 (3)N1—C5—N51—C57108.5 (4)
N2—C3—C4—C50.4 (4)C58—N51—C57—C5190.9 (4)
C31—C3—C4—C5178.5 (3)C5—N51—C57—C5187.5 (4)
C3—C4—C5—N10.4 (4)N51—C57—C51—C52114.0 (4)
C3—C4—C5—N51179.4 (4)N51—C57—C51—C5666.1 (5)
N2—N1—C5—C41.1 (4)C56—C51—C52—C531.2 (6)
C11—N1—C5—C4177.7 (3)C57—C51—C52—C53178.7 (4)
N2—N1—C5—N51179.8 (3)C51—C52—C53—C540.6 (7)
C11—N1—C5—N511.4 (5)C52—C53—C54—C551.7 (7)
C5—N1—C11—C1242.6 (5)C52—C53—C54—C541178.6 (4)
N2—N1—C11—C12136.1 (4)C53—C54—C55—C560.8 (7)
C5—N1—C11—C16140.5 (4)C541—C54—C55—C56179.4 (4)
N2—N1—C11—C1640.8 (5)C54—C55—C56—C511.0 (7)
C16—C11—C12—C131.2 (6)C52—C51—C56—C552.0 (6)
N1—C11—C12—C13175.7 (3)C57—C51—C56—C55177.8 (4)
C11—C12—C13—C140.3 (6)C5—N51—C58—O58173.4 (3)
C12—C13—C14—C151.3 (6)C57—N51—C58—O588.3 (5)
C13—C14—C15—C160.9 (6)C5—N51—C58—C595.8 (5)
C14—C15—C16—C110.6 (6)C57—N51—C58—C59172.6 (3)
C12—C11—C16—C151.6 (6)O58—C58—C59—S5911.1 (5)
N1—C11—C16—C15175.2 (3)N51—C58—C59—S59169.8 (2)
N2—C3—C31—C33114.6 (4)C58—C59—S59—C6075.7 (3)
C4—C3—C31—C3363.3 (5)C59—S59—C60—O60178.7 (2)
N2—C3—C31—C326.5 (5)C59—S59—C60—S602.3 (3)
C4—C3—C31—C32175.6 (3)S60—C60—O60—C615.6 (5)
N2—C3—C31—C34125.9 (3)S59—C60—O60—C61175.4 (3)
C4—C3—C31—C3456.2 (5)C60—O60—C61—C62180.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O58i0.962.393.244 (5)149
C55—H55···O58ii0.952.393.277 (5)155
C52—H52···Cg1iii0.952.913.632 (5)133
C61—H61A···Cg2ii0.992.823.610 (5)137
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) x, y+1, z+1.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC23H26ClN3O2C22H23Cl2N3OC26H31N3O2S2
Mr411.92416.33481.68
Crystal system, space groupTriclinic, P1Monoclinic, P21/cTriclinic, P1
Temperature (K)120120120
a, b, c (Å)10.0761 (12), 10.5208 (8), 11.1868 (19)10.120 (2), 10.7732 (18), 19.2751 (14)9.6847 (14), 11.3127 (9), 12.3425 (12)
α, β, γ (°)96.546 (7), 95.790 (9), 116.035 (9)90, 95.662 (9), 9077.040 (8), 72.789 (9), 84.977 (9)
V3)1043.4 (2)2091.2 (6)1258.5 (2)
Z242
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.210.330.24
Crystal size (mm)0.50 × 0.26 × 0.220.35 × 0.12 × 0.060.42 × 0.35 × 0.23
Data collection
DiffractometerBruker Nonius KappaCCD
diffractometer
Bruker Nonius KappaCCD
diffractometer
Bruker Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.914, 0.9560.899, 0.9810.901, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
27179, 4801, 2893 33228, 4792, 3328 24648, 4471, 2251
Rint0.0680.0630.148
(sin θ/λ)max1)0.6500.6500.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.154, 1.05 0.049, 0.116, 1.04 0.056, 0.172, 1.00
No. of reflections480147924471
No. of parameters266256303
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.310.70, 0.830.43, 0.35

Computer programs: COLLECT (Hooft, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected torsion angles (Å) for compounds (I)–(IV)a. top
(I)(II)(III)(IV)
N2—N1—C11—C12-140.8 (2)-148.0 (2)-136.1 (4)-133.97 (14)
N1—C3—C31—C32-173.3 (2)-8.9 (3)6.5 (5)172.69 (13)
N1—C5—N51—C57-102.5 (3)-104.7 (2)-108.5 (4)-100.84 (15)
C5—N51—C57—C51-85.6 (3)-69.1 (2)-87.5 (4)-80.52 (15)
N51—C57—C51—C52106.8 (3)102.4 (2)114.0 (4)118.10 (14)
N1—C5—N51—C5878.3 (3)76.1 (3)73.1 (4)83.16 (17)
C5—N51—C55—O58-177.9 (2)-179.8 (2)-173.4 (3)176.99 (13)
N51—C58—C59—S59169.8 (2)
C58—C59—S59—C60-75.7 (3)
C59—S59—C60—O60178.7 (2)
S59—C60—O60—C61-175.4 (3)
C60—O60—C61—C62-180.0 (3)
C53—C54—O54—C541-172.3 (2)-177.94 (13)
Note: (a) data for compound (IV) are taken from Castillo et al. (2010).
Hydrogen-bond parameters (Å, °) for compounds (I)–(III) top
CompoundD—H···AD—HH···AD···AD—H···A
(I)C55—H55···O58i0.952.503.449 (3)178
C52—H52···Cg1ii0.952.703.562 (3)152
(II)C57—H57B···O58iii0.992.433.307 (3)148
C16—H16···Cg2iv0.952.913.526 (2)124
C56—H56···Cg1a,v0.952.773.514 (2)136
(III)C13—H13···O58vi0.952.393.244 (5)149
C55—H55···O58ii0.952.393.277 (5)155
C52—H52···Cg1vii0.952.913.632 (5)133
C61—H61A···Cg2ii0.992.823.610 (5)137
Note: Cg1 represents the centroid of the C11–C16 ring and Cg2 represents the centroid of the C51–C56 ring. Symmetry codes: (i) 2-x, 2-y, 1-z; (ii)1-x, 1-y, -z); (iii) 1-x, 0.5+y, 0.5-z; (iv) x, 0.5-y, -0.5+z; (v) 1-x, -0.5+y, 0.5-z; (vi) 1-x, 1-y, 1-z; (vii) -x, 1-y, 1-z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds